
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 135

AMBA-AXI Protocol Verification by using System Verilog

G.Kanaka Maha Lakshmi1, M. Manasa Lakshmi2

1 Student, Department of ECE, Gandhiji Institute Of Science and Technology, Andhra Pradesh, India
2 Assistant Professor, Department of ECE, Gandhiji Institute Of Science and Technology, Andhra Pradesh, India

---***---
Abstract - This paper mainly focuses on verifying the
important features of advanced extensible interface (AXI).
Verifying the memory transactions of AX I includes the
verification of all the five channels write address, write data,
write response, read address and read data. In this work a
Verification Intellectual Property cores (VIP) based
methodology is used to carry out the verification Process. In
the VIP design the entire test environment is modeled using
system verilog and the read, write transactions from the same
and different memory locations has been verified with the
quantitative values of Busy Count, Valid Count and its Bus
Utilization. Verifying the System connectivity during write and
read cycles is also one of the fundamental features verified in
this paper.

Key Words: Write and Read transactions, AXI
protocol,Verification IP, Bus utilization, Coverage
mode analysis.

1.INTRODUCTION

The Advanced Microcontroller Bus Architecture (AMBA) is a
protocol that is used as an open standard; on-chip
interconnects specification for the connection and
management of functional blocks in a system-on-chip (SoC).
The AMBA bus is applied easily to small scale SoCs.
Therefore, the AMBA bus has been the representative of the
SOC market though the bus efficiency. Three distinct buses
are defined within the AMBA specification:

1. Advanced Peripheral Bus (APB).
2. Advanced High performance Bus (AHB).
3. Advanced extensible Interface Bus (AXI).

The AMBA specification defines all the signals, transfer
modes, structural configuration, and other bus protocol
details for the APB, AHB, and AXI buses. The AMBA APB is
used for interface to any peripherals which are low
bandwidth and do not require the high performance of a
pipelined bus interface. APB peripherals can be integrated
easily into any design flow, with the following specification:

• Peripheral bus for low-speed devices
• Synchronous, non multiplexed bus
• Single master (bridge)
• 8, 16, 32-bit data bus
• 32-bit address bus

• Non-pipelined

AMBA AHB is a new level of bus which sits above the APB
and implements the features required for high performance,
high clock frequency systems, with the following
specification:

• Burst transfers
• Split transactions
• Single cycle bus master handover
• Single clock edge operation
• Wider data bus configurations (64/128 bits)

AXI extends the AHB bus with advanced features to support
the next generation of high performance SoC designs. The
goals of the AXI bus protocol include supporting high
frequency operation without using complex bridges,
flexibility in meeting the interface, and performance
requirements of a diverse set of components, and backward
compatibility with AMBA AHB and APB interfaces. The
features of the AXI protocol are:
• Separate address/control and data phases
• Support for unaligned data transfers
• Ability to issue multiple outstanding addresses
• Out-of-order transaction completion.

2. PROPOSED WORK

The work is proposed in this project is the achievement of
communication between one master and one slave using
Verilog, then verifying the design using System Verilog.

2.1 Design of AXI Protocol

AMBA AXI4 slave is designed with operating frequency of
100MHz, which gives each clock cycle of duration 10ns and it
supports a maximum of 256 data transfers per burst. The
AMBA AXI4 system component consists of a master and a
slave as shown in Fig-1. There are 5 different channels
between the AXI master and AXI slave namely write address
channel, write data channel, read data channel, read address
channel, and write response channel.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 136

Fig -1: Block Diagram of a system

In AXI protocol, every transfer is done using hand shake

mechanism. Each channel uses the same VALID/READY

handshake to transfer control and data information. This

two-way flow control mechanism enables both the master

and slave to control the rate at which the data and control

information moves. The source generates the VALID signal to

indicate when the data or control information is available.

The destination generates the READY signal to indicate that

it accepts the data or control information. Transfer occurs

only when both the VALID and READY signals are HIGH.

There must be no combinatorial paths between input and

output signals on both master and slave interfaces.

2.2 Address Write Channel (AW Channel)

 AXI_MASTER drives the write command signals only when

ARESETn is HIGH, else it drives all signals as zero. The

address write command signals driven by the AXI_MASTER

are - AWID,AWADDR, AWBURST, AWLEN, AWSIZE,

AWCACHE, AWLOCK, AWPROT, with AWVALID as HIGH

indicating that the driven signals are valid. The AXI_MASTER

does not drive the AWVALID signal as LOW, until it receives

the AWREADY signal, which is driven by the

DESTINATION_SLAVE, indicating that, it has received the

address write command signals. If AWREADY is LOW, then

AXI_MASTER retains the same values. Fig-2 shows the state

diagram for the address write command signals.

Fig -2: State diagram of Address Write Channel

2.3 Write Data Channel (W Channel)

The AXI MASTER drives these Write Data signals, after

sending the write address command signals. It drives these

signals, only when ARESETn is HIGH, otherwise it drives all

signals to zero. AXI MASTER drives the WDATA signal with

WVALID as HIGH, it holds the same value until it receives the

WREADY signal. If WREADY is HIGH, it drives the next

WDATA. AXI MASTER drives the AWLEN No. of data. While

driving the last data it drives the WLAST as HIGH. Fig-3

shows the state diagram for the WRITE DATA channels.

Fig -3: State diagram of Write Data Channel

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 137

2.4 Write Response Channel (B Channel)

The DESTINATION_SLAVE drives these Write Response

signals, only when ARESETn is HIGH, otherwise it drives all

signals as zero. DESTINATION_SLAVE waits for WLAST

signal. After receiving the WLAST signal, it drives these

response signals, with BVALID as HIGH. It holds the same

value until it receives the BREADY signal from the AXI

MASTER. If BREADY is HIGH, it drives all the signals as zero,

at next positive edge of ACLK, otherwise it retains the same

value.

2.5 Address Read Channel (AR Channel)

AXI_MASTER drives the command signals only when

ARESETn is HIGH, else it drives all signals as zero. The

address read command signals driven by the AXI_MASTER

are - ARID, ARADDR, ARBURST, ARLEN, ARSIZE, ARCACHE,

ARLOCK, ARPROT, with ARVALID as HIGH indicating that the

driven signals are valid. The AXI_MASTER does not drive the

ARVALID signal as LOW, until it receives the ARREADY

signal, which is driven by the SOURCE_SLAVE, indicating

that, it has received the address read command signals. If

ARREADY is LOW, then AXI_MASTER retains the same values

2.6 Read Data Channel (R Channel)

The SOURCE_SLAVE drives these Read Data signals after

receiving the read command signals. It drives these signals,

only when ARESETn is HIGH, otherwise it drives all signals

as zero. SOURCE_SLAVE drives the RDATA signal with

RVALID as HIGH, it holds the same value until it receives the

RREADY signal. If RREADY is HIGH, it drives the next RDATA.

SOURCE_SLAVE drives the ARLEN No. of data. While driving

the last data it drives the RLAST as HIGH.

3.VERIFICATION ENVIRONMENT

The entire verification environment for verifying the AXI

transactions is shown in the Fig-4. It consists of a generator

module to read the test cases to satisfy the criteria's of

verification. In this paper we focus primarily two different

test scenarios verifying the read and write transactions in

same address and different address locations. The two test

cases are driven to bus functional model with mailbox as a

synchronization medium. Bus functional model plays a vital

role in receiving the generated transactions and drive them

to the AXI interface. The verification environment is

developed using system verilog and it can be reconfigurable

to any Device under Verification (DUV) according to the

verification plans and strategies. Nowadays the verification

environment is coming as inbuilt verifying option with all

System on Chip (SOC's) so called as Verification Intellectual

Property (VIP).

Fig-4 VIP for verifying memory transactions

4. RESULTS AND DISCUSSIONS

4.1Verification of write architecture

In this verification stage all three write signals named write

address, write data and write response are verified for each

transaction. The write address includes AWID, AWADDR,

AWLEN, AWSIZE, AWVALID AND AWREADY signals toggles

for every positive high edge of the global clock and finally

writes the address in the channel. AWID is a write address ID

which represents a particular tag for each write address; it

should match with the write data WID. During the toggling

action of the clock at positive edges with the high enable

logic value in WVALID and WREADY, the write data channel

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 138

acknowledgement will takes place. Similarly the write

response will happen at the high state of BVALID and

BREADY signals. Here the signal AWLEN is of four bit size

[0:3] which generates different transactions from one to

sixteen. During that generation process if AWLEN is 0100

then it will have 0101 transactions which mean it will

increments the transactions by one. This is clearly illustrated

in the waveform clearly at Fig-5. From the waveform it is

observed that AWSIZE indicates the size of each transaction.

The entire write architecture is simulated and verified for all

the signal toggle counts which is clearly show in the

waveform in Figure-5

Fig-5 AXI Write Cycle Response.

The signals verified in this test case are AWADDR, AWVALID,

AWREADY, and WDATA along with their write address,

write data’s signals. Also the signals WLAST, WVALID,

WREADY, BRESP, BVALID and BREADY are also verified for

every transactions. The parameters VALID COUNT, BUSY

COUNT, BUS UTILIZATION are calculated practically with

this test case and the bus utilization is shown in percentage

numbers. Write phase is divided into three channels

response. The necessity to verify write phase is whether

hand shaking of signals is happening perfectly or not in all

the three channels.

VALID COUNT for read phase = 13.

BUSY COUNT for read phase = 16.

BUS UTILIZATION = (13/16)*100 = 81.25 percent

4.2Verification of write architecture

In this read cycle verififcation, all the read architecture

signals ARVALID, ARREADY, RVALID, RREADY, RLAST,

RDATA and ARSIZE are verfified for each transcations. The

read architecture includes two channels i.e. read address and

read response channels. The read address channel will

intialize its address fetching at the high state of ARVALID

and ARREADY signals for every positive edge of global clock.

Similarly after a gap period of delay read response will

instantiated to high mode for every positive edge of RVALID

and RREADY signals. RLAST indicates the last transaction in

the RDATA signal. Similarly ARSIZE and ARLEN are same as

compared to that of write architecture. The entire waveform

for the verififcation satge of the read architure is given Fig-6.

Fig-6 AXI read Cycle Response.

Verifying only the read phase is the main criteria of this test

case. Neglecting the write phase signal values and focussing

only on the read operation related signals and calculate the

parameters are taken into consideration. The working of the

read phase which includes two channels is same as

explained above, the main focus is on verifying the

parameters which leads to succesful measurment of bus

utilization practically.The signals that are verified in this test

case are ARADDR, ARVALID, ARREADY, ARID, RID, RDATA,

RLAST, RRESP, RVALID, RREADY. Read phase is divided into

two channels read address and read data plus read response.

The necessity to verify the read phase is to cross check the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 139

hand shaking of signals for each channel then only a proper

read phase will happen.

VALID COUNT for read phase = 10.

BUSY COUNT for read phase = 13.

BUS UTILIZATION = (10/13)*100 = 76.92 percent.

The same read and write phase is verified using the code

coverage mode analysis and the coverage driven report is

given in the Fig-9. The code coverage mode analysis is

covering about the 80% of verification IP using the random

test bench based verification methodology. The sample

coverage report for the AXI Slave/Master for the various

analyses like state machine, branches, transitions and toggle

counts etc., is given below as follows

Table-1: Bus utilization for different phases

 Different Phases Bus Utilization
1 Read Phase 76.92%
2 Write Phase 81.25%
3 Write and Read

Different
location

66.25%

4 Write and Read
from Same

loaction

95.45%

From the Table - 1 it is inferred that the bus utilization

percentage is 76.92% and 81.25% for the individual read

and write phase respectively. In the same manner the bus

utilization for the combined read and write in the same and

different memory location will be of 66.25% and 95.45%

respectively.

Fig-7:Coverage mode analysis

Code coverage is a metric to have better progress in the

verification activity. The code coverage gives better chance

of providing exact stimuli to the design under verification.

Code coverage is generated by the simulation tool and not in

the hands of the user. Code coverage shortly represented as

"FLBEST" which tells FSM, Line, Branch, Expression,

Statement and toggle coverage. The below mentioned figure

shows how much percentage of code is covered as generated

by the QUESTA SIM simulation tool. As a verification

engineer one should never think code coverage less than

100%, setting the coverage goal to 100% gives better

verification results. The above mentioned statements are

clearly explained by the figure shown below. According to

the simulation result of code coverage, test cases 1 and 2 are

explored properly. Here the entire read and write phase are

modeled in the system verilog for the memory transaction

verification and simulated using the Mentor graphics Questa-

sim tool in the code coverage enabled simulation mode. The

Fig-7 shows the code coverage results of the code coverage

based test case verification of the AXI protocol. From the Fig-

7 it is clearly visible that the 100% coverage has been

achieved by the test case environment for verifying the read

and write transactions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 140

5. CONCLUSION

The AXI protocol verification, and the signals used in each

channel are verified and analyzed using the code coverage

mode analysis. The main advantage of this kind of

verification is using the pseudo random coverage driven

verification, where the time to market is less and applicable

for complex designs using system verilog verification. In

future we develop a test case to verify both the write and

read phase simultaneously from the same location and

different locations of read and write.

ACKNOWLEDGEMENT

I express my sincere gratitude to Mrs. M. Manasa Lakshmi,

Department of ECE Studies, GIST college, India and also

thanks to for continuous guidance and other Professors of

Department of VLSI Design and Embedded Systems, GIST,

India for extending their help & support in giving technical

ideas about the paper without which I would not come up

with this paper

REFERENCES:
[I] K. Swaminathan , G. Lakshmi narayanan a, Seok·Bum Ko
"Design and verification of an efficient WISHBONE·based
network interface for network on chip". Computers and
Electrical Engineering 40 (2014) 1838-1857
 [2] S. Saponara a, L. Fanucci a, M. Coppola "Design and
coverage·driven verification of a novel network· interface IP
macro cell for network·on· chip interconnects".
Microprocessors and Microsystems 35 (2011) 579- 592
[3] Alan P. Su, JifT Kuo, Kuen·Jong Lee, Ing·Jer Huang, Guo·An
Jian" A Multi·core Software/Hardware Co·debug Platform
with ARM CoreSightTM, On·chip Test Architecture and
AXIIAHB Bus Monitor ".
[4] Attia B, Zitouni A, Tourki R. Design and implementation
of network interface compatible OCP for packet based NOC.
In: International conference on design & technology of
integrated systems in nanoscale era; 2010. p. 1-8.
[5] Technical Reference Manual of Prime Cell AXI
Configurable Interconnect (PL300), ARM, Cambridge, u.K.,
2010.
[6] Singh Sanjay Pratap, Bhoj Shilpa, Balasubramanian
Dheera, Nagda Tanvi, Bhatia Dinesh, Balsara Poras. "Generic

network interfaces for plug and play NoC based architecture
". In: Lecture notes in computer
science Springer reconfigurable computing: architectures
and
applications; 2006. p. 287-98.
[7] Chien·Hung Chen, .Jiun·Cheng .Iu, and Ing·.Ier Huang, "A
Synthesizable AXI Protocol Checker for Soc Integration ",
IEEE transl, ISOCC, Vol 8,pp.I03·106, 2010
[8] Lai Yong·Long, Yang Shyue·Wen, Sheu Ming·Hwa, Hwang
Yin· Tsung, Tang Hui·Yu, Huang Pin·Zhang. A high· speed
network interface design for packet·based NoC. In: IEEE
ICCCAS; 2006. p. 2667-71.
[9] .I. Shao and B. T. Davis, "A burst scheduling access
reordering mechanism, "in Proc. IEEE 13th Int. Symp. High
Perform. Comput. Archit.,Feb. 2007, pp. 285-294.
[10] Fattah M, Manian A, Rahimi A, Mohammadi S. "A high
throughput low power FIFO used for GALS NoC buffers". In:
IEEE annual symposium on VLSI; 2010. pp. 333-8.
[11] Anurag srivastava,G.S.tomar, kamal k karla, "Efficient
Design and Performance Analysis for AMBA Bus Architecture
Based System On Chip",lnternational conference on
Computational Intelligence and communication
networks,2010.

