
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2062

CypherDB: An Encryption Technique for Secure Database Processing

Mr. Febin Baby1, Mr. Arun R2

1MTech Cyber Security, Dept. of CSE, SNGCE, Kadayiruppu, Kerala, India
2Asst. Prof. MTech Cyber Security, Dept. of CSE, SNGCE, Kadayiruppu, Kerala, India.

---***---

Abstract – Security models are the basic theoretical tools
to start when developing a security system. This seems to be
an issue which is insufficiently understood and it may be an
explanation for the actual security crisis of information
system. Most cooperation try to address there security
problem by simply patching their system to eliminate
identified vulnerabilities. In most cases, this is already too
late and long term strategy. CypherDB addresses the
problem of protecting the confidentiality of database stored
externally in a cloud and enabling efficient computation
over it to thwart any curious-but-honest cloud computing
service provider. It works by encrypting the entire
outsourced database and executing queries over the
encrypted data.

Key Words: Database Security, Cloud Security, Encryption,
Decryption, Attribute Encryption Seed, Confientiality

1. INTRODUCTION

Organizations are becoming more concerned
about data security, especially as the intrinsic value of our
data continues to increase. However, database security
often gets overlooked. Managing organizational assets
such as data, as well as overall information security
concerns, are two of the key technology areas having a
large effect on companies today. Although it is often
difficult to put an exact price tag on the data we store, we
do know data is an extremely valuable asset, and the
compromise and/or exposure of such information can
cause significant damage to business and company
reputation.
 Database security strives to insure that only
authenticated users perform authorized activities at
authorized times. It includes the system, processes, and
procedures that protect a database from unintended
activity.

1.1 Database Security Strategy

If regulatory or contractual requirements are not
enough reason to address database security as part of an
overall security strategy, let’s look at a few other key facts
that encourage us to consider database security as a part
of our security strategy. Databases are increasingly being
targeted by attackers. Data plays an extremely important

role in a typical organization’s environment. Security has
historically addressed keeping the external attackers out
of networks and operating systems. More recently, the
focus has been on security of applications. Organizations
spend large amounts of resources adding firewalls, IDS,
IPS, policies, operating systems controls, access controls
and other security controls to end points and on the
network. By doing so, organizations believe they are
protected. However, without controls directly around the
data, they have left open an opportunity for an internal
attacker who is authorized to access and transfer data
from the database.

1.2 Making Databases a Priority

Databases, by their nature, are complex. Many
security professionals simply do not have the background
to understand the risk and security issues related to
various brands and versions of databases. This leaves
security in the hands of DBAs, who spend less than five
percent of their time on database security, according to a
Forrester Research report. The report stated that many
enterprise DBAs are unaware of which databases, tables,
and columns contain sensitive data, either because these
are legacy applications and/or because no documentation
of the data models and their properties exists.

Even with full knowledge of database assets,
databases are more difficult to protect uniformly because
there are unique security implementation procedures for
the databases themselves, as well as with the applications
interacting with them. Forrester estimates that more than
90 percent of enterprises support more than one type of
database in their environment [1]. Enterprises today have
to support hundreds and thousands of production
databases with various business applications running on
them. Business applications interacting with the databases
can pose significant risks as additional application layer
vulnerabilities may be introduced.

1.3 Database Security Considerations

We know we need to address database security as
part of our overall security strategy. So, the question
becomes, what key areas should be addressed? The
following areas are critical areas we discuss throughout
the remainder of this paper:

 Access controls

 Encryption

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2063

 Auditing

 Separation of environments

 Secure configuration

2. BACKGROUND

The importance of security in database research
has greatly increased over the years as most of critical
functionality of the business and military enterprises
became digitized. Database is an integral part of any
information system and they often hold sensitive data. The
security of the data depends on physical security, OS
security and DBMS security. Database security can be
compromised by obtaining sensitive data, changing data
or degrading availability of the database. Over the last 30
years the information technology environment have gone
through many changes of evolution and the database
research community have tried to stay a step ahead of the
upcoming threats to the database security. The database
research community has thoughts about these issues long
before they were address by the implementations. This
paper will examine the different topics pertaining to
database security and see the adaption of the research to
the changing environment. Some short term database
research trends will be ascertained at the conclusion.

2.1 Sequential Systems

Initial computer systems processing data were
based on the pre-existing manual systems. These were
sequential systems, where individual files were composed
of records organized in some predetermined order.
Although not a database because there was no one
integrated data source, electronic file processing was the
first step towards an electronic data based information
system [2]. Processing required you to start at the first
record and continue to the end. This was quite good for
producing payroll and monthly accounts, but much less
useful when trying to recall an individual record. As a
result it was not uncommon to have the latest printout of
the file which could be manually searched if required kept
on hand until a new version was produced.

2.2 Hierarchical Databases

 Although hierarchical databases are no longer
common, it is worth spending some time on a discussion
of them because IMS, a hierarchical database system is still
one of IBM’s highest revenue products and is still being
actively developed [2]. It is however a mainframe software
product and may owe some of its longevity to
organizations being locked in to the product from the
early days of mainstream computing. The host language
for IMS is usually IBM’s PL/1 but COBOL is also common.
Like a networked databases, the structure of a hierarchical
database relies on pointers.

2.3 Network Databases

 In a network database such as UNIVAC’s DMS
1100, you have one record which is the parent record.
This is defined with a number of attributes (for example
Customer ID, Name, Address). Linked to this are a number
of child records, in this case orders which would also have
a number of attributes. It is up to the database design to
decide how they are linked. The default was often to ’next’
pointers where the parent pointed to the first child, the
first child had a pointer to the second child and so on. The
final child would have a pointer back to the parent. If
faster access was required, ’prior’ pointers could be
defined allowing navigation in a forward and backward
direction. Finally if even more flexibility was required
’direct’ pointers could be defined which pointed directly
from a child record back to the parent. The trade-off was
between speed of access and speed of updates,
particularly when inserting new child records and deleting
records. In these cases pointers had to be updated.

2.4 Relational Databases

 They arose out of Edgar Codd’s 1970 paper ’A
Relational Model of Data for Large Shared Data Banks"
(Codd 1970) [2]. What became Oracle Corporation used
this as the basis of what became the biggest corporate
relational database management system. It was also
designed to be platform independent, so it didn’t matter
what hardware you were using. The basis of a relational
system is a series of tables of records each with specific
attributes linked by a series of joins. These joins are
created using foreign keys which are attributes containing
the same data as another tables primary key. A primary
key is a unique identifier of a record in a table. This
approach to data storage was very efficient in terms of the
disk space used and the speed of access to records.

2.5 Object Oriented Databases

 Most programming today is done in an object
oriented language such as Java or C++. These introduce a
rich environment where data and the procedures and
functions need to manipulate it are stored together. Often
a relational database is seen by object oriented
programmers as a single persistent object on which a
number of operations can be performed. However there
are more and more reasons why this is becoming a narrow
view.

One of the first issues confronting databases is the
rise of non-character (alphanumeric) data. Increasingly
images, sound files, maps and video need to be stored,
manipulated and retrieved. Even traditional data is being
looked at in other ways than by traditional table joins.
Object oriented structures such as hierarchies, aggregation
and pointers are being introduced. This has led to a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2064

number of innovations, but also to fragmentation of
standards.

3. PROPOSED SYSTEM

 In this section, we discuss how the database
owner encrypts the database before outsourcing it to the
Cloud. The database is encrypted in logical level to allow
scalable and parallel query processing. The choice of
encryption scheme is to allow efficient processing in our
CypherDB secure processor. The entire database is
protected by encrypting each field of a database table. We
refer a field and a row of a database table as attribute and
record respectively in the rest of the paper.

3.1 Attribute Encryption

 Each attribute is encrypted with AES in one of two
modes: 1) counter mode (AES-CTR) or, 2) output feedback
mode (AES-OFB). These two encryption modes are chosen
due to two important objectives: 1) offloading the
encryption/decryption work, and 2) transforming block
cipher into stream cipher.
 Algorithm 1 explains the operation of these two
encryption modes in pseudo-code. AES-CTR encrypts any
attribute less than or equal to 128 bits. The function
Encctr encrypts the l-bit long attribute, denoted as a, using
the 128-bit attribute seed s and database key Kdb. The
encryption is done by XOR-ing the most significant “l” bits
of the encryption pad with the data (line 3-5). To encrypt
the attribute longer than 128 bits, AES-OFB function
Encofb generates a series of 128-bit encryption pads to be
encrypted with the data (line 14-16). The most significant
“l” bits of the concatenated encryption pad p0,p1,…pm is
then used to encrypt the attribute data (line 17-19).
Decryption is done by XOR-ing the cipher text with the
same encryption pad (line 6 and 20). Note that AES-CTR
and AES-OFB both use AES encryption but in different
operation modes (line 4 and line 15).

Algorithm 1 Pseudo-code of attribute encryption

1: /* CTR encryption of any attribute less than or equal to

128 bits in a tuple */
2: function Encctr(s; a; Kdb)
3: for i = 1,… , l do

4: p = AES(s; Kdb)
5: yi = ai⊕pi
6: /* Decryption: ai = yi⊕pi */
7: return (s; y)
8: end for
9: end function

10: /* OFB encryption of any attribute larger than 128

bits in a tuple */
11: function Encofb(s; a; Kdb)
12: p0 s
13: m [l/128]
14: for h = 1, … , m do
15: ph = AES (ph-1; Kdb)
16: end for
17: p = p0, p1,…., pm
18: for i = 1,…, l do
19: yi = ai⊕ pi
20: /* Decryption: ai = yi⊕ pi */
21: end for
22: return (s; y)
23: end function

3.2 Attribute Encryption Seed

 The challenge of encrypting the attribute with
AES-CTR and AES-OFB is to maintain the uniqueness of the
seed s under the same database key Kdb [3]. In other
words, each attribute across a database must own a
distinct seed to each other (spatial uniqueness), whereas
the seed for the same attribute must not repeat for every
update operation on that attribute (temporal uniqueness).

3.2.1 Seed Components

 Due to these security and performance
concerns, a logical schema of the database to formulate
the seed. In the structure of a logical schema, if each
element of the schema has its own identifier (ID), each
attribute can be identified by (databaseID; tableID;
rowID; columnID) which is spatially unique across
various databases and tables. Temporal uniqueness can
be achieved by appending a global incremental counter
cntr to each record, which is shared by each attribute
within that record.

3.2.2 Seed Formulation

 In a typical database application, logical schema is
used in most operating layers and is eventually translated
into its physical schema in order to locate the record in the
database file. The formation of the attribute seed can thus
embedded into the logical-to-physical schema translation
software process. In other words, the actual program
execution is able to “generate” the encryption seeds by re-
using some software execution parameters, at run-time.

3.3 Index Protection

 Encrypting the attribute with AES in either CTR or
OFB mode prohibits the B+-tree indexing, which is one of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2065

the most commonly used indexing strategies in database
system. To allow remote indexing and protect the indices
at the same time, we adopt order-preserving encryption
(OPE) to encrypt the indices in the same way as suggested
in [4].

OPE is an encryption scheme that can perform
order operations on ciphertexts in the same way as
plaintexts (i.e. Enc(x) > Enc(y) iff x > y) and is well proven
to reveal no additional information about the plaintext
values beside their order [4].

4. SECURITY ANALYSIS

 In this section, the performance of CypherDB on
encrypted database is compared with that without
encryption. The total execution cycles are measured in
both cases and the resulting slowdown percentage is
recorded. CypherDB incurs performance overhead in two
places: 1) extra instruction executions when copying the
database seeds into Regseed to perform data
decryption/encryption; 2) extra memory accesses when
fetching the counter value of the attribute seeds. Our
discussion is focused on protecting confidentiality of the
data because the goal of CypherDB is to prevent
information leakage through passive attack.
 The security of AES-CTR and AES-OFB is well-
proven [5, 6], except that they pose a strong requirement
on the encryption seed - must be unique for each datum
under a single encryption key. Otherwise, the
confidentiality of the data may be compromised due to the
“two-time” pad attack caused by re-using the same
encryption pad. In our proposed encryption scheme, each
attribute seed is spatially and temporally unique across
the databases for the same database owner. Various
database owners have their own unique database
encryption keys Kdb such that the seed uniqueness
concern is confined to a single party. It therefore greatly
simplifies the attribute seed management and is relied on
the CypherDB supported software to handle the seed
uniqueness. Re-encrypting the database with a new
encryption key may be necessary when the attribute
seeds, either the logical schema ID or tuple counters,
overflows. These parameters are set to a sufficient large
value to avoid frequent re-encryption. CypherDB employs
three different encryption keys for various encryption
purposes. The database encryption key is therefore
isolated for the ease of maintaining the seed uniqueness.
The use of these encryption modes however provides
some security strength. It is because the encrypted data
are non-deterministic due to the unique encryption seed
used. It means that even two attributes are of the same
value, the encrypted data looks completely different.

5. CONCLUSIONS

Recent research on security systems for various sizes of
data groups focused on several requirements related to

data size. However, it could not assure data confidentiality
in databases. In addition, in defining data groups,
overhead could occur, and adding the policy could also
cause a decrease of performance efficiency and
duplication of the policy. Moreover, integrated
management would not be possible for various databases.
Here presents a novel processor architectural design to
perform secure and efficient query processing on an
encrypted database. With minimal modifications to the
database application software, our proposed processor
architecture, CypherDB, can achieve a higher security and
performance efficiency when compared with solutions
using homomorphic encryption or trusted coprocessor.
Our work is being extended in several directions. One
interesting direction would be to incorporate our system
into an In-Memory database environment, which
potentially is more efficient in accessing data. Another
direction relates to the use of vector processing in the
modern processor systems.

REFERENCES

[1] Tanya Baccam, Making Database Security an IT

Security Priority-A SANS Whitepaper – November
2009

[2] P. Lake, P. Crowther, Concise Guide to Databases,
Undergraduate Topics in Computer Science, DOI
10.1007/978-1-4471-5601-7_2, © Springer-Verlag
London 2013

[3] M. Dworkin, “Recommendation for block cipher
modes of operation, National Institute of Standards
and Technology, Tech. Rep., 2001.

[4] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security
protocol for order-preserving encoding,” in
Proceedings of the 2013 IEEE Symposium on Security
and Privacy, ser. SP ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 463–477.

[5] T. G. Wayne Jansen, “Guidelines on security and
privacy in public cloud computing,” National Institute
of Standards and Technology, Tech. Rep., Dec 2011.

[6] Bony H. K. Chen, Paul Y. S. Cheung, Peter Y. K. Cheung,
and Yu-Kwong Kwok “CypherDB: A Novel Architecture
for Outsourcing Secure Database Processing” DOI

10.1109/TCC.2015.2511730, IEEE Transactions on Cloud Computing

