Defects in Cast-in-situ Ballastless track

Akshay R. Desai
Lecturer in Civil Engineering Department
Sir Bhavsinhji Polytechnic Institute, Bhavnagar, Gujarat, India.

Abstract - It is a well-known fact that ballastless tracks have proved to be effective alternative to the tracks with ballasts and hence they have been adopted in India a decade ago. The conventional ballastless track are cast-in-situ types, in which the pre-cast concrete sleeper are embedded in the Cast-in-situ concrete slab thereafter rails and fastener are provided. The present work focus on the various type of defects found in Cast-in-situ ballastless tracks along with their and countermeasures. Causes of defects is analyzed, according to corresponding quantitative equation, affective technical measures of concrete are put forward. The best alternative for conventional ballastless tracks i.e. “Pre-stressed bi-block sleeper ballastless track” has also been proposed.

Key Words: Ballastless track, concrete, crack, Deterioration, Reduction of crack, Pre-stressed bi-block sleeper,

1. INTRODUCTION

Cast-in-situ Ballastless track is a track in which ballast is particularly replaced by cement-base materials (concrete). It is a known fact that steel is the main construction material used in railways, but with the introduction of ballastless technology, the application of concrete in the railway has increased largely. Moreover, the failure of cast-in-situ ballastless track (especially crack and deterioration of concrete) has been observed at the many places in India. Cast-in-situ ballastless tracks (slab track) are not adopted for high speeds and long distances. Hence, in India generally cast-in-situ slab track is placed at different places (i.e. platform of railway station), because at platform train speed, vibration generation is much more less instead of when train is in motion. Cast-in-situ ballastless track fails owing to the Non-linear and irreversible behavior of the materials, the tracks tend to float in longitudinal and lateral directions over time and concrete failure.

The present work focuses on the cause of these concrete defects in the Cast-in-situ ballastless tracks and the corresponding remedial measures. It’s an observed fact that Cast-in-situ ballastless track construction offers an effective alternative to the conventional methods due to the enormous reduction of maintenance work and the long service life with constant serviceability conditions, furthermore the application of higher cant and cant deficiency allow the reduction of the minimum values like radii for curves or the increase of speed for lines equipped with ballastless track. Non-linear and irreversible behavior of the materials in concrete has become study focus; there is a little research done for this type of behavior of concrete materials against structural style of ballastless track.

1.1 Structure of Cast-in-situ BLT:

Cast-in-situ ballastless track in which precast concrete sleeper is fixed in position on the base slab reinforcement and further concrete mix is poured into the arrangement and hence the structure becomes monolithic. Once the concrete becomes hard enough, fasteners of rails are fixed on the embedded precast sleepers. As shown in fig.1, the rail and fastener is directly embedded with concrete base slab (without the provision of sleepers), and fig.2 shows the cast-in-situ ballastless track in which rail and its fastener are fixed with pre-cast sleeper which is initially embedded in concrete slab.

Fig.1 Ballastless track (rail and fattener embedded in base slab)
Rail traffic is reaching out towards new horizon on ballastless track systems. The arguments are indeed convincing: long life cycles, top speed, ride comfort, and great load-carrying capability. Modification of this technology ensures safety and stability at speeds as high as 300 kmph. Practically ballastless track systems ensure its serviceability at a very low maintenance costs over many years.

Fig.2 Cast-in-situ Ballastless track

2. Concrete defects in Cast-in-situ BLT:

There are two main components in cast-in-situ ballastless tracks i.e. (i) track slab with sleeper and (ii) rail fitted with fastener.

2.1 Defects in track slab with sleeper

Main defect which have been observed in cast-in-situ ballastless track is deterioration of concrete of track slab. The service life of concrete structures is reduced drastically because of the deterioration of concrete. Deterioration of concrete takes place due to many reasons such as poor quality materials, degradation due to environmental effects, design and constructional errors or an adverse combination of these factors.

Fig.3 Deterioration of Cast-in-situ BLT

Track slab is a kind of cast-in-situ concrete with precast concrete sleeper structure. The R.C.C sleeper forms a monolithic structure with the concrete bed that encloses it. Design principle of track slab is ‘no crack design’, but some cracks are observed in the track slab due to load action, environmental factor like temperature and creep of concrete.

Longitudinal crack which is induced by the nonhomogeneous stress easily appear in the range of fastener. There are many cracks is in the inner side of frame track slab, and some cracks run through the total depth of track slab. Some cracks were developed due to Non-linear and irreversible behavior of concrete material. Sometimes cracks are also caused by freezing and thawing of saturated concrete, or corrosion of reinforcing steel. However cracks from these sources may not appear for years.

Fig.4 Deterioration of Cast-in-situ BLT

2.2 Defects in rail fitted with fastener:

Concrete crack were lie in the range of fastener, and in base slab on which rail joint fitted with fastener rested on it also. Base slab concrete below rail joint is completely deteriorated. Some cracks are also developed in this area. In fastener, pendolro clip are loosened often due to vibration of joint and Nut-bolt of fish plate is also loosened, when load action is more. At some places concrete crust is peel off in the range of fastener. Concrete crack were also developed due to water accumulation in base slab of ballastless track.

Fig.4 Deterioration of Cast-in-situ BLT
3.0 Damage due to concrete defects in Cast-in-situ Ballastless track:

There are two main hazards in cast-in-situ BLT, one is reduced durability of track structure and safety of train travel; other is deterioration of track slab by corrosion action owing to the water accumulation, chemical attack, & temperature effect. Depending on the severity of the attack, the consequences of alkali-aggregate reaction are; (1) degradation of appearance (2) deterioration in strength (3) decrease in durability.

Cracks in the track slab will become entryway of the corrosion substances, Under the CL– or CO2 environment. The steel in the slab will be corroded and the resulting expansion will aggravate the cracking of the concrete, sequentially reducing the durability of the concrete structure. Under movable load, concrete of track slab is easy to disintegrate and the sleeper rap, which affect the safety of the train. Some cracks lie in the range of fastener; leading to the loosening of the fasteners, thus affect track stability. In addition, there may be potential incipient fault of travel.

For Cast-in-situ BLT structure, concrete cracks not only harms the concrete, but also harms the conterminal part. Cracks in base slab is pathway to the water, immersing the water for a long time, the superstructure accelerates falling in, at the same time increase sedimentation value of base, thus affect the stability of base and reduce the durability and bearing capacity of base. Moreover, the cracks in base concrete aggravate corrosion of its steel.
The chemical cause of concrete deterioration includes carbonation; sulphate attack and steel corrosion. Other factors contributing to concrete degradation include high structural stress, thermal stress, and shrinkage, poor quality of materials and workmanship and poor maintenance.

Cracks may propagate at much lower stresses than are required to cause crack initiation. When the concrete dry shrinkage deformation strength is bigger than stretching resistance of concrete resisting external, the crack will happen in the concrete. The formula of the dry shrinkage deformation is as follows:

\[\varepsilon_s = \varepsilon_{cs} \left[1 - \frac{\sqrt{\varepsilon_s^2 - 1}}{1 + \frac{\varepsilon_s}{E_c}} \right] \]

\(\varepsilon_s \) = dry shrinkage deformation of concrete
\(\varepsilon_{cs} \) = dry shrinkage of cement hardened stone

5.0 Remedial Measures for Defects in Cast-in-situ Ballastless track:

5.1 For Deterioration and temperature crack:

Deterioration defects in concrete are caused mainly by the alkali aggregate reaction and temperature effect. Remedies for alkali aggregate reaction are that (1) Use only non-reactive aggregates (not always available). (2) Use only low alkali cements (the only available cements may be high in alkalis). (3) Use appropriate extenders (experimentation is needed to optimize effectiveness). (4) Prevent continued wetting of the concrete (often unfeasible in practice).
Reducing the temperature difference of uniform and non-uniform. Temperature destroying stress and uniform temperature difference and non-uniform one presents positive relation. The bigger the temperature difference is, the bigger is the stress caused. Caused by hydraulic heat, non-uniform temperature difference reduced is to reduce hydraulic heat of cement by adding mineral admixture, which may improve work performance and durability of concrete.

5.2 For reducing drying shrinkage and Plastic shrinkage:

- Use of maximum practical amount of aggregate in the mix
- Adopt the lowest water-to-cement ratio
- Use of properly spaced contraction joints and proper steel detailing
- Use of shrinkage compensating cement
- Use of proper subgrade preparation, including uniform support and proper sub-base material at adequate moisture content
- Minimize the mix water content by maximizing the size and amount of coarse aggregate and use low–shrinkage cement
- Use of spray-applied aids or plastic sheets preventing rapid loss of surface moisture and hence avoiding plastic-shrinkage cracks.
- Reinforce curing; it needs not only in time curing but also sufficient curing, which means the time of curing must be long enough. Reinforcing curing can guarantee the strength development of the concrete. Moreover sufficient curing may also put off the time of dry shrinkage and release the degree of the dry shrinkage. The action on both sides makes the dry shrinkage happen after the concrete and the hardened cement stone have enough resistivity, so that the dry shrinkage crack of concrete may be efficiently reduced.
- The more the elastic modulus ratio of aggregate and hardened cement stone, the smaller the dry shrinkage deformation of the concrete. Therefore, choose the hard texture and high elastic modulus ratio of aggregate as possible as we can.
- Furthermore, the effective method to reduce the elastic modulus of cement stone is to add prime mineral admixtures; especially the prime fly ash.
- The solution of reducing the plastic crack is to choose proper component of cement or cementitious material, and control the time interval between initial set and final set. Before initial set, concrete in shape of flowing can't crack, but when it has lost flowing power the crack will be caused because of not enough strength to resist its shrinkage stress.

6.0 Alternatives of Cast-in-Situ Ballastless track:

Now a day’s High speed railway is the future of whole railway system. There are best alternatives of Cast-in-situ ballastless track are Pre-stressed concrete bi-block sleeper ballastless track system. The basic system structure, however, always consists of modified bi-block sleepers which are securely and reliably embedded in a monolithic concrete slab. Highly elastic rail fastenings are essential to achieve the vertical rail deflection required for load distribution and for smooth train travel. The concrete track-supporting layer is the major load-distributing element of the system. Since it is cast-in-place, it can be individually adapted to any substructure type and condition. For embankments, it is designed as a continuous slab with free crack formation.

Fig. 9 Pre-stressed concrete Bi-block sleeper ballastless track system

REFERENCES

(1) “Advances in design theories of high-speed railway ballastless tracks” by Xueyi Liu, Pingrui Zhao and Fang Dai, Journal of Modern Transportation Vol.19, issue 3
(2) “Key techniques of ballastless track design on high speed railway” by JIANG Cheng, FAN Jia, WANG Ji-jun (Railway engineering research institute, China academy of railway sciences, Beijing, China) in China Journal
(3) “Roadbed degradation mechanism under Ballastless track and its countermeasures” by Katsumu MURAMOTO, Etsuo SEKINE, takahisa NAKAMURA Railway technical research institute Vol.47, issue 4