
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1956

Thorat Surekha1, Rahane Santosh2

1At/Post .Sangamner ,dist.Ahmednagar ,Country . India

2At/Post .Sangamner ,dist .Ahmednagar ,Country . India

---***--

Abstract - Shortest path algorithm find minimum distance

path between source to destination .we use graph to solve

shortest path distance problem . Graph is set of Edges and

vertices. A graph is a pictorial representation of a set of objects

where some pairs of objects are connected by links. Formally, a

graph is a pair of sets (V, E), where V is the set of vertices

and E is the set of edges, connecting the pairs of vertices.

undirected graphs have edges that do not have a direction .

The edges indicate a two-way relationship, in that each edge

can be traversed in both directions. Directed graphs have

edges with direction. The edges indicate a one-

way relationship, in that each edge can only be traversed in a

single direction. Edges contain Wight which is used to

calculate shortest path from source to destination .consider

example Airline route maps. Vertices represent airports, and

there is an edge from vertex A to vertex B if there is a direct

flight from the airport represented by A to the airport

represented by B. There are different shortest path algorithm

which solve shortest path problem. They are Dijkstra’s ,Floyd –

Warshall ,Bellman Ford Algorithm.

Key Words: Graph ,Dijkstra’s Algorithm,Floyd-Warshall

Algorithm ,Bellman –Ford Algorithm

1.RESEARCH OBJECTIVES

 To determine representation of graph in computer with

basic terms also find problem of shortest path problem .To

discuss general aspect of ,Dijkstra’s Algorithm,Floyd-

Warshall Algorithm ,Bellman –Ford Algorithm

2. LITERATURE REIVEW

A graph can be used to represent a map where the cities are

represented by vertices and the routes or

roads are represented by edges within the graph. In these

paper brief descriptions and implementations of the three

shortest path algorithms being studied are presented2.1

Representation Of Graph.Graph can be represented using

adjacency matrix and adjacency list . Consider 2D array will

be adj[][], a slot adj[i][j] = 1 indicates that there is an edge

from vertex i to vertex j. Adjacency matrix for undirected

graph is always symmetric. Adjacency Matrix is used to

represent weighted graphs. If adj[i][j] = w, then there is an

edge from vertex i to vertex j with weight w. Removing an

edge takes O(1) time. Queries like whether there is an edge

from vertex ‘u’ to vertex ‘v’ are efficient and can be done

O(1). Consumes more space O(V^2). Even if the graph

contains less number of edges, it consumes the same space.

Adding a vertex is O(V^2) time. We also use linked lists for

representation of graph .Let the array be a[]. An entry a[i]

represents the linked list of vertices adjacent to the ith vertex.

This representation can also be used to represent a weighted

graph. The weights of edges can be stored in nodes of linked

lists.

2.2 DIJKSTRA’S ALGORITHM :EXPLANATION AND

IMPLEMENTATION

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

 Dijkstra's algorithm is used for finding the shortest

paths between nodes in a graph, which may represent,

for example, road networks. we can use a priority queue in

which vertices are sorted by their increasing dist[] value.

Then at each iteration, we will pick the vertex, u, with

smallest dist[u] value and call relax(u,v) on all of ts

neighbours, The only difference is that now we add

 Review of Shortest Path Algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1957

the weight of the edge (u, v) to our distance instead

of just adding 1. However, the algorithm only works as long

as we do not have edges with negative weights. Otherwise,

there is no guarantee that when we pick u as the closest

vertex, dist[v] for some other vertex v will not become

smaller than dist[u] at some time in the future. There are

several ways to implement Dijkstra's algorithm. The main

challenge is maintaining a priority queue of vertices that

provides 3 operations –inserting new vertices to the queue,

removing the vertex with smallest dist[], and decreasing the

dist[] value of some vertex during relaxation. We can use a

set to represent the queue. Dijkstra's algorithm is very fast,

but it suffers from its inability to deal with negative edge

weights.

2.3 Bellman –Ford Algorithm :Explanation And

Implementation

 Having negative edges in a graph may also introduce

negative weight cycles that make us rethink the very

definition of "shortest path". Fortunately, there is an

algorithm that is more tolerant to having negative edges –the

BellmanFord algorithm . That is why, a graph can contain

cycles of negative weights, which will generate numerous

number of paths from the starting point to the final

destination, where each cycle will minimize the length of the

shortest path .The Bellman Ford algorithm is a Dynamic

Programming algorithm that solves the shortest path

problem. It looks at the structure of the graph, and

iteratively generates a better solution from a previous one,

until it reaches the best solution. Bellman Ford can handle

negative weights readily, because it uses the entire

graph to improve a solution. The idea is to start with a base

case solution S0, a set containing the shortest distances from

s to all vertices, using no edge at all. In the base case, d[s] = 0,

and d[v] = ∞ for all other vertices v. We then proceed to

relax every edge once, building the set S1. This new set is an

improvement over S0, because it contains all the shortest

distances using one edge –ie. d[v] is minimal in S1 if the

shortest path from s to v uses one edge. Now, we repeat this

process iteratively, building S2 from S1, then S3 from S2, and

so on..Each set Sk contains all the shortest distances from s

using k edges –ie. d[v] is minimal in Sk if the shortest path

from s to v uses at most k edges. we have the best solution

after n1 iterations . The algorithm above basically

implements this idea. We start with a base case S0, and

repeatedly relax every edge to generate Sk+1 from Sk. Note

that in the relaxation step, we don't relax an edge if dist[u] is

infinity, or otherwise we may get overflow in the addition

(conceptually we never want to relax such an edge anyway).

Also the order of using the edges can affect the intermediate

sets Sk, because we may first relax an edge (u,v), then relax

another edge (v,w) in the same step, while choosing the

reverse order of these two edges may not relax them both.

However, we now show that Sn1 is unique, and contains

the shortest distance possible from s to any vertex v. the

Bellman Ford algorithm is correct, but does it always

terminate? It does, as we only have two loops, one running n-

1 iterations, and the other going through all edges. Hence,

the algorithm always terminates, and has a run time of

O(n*m). While the Bellman Ford algorithm can handle

negative weight edges readily, the correctness of the

algorithm breaks down when negative weight cycles exist

that is reachable from s. However, the nature of the

algorithm allows us to detect these negative weight cycles.

The idea is that, if a negative weight cycle exist, then Sn1 will

be the same as Sn, Sn+1, Sn+2, If we run the iteration step more

than n1 times, we will not be changing the answer. On the

other hand, if a negative weight cycle exist, then one of its

edges must have negative weight, and any such edge can be

relaxed further even after n1 iterations, decreasing some

of the distances. Hence, to detect negative weight cycles, we

just need to run the Bellman Ford algorithm, and when it

terminates, check whether we can relax any edges. If we can,

then that edge is reachable from a negative weight cycle, and

the cycle is also reachable from the source.

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1958

2.4 Floyd–Warshall Algorithm :Explanation And

Implementation

The Floyd-Warshall algorithm improves upon this algorithm,

running in Θ(n3) time. The genius of the Floyd-Warshall

algorithm is in finding a different formulation for the

shortest path sub problem than the path length formulation

introduced earlier. At first the formulation may seem most

unnatural, but it leads to a faster algorithm. As before, we

will compute a set of matrices whose entries are d(k) ij . We

will change the meaning of each of these entries.

For a path p = hv1, v2,...,v`i we say that the vertices v2,

v3,...,v`−1 are the intermediate vertices of this path. Note that

a path consisting of a single edge has no intermediate

vertices. We define d(k) ij to be the shortest path from i toj

such that any intermediate vertices on the path are chosen

from the set {1, 2,...,k}. In other words, we consider a path

from i to j which either consists of the single edge (i, j), or it

visits some intermediate vertices along the way, but these

intermediate can only be chosen from {1, 2,...,k}. The path is

free to visit any subset of these vertices, and to do so in any

order. Thus, the difference between Floyd’s formulation and

the previous formulation is that here the superscript (k)

restricts the set of vertices that the path is allowed to pass

through, and there the superscript (m) restricts the number

of edges the path is allowed to use. If the value of d(32)
(k)

changes as k varies. The final answer is d(n) ij because this

allows all possible vertices as intermediate vertices. Again,

we could write a recursive program to compute d(k) ij , but

this will be prohibitively slow.This algorithm can be easily

modified to detect cycle .If we fill negative infinity value at

the diagonal of matrix and run algorithm than matrix of

predecessors will contain also all cycles in the graph (the

diagonal will not contain only zeros ,if there is a cycle in the

graph).

2.5 Time complexity

The time complexity for each algorithm is illustrated in Table

I; n represents the total number of vertices, and m is the total

number of edges.

Name Time complexity

Dijkstra’s Algorithm n2+m

Bellman Ford Algorithm O(n3)

Floyd–Warshall

Algorithm

nm

3. CONCLUSIONS AND FUTURE WORK

 Algorithms are acceptable in terms of their overall

performance in solving the shortest path problem. All of

these algorithms produce only one solution. improved in

finding the shortest path or distance between two places in a

map that The computed time complexity for each of the

Dijkstra’s, Floyd-Warshall and Bellman-Ford algorithms

show that these represents any types of networks. In

addition, other artificial intelligence techniques such as fuzzy

logic and neural networks can also be implemented in

improving existing shortest path algorithms in order to

make them more intelligent and more efficient.

 REFERENCES

[1] F. Benjamin Zhan “Three Fastest Shortest Path

Algorithms on Real Road Networks Data Structures and

Procedures “vol.1, no.1, pp. 70-82, 1997

[2] Kairanbay Magzhan, Hajar Mat Jani “ A Review And

Evaluations Of Shortest Path Algorithms”International

Journal Of Scientific & Tec-Hnology Research Volume 2, Issue

6, June 2013

[3]Arjun RK1, Pooja Reddy2, Shama3, M. Yamuna4-

“Research On The Optimization Of Dijkstra’s Algorithm And

Its Applications”International Journal of Science, Technology

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1959

& Management www.ijstm.comVolume No 04, Special Issue

No. 01, April 2015 ISSN (online): 2394-1537

[4] S.G.Shirinivas,S.Vetrivel,Dr. N.M.Elango”Applications Of

Graph Theory InComputer Science An Overview”-S.G.

Shrinivas et. al. / International Journal of Engineering

Science and Technology Vol. 2(9), 2010, 4610-4621

[5] Pooja Singal ,R.S.Chhillar “Dijkstra Shortest Path

Algorithm using Global Positioning System” International

Journal of Computer Applications (0975 – 8887) Volume 101–

No.6, September 2014

[6]Dijkstra’s Algorithm, Available -

http://www.cs.cornell.edu/~wdtseng/icpc/notes/graph_pa

rt2.pdf

[7] Floyd-Warshall Algorithm, Available at

http://lcm.csa.iisc.ernet.in/dsa/node164.html

 [8]Bellman-Ford A lgorithm, Available at

http://www.geeksforgeeks.org/dynamic-programming-set-

23-bellman-ford-algorithm/

 Volume: 03 Issue: 08 |Aug -2016 www.irjet.net p-ISSN: 2395-0072

http://lcm.csa.iisc.ernet.in/dsa/node164.html

