Ambiguous Metaclustering Algorithm and Crisp Recursive Profiling for Online Reviewers Using Mahalanobis distance

Kaushalya D.korake 1, Prof. Vilas S. Gaikwad2
1student, Department of Computer Engineering, JSPM Narhe Technical Campus, Savitribai Phule Pune University, Pune, Maharashtra, India.
2Prof, Department of Computer Engineering, JSPM Narhe Technical Campus, Savitribai Phule Pune University, Pune, Maharashtra, India.

Abstract - The crisp and fuzzy met clustering algorithms is used to create more refined profiles of businesses and reviewers on a website for such as e.g. yelp.com. The resulting profiles include some of the outlying objects into mainstream clusters by allowing them to partially belong to multiple clusters. The objective is to profile the businesses and reviewers by grouping them based on similar characteristics. Business is represented by static information obtained from the database and dynamic information obtained from the clustering of reviewers who reviewed the business. In the same way reviewer representation uses the static representation from the database with profiles of businesses that are reviewed by these reviewers.

In proposed system work is extended to the implementation of mahalanobis distance for resulting profile. It reduces to the familiar Euclidean distance for uncorrelated variables with unit variance. It accounts for the fact that the variances in each direction are different and covariance between variables in cluster analysis. System uses mahalanobis distance for profiling of online reviewer and business clustering. This approach offers more compact intracluster distance and separate clusters. It increases the inter clustering and decreases the intra clustering of business and reviewers.

Key Words: Fuzzy-c-mean, K-means, Mahalanobis distance

1. INTRODUCTION
The ubiquitous nature of web-based systems means that popular websites deal with a large number of entities such as users and resources. Creating meaningful representation and profiles of these users and resources is an important part of web-based system analysis.

Users can also record check-ins at local businesses via their mobile phones. These reviews cover all types of businesses, from automotive to medical services and hotels. However, the majority of reviews center on restaurants and dining. The no. of visitors to yelp.com in the first three months of 2014 was 132 million, with millions of distinct reviewers and businesses., a business can be represented by an information granule consisting of the number of five-star, four-star..., one-star reviews received. A reviewer can be similarly represented by an information granule consisting of votes, and five-star, four-star,..., one-star reviews submitted, where votes are the sum of votes users have given the reviewer’s reviews, based on the categories “Cool,” “Funny,” and “Useful.” Traditionally, the data mining Process begins with such a representation of objects based on raw data from the dataset. However, in a typical web-based system, we will have millions of such objects making analytics Unwieldy. A better solution is to use clustering to create a manageable number of profiles of entities such as businesses and reviewers.
Clustering, an unsupervised learning process that groups similar objects, can be used to create profiles of businesses based on type of reviews received, or profiles of reviewers based on types of reviews submitted. However, this only grades the businesses based on the reviews. It does not tell us how easy or hard the reviewers were. This paper addresses that issue by evolving business profiles in parallel with profiles of reviewers. These profiles of both businesses and reviewers recursively enhance the static information obtained from the database. For example, we add the profiles of businesses that were reviewed by a reviewer in the reviewer representation. Similarly, we add the profiles of reviewers who reviewed a business in the representation of the business, which means that the users not only know how the businesses are graded but how easy or hard the reviewers were as well. Similarly, if a user chooses to follow a reviewer, they can find out how easy or hard the reviewer is, as well as the popularity of the businesses graded by the reviewer. The profiles from the clustering are further refined by additional filters that will help users focus on types of businesses, typical hours of operation, and location. The resulting service provides a facility for users to find similar businesses/reviewers based on the category of the business, rating, number of reviews, and number of check-ins. It also provides a succinct profile of a business or reviewer based on these factors so that the users can put the reviews in context.

2. RELATED WORK

2.1 Review of Crisp and Fuzzy Clustering

The goal of both the conventional and fuzzy clustering is to minimize the distances between objects that belong to the same cluster and maximize the distances between clusters. Depending upon the application, we can choose any distance function. Two popular distance functions are Euclidean distance and the inverse of cosine similarity function. This study uses Euclidean distance [1].

2.2 Iterative metaclustering through granular hierarchy of supermarket customers and products

This paper proposes a novel iterative meta-clustering technique that uses clustering results from one set of objects to dynamically change the representation of another set of objects. The proposal evolves two clustering schemes in parallel influencing each other through indirect recursion. The proposal is based on the emerging area of granular computing, where each object is represented as an information granule and an information granule can hierarchically include other information granules. The paper describes the theoretical and algorithmic formulation of the iterative meta-clustering algorithm followed by its implementation. The proposal is demonstrated with the help of a retail store dataset consisting of transactions involving customers and products. A customer granule is represented by static information obtained from the database and dynamic information obtained from clustering of products bought by the customer. Similarly, the product granule augments the static representation from the database with clustering profiles of customers who buy these products. The algorithm is tested for a synthetic dataset to explore
various nuances of the proposal, followed by an extensive experimentation with a real-world retail dataset [3].

2.3 Pattern Recognition using the Fuzzy c-means Technique

In the field of pattern recognition due to the fundamental involvement of human perception and inadequacy of standard Mathematics to deal with its complex and ambiguously defined system, different fuzzy techniques have been applied as an appropriate alternative. A pattern recognition system has to undergo basically the steps of preprocessing, feature extraction and selection, classifier design and optimization. In this work the data we have analyzed is in the form of numerical vectors, with a number of clusters predefined. Therefore the fuzzy c-means technique of Bezdek has been considered for this work. Although in the fuzzy c-means technique Euclidean distance has been used to obtain the membership values of the objects in different clusters, in this present work along with Euclidean distance author has used other distances like Canberra distance, Hamming distance to see the differences in outputs[4].

2.4 Temporal recursive meta-clustering

Temporal data have many distinct characteristics, including high dimensionality, complex time dependency, and large volume, all of which make the temporal data clustering more challenging than conventional static datasets. In this paper, proposed a HMM-based partitioning ensemble based on hierarchical clustering refinement to solve the problems of initialization and model selection for temporal data clustering. Their approach results four major benefits, which can be highlighted as: (i) the model initialization problem is solved by associating the ensemble technique; (ii) the appropriate cluster number can be automatically determined by applying proposed consensus function on the multiple partitions obtained from the target dataset during clustering ensemble phase; (iii) no parameter re estimation is required for then merged pair of cluster, which significantly reduces the computing cost of its final refinement process based on HMM agglomerative clustering and finally (iv) the composite model is better in characterizing the complex structure of clusters. Our approach has been evaluated on synthetic data and time series benchmark, and yields promising results for clustering tasks[5].

3. OBJECTIVE

The objectives of this paper are:

1. The effect of Mahalanobis distance on resulting profiles.
2. To extend existing system to implement the Mahalanobis distance for clustering.
3. Profiling temporal patterns for a given business and reviewer clustering.

4. PROPOSED WORK

4.1 Architectural design

We propose a new approach mahalanobis distance based on the crisp and fuzzy clustering method to evolve the two
recursively define clustering of both business
and reviewers using a real world dataset. User
take input as data, that data take reviewer in
the form of static representation and compute
the centroid of cluster Ck of reviewer and
determine the mahalanobis distance of
reviewer and also compute business count and
get better cluster reviewer data and vise versa.

The Mahalanobis distance has the following
properties:
• Mahalanobis distance considers the fact that the
variances in each direction are different.
• MD considers the covariance between variables
in cluster analysis.
• MD minimizes to the familiar Euclidean distance
for uncorrelated variables with unit variance [1].

4.2 Methodology:

Reviewer and Business Clustering:

Let R be the set of reviewers, R = r1, r2, . . . , rnr and
B = b1, b2, . . . , bnb be the set of businesses. Let RC
be the clustering scheme of reviewers, RC = rc1,
rC2, . . . , rCkr and BC = bc1, bc2, . . . , bcckb be the
clustering scheme of businesses.

The reviewer rj is represented by a static data srj
and dynamic data drj, i.e. rj = (srj, drj). Static part
i.e. srj is a data that is taken from the data set such
as review types (total, **,***, ****, ***** votes).
Data part drj is derived from the clustering of
businesses. Dynamic part is presented by drj=
(mj1, mj2, . . . , mjkb). Where; mj is the count of
businesses that the reviewer rj reviewed from bci
cluster of businesses in crisp clustering. In fuzzy
clustering mj is the average count of businesses
reviewed by reviewer rj from bci cluster of
businesses. The business bi is represented by a
static data part sbi and dynamic data part dbi,
i.e., bi = (sbi, dbi). The static part represent the
number of reviews (total, **, ***,***, ****, *****) for a
business from the dataset. The dynamic part dbi is
derived from the clustering of reviewers. For crisp
clustering, dbi = (mi1, mi2, . . . , mikr). Mij is the
count of reviewers who reviewed the business bi
that falls in rcj cluster from the clustering of
reviewers.

4.3 Algorithms:

Algorithm 1: Reviewer Clustering

Input: R, Srj, Drj
Output: Clusters

1: Compute K number of centroid using Euclidean distance
2: for all reviewer ri; i = 1 to n do
3: Assign each reviewer to the nearest centroid cluster
 according to the Euclidean
distance criterion.
4: end for
6: for all $k = 1$ to k do
7: Compute centroid C_k of each cluster
8: if $n_k > 1$, where n_k is number of reviewers assigned to that cluster k then
9: Compute the Mahalanobis distance with other cluster.
10: end if
11: end for

Algorithm 2: Business Clustering

Input: R, S_{rj}, D_{rj}
Output: Clusters

1: Compute K number of centroid using Euclidean distance
2: for all all business $b_i ; i = 1$ to n do
3: Assign each business to the nearest centroid cluster according to the Euclidean distance criterion.
4: end for
5: for all $k = 1$ to k do
6: Compute centroid C_k of each cluster
7: if $n_k > 1$, where n_k is number of business assigned to that cluster k then
8: Compute the Mahalanobis distance with other cluster.
9: end if
10: end for

5. Result and discussion:

Fig -2: Static clusters of business profiles and reviewer profiles

Fig -3: Crisp clustering and fuzzy clustering

Fig -4: Reviewer cluster list in total reviewer (Crisp clustering)
Fig -5: Reviewer cluster list in total reviewer average (Fuzzy clustering)

Fig -6: Reviewers information

Fig -7: Business cluster user list (Crisp clustering)

Fig -8: Business cluster total average (Fuzzy clustering)

Fig -9: Mahalanobis Distance of Each Cluster
Fig -10: Euclidean Distance of Each Cluster

Fig -11: Business Graph

Fig -12: Reviewer Graph

Fig -13: Initial business centroid

Fig -14: After applying algorithms business centroid

Fig -15: Initial reviewer centroid
Fig-16: After applying algorithms reviewer centroid

6. CONCLUSION:

Our conclusion is that use of the Mahalanobis distance should become a standard option of the available fuzzy K-means clustering for nonhierarchical cluster analysis. We have use mahalanobis distance for profiling of online reviewer and business clustering. It increases the inter clustering and decreases the intra clustering of business and reviewers.

7. Future Work:

Future studies should work with locations based clustering that check results against a map

REFERENCES

Games, Multimedia Allied Technol., 2010, pp. 297–304.
