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Abstract - This paper is dealing with a modified series 
solution method for nonlinear fractional differential-integral 
equations. Based on the Caputo and Riemann-Liouville 
fractional derivatives some important theorems have been 
proved. Moreover, a one degree-of-freedom (dof) oscillator 
equation has been solved by using this new method. Finally, a 
comparison study is being made with the exact numerical 
solution.  
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1.INTRODUCTION 
 
In recent years fractional calculus draws considerably 

increasing attention due to its applicable uses in different 

fields of mathematics and science. Based on the past results 

of Nutting [1], Gemant [2] and Bosworth [3] were first 

proposed fractional derivative modeling for the constitutive 

behavior of viscoelastic media. Since then fractional calculus 

has been successfully applied in various fields of physics and 

engineering such as biophysics, bioengineering, quantum 

mechanics, finance, control theory, image and signal 

processing, viscoelasticity and material sciences. The use of 

these fractional derivatives and their application has in the 

last decade gained a noticeable improvement as shown by 

many peer-reviewed scientific papers, conferences and 

monograms.  

The most important section of the fractional calculus in 

engineering and applied sciences is to find an analytic or 

approximate solution of fractional ordered initial or 

boundary value problems. Recently a great deal of interest 

has been focused on the solution of fractional differential 

equations (FDE) and fractional integral equations (FIE). FDE 

appears frequently in different research areas of applied 

science and engineering when we try to model a problem 

mathematically by considering derivatives of fractional 

order (see Ref. [4]). Apart from these fractional derivatives 

and integrals also appear in many physical problems such as 

frequency dependent damping behavior of materials, motion 

of a large thin plate in a Newtonian fluid, creep and 

relaxation functions for viscoelastic materials, the PIλDμ 

controller for the control of dynamical systems, etc(see Refs. 

[5-6]). 

The solution FDE and FIE are complex since fractional 
derivatives and integrals of some common and frequently 
used functions are higher transcendental functions (see Ref. 
[7]).  Most of the time it becomes difficult to get an exact 
solution of an FDE or FIE. Hence we tend to compensate an 
exact solution with an approximate series solution. For this 
we may sometimes get non-negligible numerical errors in 
solutions. So a reliable and efficient technique for the 
solution is very necessary. 
 
It is almost true that most mathematical systems in real life 
problems are nonlinear in nature. In most of the times a 
common way of solving such nonlinear problems is to 
linearize the problem, where we replace the actual nonlinear 
system with a so called equivalent linear system and employ 
averaging which is in general not a good idea! Since 
linearization of a nonlinear problem may become grossly 
inadequate in some essentially real phenomenon. For 
example shock waves in gas dynamics can occur in nonlinear 
systems but cannot occur in linear systems. Thus a correct 
solution of a nonlinear system is very significant issue when 
we solve a nonlinear system rather than just linearizing the 
problem. If we want to know accurately how a physical 
system behaves in general then it is essential to retain the 
nonlinearity. 
 
In recent works, Adomain decomposition methods (ADM) 
[8], Homotopy analysis methods (HAM) [93] are used widely 
for solving an FDE. Sutradhar et al [10], introduced a new 
modified decomposition derived from the ADM for getting an 
analytic solution of similar type FDEs. In present work we 
introduce a series solution method for solving not only an 
FDE but also an FIE, or in more general terms a nonlinear 
fractional integro-differential equation with boundary 
conditions and compared with the existing results. This 
method efficiently works well for a wide variety of problems 
(viz. one-point and two-point boundary value problems for 
linear and nonlinear ordinary differential equations and 
integral equations). The convergence criteria for the defined 
series required for the solution is also given in this paper. 
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2. Mathematical Preliminaries 
 
Fractional ordered derivatives have been encountered by 

several authors in different approaches (see Refs. [7,11]). In 

this paper we will focus on the Riemann-Liouville and the 

Caputo definitions since they are the most used once in 

applications.  

The Riemann-Liouville approach is based on the Cauchy 

formula (2.1) for the nth integral which uses only a simple 

integration so it provides a good basis for generalization.  
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Now it is obvious how to get an integral of arbitrary order. 

We simply generalize the Cauchy formula (2.1)- the integer 

n  is substituted by a positive real number  and the 

Gamma function is used instead of the factorial. Notice that 

the integrand is still integrable because 11  .  
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This formula represents the integral of arbitrary order 

0 , but does not permit order 0  which formally 

corresponds to the identity operator. This expectation is 

fulfilled under certain reasonable assumptions at least if we 

consider the limit 0 (for further details, see Ref. [5]). 

Hence, we extend above definition by setting  

   tftfI a 0
.          (2.3)                                                                                                                   

The definition of fractional integrals is very straightforward 

and there are no complications. But for fractional derivative 

there is no such analogous to (2.1) so we have to generalize 

the derivatives through a fractional integral. First we perturb 

the integer order by a fractional integral according to (2.2) 

and then apply an appropriate number of classical 

derivatives. We can always choose the order of perturbation 

less than 1.  The result of these ideas, the fractional 

derivative of a function f (t) of order α is defined as 
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The Caputo fractional derivative of a function f (x) of order α 
is defined as 
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Here we shall always consider 0  and f (x) to be 

piecewise continuous on  ,a  and integrable on any finite 

subinterval of  ,a .  

 
The difference occurs for fractional derivative. A non-
integer-order derivative is again defined by the help of the 

fractional integral, but now we first differentiate  xf  in 

the common sense and then go back by fractional integrating 
up to desired order.  
 

It is essential to state that both the fractional integral and 

fractional derivative operators D 
 and D

 are linear in 
nature (see Ref. [3-4]), also for α,β>0, 

   D D f x D f x      
 

and 

   D D f x D f x    . 

 
 
  

2.1 Generalized power series 
 

In this paper we use the generalized power series 

expansion    
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3. Approaches from fractional derivative to 
fractional ordered generalized power series 
 
In this section we have proved some important theorems 
which will be essential to demonstrate the generalized 
power series.  
 
 
Theorem: 1 

For any two positive integer m and  mn  , 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 08 | Aug-2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 1968 
 

  

 
 

   
11

1

m n

n m
r nn m r m

x a
r n

D D f x

D f x D f x x a
r n



 
 






     


 
Proof:  
 
We know,  

      

x

a

x

a

x

a

mm dxxfxfD ....  

Therefore,  

      

x

a

x

a

x

a

mnmn dxxfDxfD ....  

 
 

 
 

 

 
 

 

 
     

1

1

2

2

1

...
1

2

m

n m n

m

n

n m n m

x a
D f x D f a

m

x a
D f a

m

x a
D f a D f a



 





  


 




 
 


 



 
 
 

 
1 1

m r
m

n m n r

r

x a
D f x D f a

m r



 




 

  


            

(3.1) 

By changing the range of summation from r = 1(1)m to r = 
n(1)n+m-1 in the term on the right hand side of equation 
(3.1), we get, 
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In Particular: When m = n, equation (3.2) reduces to, 
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Lemma: 1 
The Riemann-Liouville fractional integral of the generalized 
power series is given by, 
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where 0 pr .  

 
Proof: Considering the linear nature of the fractional 
integral operator and by going on the definition of the 
Riemann-Liouville fractional integral we get, 
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Then by making the substitution  t a x a    in the 

right side of equation (3.4) and using the integral definition 
of beta function we obtain, 
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(3.5) 

Lemma: 2  

The fractional order derivative of the generalized power 
series is given by, 
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Theorem: 2  

The Riemann-Liouville fractional integral and fractional 
derivative of the generalized power series are mutually 
commutative in nature i.e., 
 

0 0

( ) ( )

r r

p p

r r

r r

D D c x a D D c x a   
 

 

 

   
     

   
   
    , 

where 0 pr .  
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Hence the result follows. 
  
 
It will be important for the following sections to note that in 
the above result (3.7) apart from being pure fractions, both α 
and β can be integers also. Also it will be important to note 
that all the above results depicted are still true if we consider 
the definition of fractional derivative given by Caputo 
because the basic difference between the definitions of 
Riemann-Liouville and Caputo is that in the former 
integration is followed by differentiation whereas in the later 
differentiation is followed by integration. 

 

4. Main results 

 
Let us consider a general version of a nonlinear fractional 
integro-differential equation of the form: 
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D  fractional differential operator,  

D fractional integral operator,  

N nonlinear operator.  

 
By applying D-non both sides in equation(4.1) we get, 
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where p can be any positive integer according to the 
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                                                      (4.2) 
By applying the Lemma-1, Lemma-2 and Theorem-1, 
Theorem-2in the above equation (4.2) and by also 
considering the linear property of the differential and 
integral operators we obtain,  
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                                                                (4.3) 
 

Equating the coefficients from both sides of equation (4.3) 

we calculate the values of rc using the recurrence relations 

obtained and hence find the solution  
0

r

p
r

r

y c x a




  . 

5. Applications:  
 
Power series solutions of linear homogeneous differential 
equation in one-point boundary value problems yield simple 
recurrence relations for the coefficient, but in most of the 
cases they are generally seen not to be adequate for 
nonlinear equations. A reliable modification in the terms of 
the series solution can yield good results for nonlinear non 
homogeneous differential equations. In fact we can use this 
modification on the series solution to get good results for 
nonlinear non-homogeneous fractional differential 
equations also. 
To clarify this let us consider the following motion equation 
of a one-degree-of-freedom oscillator 
 

 mD2y + c

1

2D y + ky2 = f(x)  ,y(0)=0 , Dy(0)=0  , 
  (5.1) 
 
where,   
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Here we consider p=2 , so that 
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Thus from equation (5.1) we get, 
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or,
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Comparing both sides of equation (5.2) we get, 
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Now, 
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Comparing, we get, 
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Using equations (5.3) we obtain 
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Thus the solution is given by 
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By considering the first nine terms only we get, 
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                                                                     (5.4) 
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6. Numerical results and discussion:  
 
In the following numerical computation we have assumed 
m=1, c=0.8, and k=1.According to [12] considering m=1, 
c=0.8, and k=1 the exact solution is,   

  2 3 8

10 10
y x x x x

  
    

  
   (6.1)  

An approximate solution of equation 5.1) was also obtained 
by Sutradhar et. al. [10] using a modified decomposition 
method and then compared with the exact solution as given 
by Wang Ji-Zeng et al. [12]. The approximate solution of 
equation (5.1) as obtained by Sutradhar et. al. [10] is, 
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(6.2) 
Under the assumptions m=1, c=0.8, and k=1 in equation (5.1), 
the following table shows the comparison of the 
approximate numerical solutions given in equations (5.4) 
and (6.2)with the exact solution given in the equation (6.1). 
It is interesting to note that the numerical solution obtained 
in our case coincides with the exact numerical solution. 
 
Table 1. : Considering the solution given in the equation 
(5.4) and in the equation (6.2)(Taking m=1, c=0.8 and k=1) 
 

Time Exact 
solution as 
in equation 
(6.1) 

Numerical 
solution as 
in equation 
(5.4) 

Numerical 
solution as in 
equation 
(6.2) 

Relative 
error 
considering 
equation 
(5.4) 

Relative 
error 
considering 
equation 
(6.2) 

0 0 0 0 0 0 

0.25 0.00171875 0.00171875 0.001717552 0 0.000697147 

0.50 -0.015 -0.015 -0.015011315 0 0.000754321 

0.75 -0.01265625 -0.01265625 -0.012610457 0 0.003618248 
1.00 0.14 0.14 0.140338625 0 0.00241875 

  
From the above two tables we observe that our approximate 
solution considering 9-terms is in a far better agreement 
with the exact solution than the solution in equation (6.1) 
which considers far many terms compared to ours. 
 

7. Conclusion:  
 
Nonlinear problems play a crucial role in applied 
mathematics and physics. In maximum of the cases these 
nonlinear problems are tackled by the methods which 
propose to linearize the given nonlinear problem. Such 
approach not only hampers the solution process partially but 
also sometimes misinterprets the actual nature of the 
problem. There are a very few proposed methods which 
solve nonlinear equations without linearizing the problem. 
In this paper we illustrated a generalized power series 
method for solving a nonlinear problem very easily and 
elegantly and that too without linearizing the problem. 

We proposed and illustrated an efficient modification of the 
power series for getting an approximate series solution of a 
nonlinear fractional integro-differential equation. The 
motive of using a fractional power in the power series can be 
raised. It is due to the fact that we always proceed by 
equating like terms in such methods, and if the function f (x) 
in say equation (5.1) contains fractional powers of x then our 
consideration of the generalized power series can yield 
better results. The present analysis also shows that the 
computational procedure in our method is simple and is 
based on recursion. The obtained results show that although 
other methods are available, the present method produces 
very promising solutions without availing any difficulty. 
Here we also compared our result with the exact solution as 
obtained in [12] and an approximate solution as obtained in 
[10]. We observed that our numerical solution almost 
identical with the exact solution whereas the solution given 
by Sutradhar et al [10] had relative errors when compared 
with the exact solution. Thus, to solve the similar types 
physical problems which has been considered in the present 
analysis, this method is more appropriate than other 
generalized series solution approaches.  
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