Comparison of mechanical properties of the Zro2 and TiO2 filler epoxy composite

P.Sneha Latha¹, M.Venkateswara Rao²,

¹ PhD Scholar, Mechanical EnggDepartment, Acharya Nagarjuna University College Of Engg And Technology, Andhra pradesh, INDIA
² Professor, Mechanical EnggDepartment, BapatlaEngg College, Bapatla, Andhara pradesh, INDIA

Abstract - Effect of TiO2 and ZrO2 filler on mechanical properties of the epoxy polymer has been investigated experimentally. TiO2 and ZrO2 filler epoxy composites are fabricated by hand layup technique in a mold and cured under light pressure at room temperature for 48 hour indivisibly. Specimen preparation and testing was carried out as per ASTM standards. The results indicated that the due to the filler addition the mechanical properties of the epoxy composites is enhances the best resistance observed in the ZrO2 filler composites. The strength variation is observed in the trend of plain-petrel-diesel-mineral-saline in Both tensile and flexural.

Key Words: ZrO2, tensile, TiO2, Epoxy.

1.INTRODUCTION

Environmental awareness today motivating the researcher's world-wide on the studies of natural fiber reinforced polymer composite. This is because natural fibers have the potential of serving as alternative for artificial fiber composite [1-4].

Increase of environmental awareness has led to a growing interest in researching ways of an effective utilization of rice by-product, from which rice husk is particularly valuable due to its high content of amorphous silica and amorphous carbon as the main constituents. [5, 6]. Comparing to the conventional sources of silica rice husk ash as a ceramic raw material possess advantages like fine particles size and higher reactivity due to its amorphous nature.

There are many applications of natural fibre composites in everyday life. However the main disadvantage of natural fibre is their hydrophilic nature. They also have a poor environmental and dimensional stability that prevent wider use of natural fibre composites. The possibility of using these materials in outdoor applications makes it necessary to analyze their mechanical behaviour under the influence of different weathering conditions such as humidity, saline water, sunlight or micro-organisms. The moisture absorption by composites containing natural fibres has several adverse effects on their properties and thus affects their long-term performance

Sreekumar et al. [7], while studying water absorption characteristics of sisal fiber polyester composites found that diffusion coefficient decreases with chemical treatment of fiber. In addition to this the chemical treatment also decreases water absorption capacity of the composite. They also showed that the composite with benzoyl-chloride treated sisal fiber composite exhibited lower water absorption capacity.

Agrawal et al. [8] performed a saline chemical treatment on oil palm fibers. Silane (SiH4) used as coupling agent which modified the interaction between the fiber and the matrix and also increases the tensile strength. Joseph et al. [9] performed a Benzoylation treatment on sisal fibers. They treated the sisal fibers with NAOH and benzoyl chloride (C6H5COCl) solution and observed that treated fibers have reduced hydrophilic nature and increases interaction with the matrix.

For potential application of filler polymer composites a comprehensive study on the moisture absorption characteristic and its effect on mechanical properties are required. In this chapter, the characteristics of moisture weight gain and effect of moisture absorption on mechanical properties of both TiO2 and ZrO2 epoxy composite under different environments (mineral water, Saline water, Petrol and Sub-zero temperature) are investigated.

1.1 Sub Heading 1

Before you begin to format your paper, first write and save the content as a separate text file. Keep your text and graphic files separate until after the text has been formatted and styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text heads—the template will do that for you.

Finally, complete content and organizational editing before formatting. Please take note of the following items when proofreading spelling and grammar:
1.2 Sub Heading 2

Sample paragraph, The entire document should be in cambria font. Type 3 fonts must not be used. Other font types may be used if needed for special purposes. The entire document should be in cambria font. Type 3 fonts must not be used. Other font types may be used if needed for special purposes.

2. MATERIALS AND METHODS

2.1 Raw materials used

For preparation of composite the following materials have been used;

1. Epoxy
2. Hardener
3. TiO2 powder
4. ZrO2 powder.

2.2 TiO2 powder

Titanium dioxide (TiO2) is a white strong inorganic substance that is thermally stable, non-combustible, ineffectively solvent, furthermore, not delegated perilous concurring to the United Nations’ (UN) Globally Fit System of Classification furthermore, Labeling of Chemicals (GHS). TiO2, the oxide of the metal titanium, happens actually in a few sorts of rock furthermore, mineral sands. Titanium is the ninth most normal component in the world’s outside. TiO2 is commonly considered as being synthetically dormant.

2.1.3 ZrO2 powder

Zirconia, for the most part comprising of ZrO2, has the most elevated mechanical quality and break durability at room temperature of all significant fine ceramic production. It is utilized to make cutting sharp edges, scissors and blades. It is additionally utilized for pump parts because of its unrivaled surface smoothness.

2.2 Composite Fabrication

The hand lay-up technique was used for preparation of the samples. A wooden mold of dimension (190x270x6) mm was used for casting the composite sheet. A mold release spray was applied at the inner surface of the mold for quick and easy release of the composite sheet. For different weight fraction of fibers, a calculated amount of epoxy resin and hardener (ratio of 10:1 by weight) was thoroughly mixed in a glass jar and placed in a vacuum chamber to remove air bubbles that got introduced. Then calculated amount of TiO2 and ZrO2 is added separately with a weight percentage of 2, 4, 6, 8, 10wt% to the mixture of epoxy resin and hardener. Then the composite mixture is poured in to the mold. Care has been taken to avoid formation of air bubbles. Pressure was then applied from the top and the mold was allowed to cure at room temperature for 72 hrs. During application of pressure some amount of epoxy and hardener squeezes out. Adequate care has been taken to consider this loss during manufacturing so that a constant thickness of sample can be maintained. This procedure was adopted for preparation of 15 weight percentage of fiber reinforced epoxy composite slabs. After 72 hrs the samples were taken out from the mold and then cut in to required sizes as per ASTM standards for different test.
2.3 Study of Environmental Effect

The performances of ZrO$_2$ composite and TiO$_2$ epoxy composite under different environmental conditions are essential to study. Therefore, the effect of environment on the performance of titanium dioxide and zirconium dioxide epoxy composite samples were subjected to the following environments:

- Mineral water exposures.
- Saline water exposures
- Petrol exposures
- Diesel exposures

2.3.1 Moisture absorption and swelling thickness tests

These tests are used to investigate the effect of moisture absorption and swelling thickness on fibre reinforced composites. The aim of this test is to compare the influence of both fibre reinforcement and water uptake on the mechanical properties of fibre reinforcement composites and the related kinetics and characteristics of the water absorption and swelling thickness. There are different mechanisms to moisture diffusion in polymeric composites. The first mechanism having capillary transport into the gaps and flows at the interfaces between fibre and the matrix. The second mechanism having transport of micro cracks in the matrix arising from the swelling of fibres. And the third mechanism having diffusion of water molecules inside the micro gaps between polymer chains. In this test, firstly, the samples were dried in an oven for 24 h at 103±2°C. The samples were immersed in boiling de-ionized water for a given time period (up to 30 min) after that removed from the boiling water and cooled in de-ionized water for 15 min at room temperature. The samples are exposed to different time intervals until the water content in samples reached up to saturation and measured the weight and thickness of the samples. By using weight and thickness difference of the samples, the moisture absorption and swelling thickness was calculated. The percentage weight and thickness gain of the samples was measured at different time intervals and the moisture content and swelling thickness versus square root of time was plotted. Moisture absorption $M_a(\%)$ and thickness swelling $T_s(\%)$ was calculated by using the following equations,

$$M_a(\%) = \frac{w_{at}-w_{ao}}{w_{ao}} \times 100 \quad (5)$$

$$T_s(\%) = \frac{T_{st}-T_{so}}{T_{so}} \times 100 \quad (6)$$

Where w_{ao}, T_{so}, w_{at}, and T_{st} indicate the oven-dry weight and thickness swelling and weight and thickness swelling after 't' time.

2.3.2 Tensile and flexural testing

Specimens for tension and flexural tests were carefully cut from the laminate using diamond wheel saw and finished to the accurate size using emery paper. The standard test method as per ASTM D 3039-76 and ASTM D790 has been used; length of the test specimen is 140 mm. Specimens were loaded in three point bending with a recommended span to depth ratio of 16:1. The span of 70 mm and a cross-head speed used for the flexural tests (three point bending) was 5 mm/min. The tensile test and flexural are performed in universal testing machine INSTRON H10 KS. The tensile test is generally performed on flat specimens. The most commonly used specimen geometries are the dog-bone specimen and straight-sided specimen with end tabs. At the rate of loading, 0.5 mm/min was used for testing. For each stacking sequence, five identical specimens were tested and the average result is obtained.

3. RESULTS AND DISCUSSION

Figure 4-8 shows the comparison of tensile strength of the ZrO$_2$ and TiO$_2$ filler composites after exposed to different environments (Mineral, Saline water, petrol, and diesel). The tensile strength of the ZrO$_2$ filler composites is more when compared to the TiO$_2$ filler composites. The degradation of strength is observed in the composite exposed to different environments. It is also clearly observed that the maximum strength is observed in the composite exposed to different environments. It is also clearly observed that the maximum strength is observed in the composite exposed to different environments.
Figure 4 shows the tensile strength of ZrO$_2$ and TiO$_2$ composites after exposed to Diesel. The tensile strength of the ZrO$_2$ composite is more when compared to the TiO$_2$ filler composites. As the filler addition increases, the tensile strength of the composites increases up to 8wt% and starts degrading beyond the 8wt%. After exposing to different environments, the strength degradation is observed as observed in tensile strength.

Figure 5 shows the tensile strength of ZrO$_2$ and TiO$_2$ composites. The tensile strength of the ZrO$_2$ composite is more when compared to the TiO$_2$ filler composites. As the filler addition increases, the tensile strength of the composites increases up to 8wt% and starts degrading beyond the 8wt%. After exposing to different environments, the strength degradation is observed as observed in tensile strength.

Figure 6 shows the tensile strength of ZrO$_2$ and TiO$_2$ composites after exposed to Saline water.

Figure 7 shows the tensile strength of ZrO$_2$ and TiO$_2$ composites after exposed to Mineral water.

Figure 8 shows the tensile strength of ZrO$_2$ and TiO$_2$ composites after exposed to petrol.

Figure 9-13 shows the comparison of flexural strength of the ZrO$_2$ and TiO$_2$ filler composites after exposed to different environments (Mineral, Saline water, petrol and Diesel). The flexural strength of the ZrO$_2$ filler composites is more when compared to the TiO$_2$ filler composites. As the filler addition increases, the flexural strength of the composites increases up to 8wt% and starts degrading beyond the 8wt%. After exposing to different environments, the strength degradation is observed as observed in tensile strength.
CONCLUSIONS

Based on experimental results, this study has led to the following conclusions:

- The TiO$_2$ and ZrO$_2$ can successfully be used as reinforcing agent to fabricate composite by suitably bonding with epoxy resin.
- On increasing the volume fraction of filler the strength, modulus increases and the best combination is found with 6% wt. fraction in tensile strength and 8wt% filler in flexural strength.
- By incorporation of TiO$_2$ and ZrO$_2$ fillers into polymer mechanical properties are improved to great extent.
- The strength variation is observed in the trend of plain>petrol>diesel>mineral>saline in both tensile and flexural.
REFERENCES

BIOGRAPHIES

PhD Scholar, Mechanical Engg Department, Acharya Nagarjuna Engg College, Andhara pradesh, INDIA

Professor, Mechanical Engg Department, Bapatla Engg College, Bapatla, Andhara pradesh, INDIA