
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2048

Implementation of Optimized Mapreduce With Smart Speculative
Strategy And Network Levitated Merge

Mr. Ruturaj N. Pujari, Prof. S. R. Hiray

Student, Pune University, Sinhgad College of Engineering, Vadgaon (BK), Pune, 411041.Maharashtra, India
Ruturajpujari999@gmail.com

Professor, Pune University, Sinhgad College of Engineering, Vadgaon (BK), Pune, 411041.Maharashtra, India
srhiray.scoe@sinhgad.edu

---***---

Abstract— two performance parameters of MapReduce
are job execution time and cluster throughput.
Straggler machine impacts these parameters.
Speculative execution overcomes this by backing up
those slow tasks on alternative machines. The Paper
introduces new strategy Maximum Cost Performance
(MCP).MCP uses i) The progress rate and the process
bandwidth within a phase to select slow tasks, ii)
Exponentially weighted moving average (EWMA) for
prediction of process speed and to calculate a tasks
remaining time, iii) A cost-benefit model to determine
which task to backup based on the load of a cluster
using. To choose proper worker nodes for backup tasks,
it considers both data locality and data skew. The
second technique is Network levitated merge. This
introduces merge without merge data without
repetition and disk access. Hadoop-An acceleration
framework that optimizes Hadoop with the plug-in
component for fast data movement. This Hadoop will
double the throughput.

Keywords—Hadoop, MapReduce, straggler, speculative
strategy, cluster throughput, cost performance,
network-levitated merge.

1. INTRODUCTION

1.1 Background

MapReduce is a widely used parallel computing
framework for large-scale data processing. The two major
performance factors in this are job execution time and
cluster throughput. Straggler machines are responsible for
affecting these— machines on which execute slow.
Speculative execution is a common way for dealing with
the straggler problem which simply back-ups those slowly
executing tasks on other nodes. Multiple solutions were
proposed, but they have some lacking’s i) To identify slow
tasks it uses average progress rate while in reality, the
progress rate can be unstable and misleading, ii) If there

exists data skew among the tasks, it cannot handle the
situation properly iii) while choosing backup worker
nodes it doesn’t consider finishing time of backup task.

To address straggler's issue, add to another methodology,
maximum cost performance (MCP), which enhances the
effectiveness of speculative execution. In MCP: i) consider
progress rate and process bandwidth to identify slow
tasks, ii) Use exponentially weighted moving average
(EWMA) to foresee process speed and figure out task's
remaining time, iii) Determine which task to backup in
given on the cluster using cost-benefit model.

To address the issue of serialization Hadoop-A is there, an
acceleration framework. A novel network-levitated merge
algorithm is been introduced. Also, a full pipeline is
designed to overlap the shuffle, merge, and reduce phases.

1.2 Motivations

1.1.1 stragglers problem

Google proposed MapReduce [3] in 2004,it’s a popular
parallel computing framework for large-scale data
processing. In a normal MapReduce, the master node
divides the input into various map tasks, and then
schedules map tasks and reduce tasks to worker nodes in a
cluster to achieve parallel processing.

Stragglers are the machines that complete the tasks in
longer duration that a normal node can complete. This
degrades the performance of Hadoop regarding job
execution time and cluster throughput. Speculative
execution strategy handles this problem.

Microsoft Dryad is another parallel computing system
which supports MapReduce. Its unique speculative
execution procedure is like that in Google MapReduce [3].
Later, Mantri [6] proposes another speculative execution
system for Dryad. The primary distinction in the middle of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2049

LATE and Mantri is that Mantri utilizes process bandwidth
the task's (processed data /time) to compute remaining
time the task's (data left/process bandwidth).

1.2.1 A Serialization in Hadoop Data Processing

Hadoop endeavors to pipeline the data processing. It is, in
reality able to do as such, especially for map and
shuffle/merge stages. As shown in Fig., after a brief
initialization period. For the rightness of the MapReduce
programming model, it is important to guarantee that the
reduce stage does not begin until the map stage completes
all data splits. In any case, the pipeline, as shown in Fig.,
contains a certain serialization.

Fig.1 Serialization between shuffle/merge and reduce
phases.

1.2.2 Repetitive Merges and Disk Access

Hadoop Reduce Tasks blend data segments when the
number of segments or their aggregate size goes over a
limit. However, Hadoop’s current merge algorithm leads to
repetitive merge, along with this comes additional disk
access. Fig. Demonstrates a typical succession of merge
operations in Hadoop.

Fig 2. Repetitive merges.

1.2.3 The Lack of Network Portability

Hadoop only supports TCP/IP protocol;it does not support
other transport protocols such as RDMA on InfiniBand [7]

and 10-Gigabit Ethernet (10GigE). Hadoop-A has a C
implementation which supports these networks.

2. LITERATURE SURVEY

Several speculative execution strategies were proposed in
the literature, including MapReduce in Google [3], Hadoop
[4], LATE [3], Dryad in Microsoft [3] and Mantri [6].

The 1st speculative execution strategy used in Hadoop-
0.20. It just identifies straggler when tasks progress is less
than average progress. But some previous studies found
that this is not worth in heterogeneous environment and
proposed Hadoop-LATE [3]. This stores progress rate
(process/time) of the task and calculates the remaining
time and similarly selects the slow tasks

Above study shows different studies done on Hadoop
optimization and the limitations or lacking’s of those
studies. Also gives the short explanation about techniques
analyzed in these papers.

These articles help to understand the working of Hadoop
in different environments like, if data at local nodes how it
behaves, also how it reacts to heterogeneous data.

In this paper, we made changes in working in Map phase
with the help of Maximum Cost Performance (MCP)
mechanism. And in reduce phase with Network-Levitated
Merge (NLM) algorithm. And to achieve better
performance of NLM we implemented the Hadoop
acceleration.

3. PROPOSED MODEL

Proposed model optimizes performance in two stages
Hadoop as

1. Map Phase.
2. Reduce Phase.

3.1 Map Phase:-

This phase uses the speculative strategy proposed in this
project. The proposed method uses the MCP technique for
identifying the straggler machine. The working of this
module is as follows.
3.1.1 To Select Backup Candidates

In MCP, we predict process speed of the task in the near
future instead of using the previous average rate. In MCP,
EWMA (exponentially weighted moving average) scheme
is used which is expressed as follows:

 () () () () …………………(1)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2050

Where Z (t) is the estimated and Y (t) is the observed
process speed at time t, respectively. Reflects a tradeoff
between stability and responsiveness.

To show effect of EWMA to predict the process speed and
the remaining time of the task, system runs a demo job like
sort job in cluster and suddenly gives IO and CPU intensive
jobs to worker node for better prediction

3.1.2 To Identify Slow Tasks Using Per-Phase Process
Speed

Use of progress rate and process bandwidth together
minimizes the limitations of each other.

This solution, compares process speed of a task (both the
processing bandwidth and the progress rate) and estimate
its remaining time. Therefore, we use EWMA scheme to
predict the process speed of each phase in a task, and to
indentify the slow task we use this per-phase process.
Meanwhile, we usethe process speed and the remaining
data to process in a task to compute the remaining time of
each phase in a task, and sum up the remaining time of all
these phases to get total remaining time of the task.

3.1.3 to Estimate Task Remaining Time and Backup
Time

In MCP, a task that has the longest remaining time can get
the highest priority to be backed up. As watched, a task's
remaining time is evaluated by the whole of the remaining
time left of the every stage. When a task is running in some
phasecp (i.e., the current phase), the remaining time left in
cp is evaluated by the components of remain data and the
processing bandwidth in cp. However, the remaining time
of the accompanying stages is hard to compute as the task
has not entered yet. Hence, we use the phase average
process speed to calculate the remaining time of a phase
(est_timep). The average process speed of the phase is the
average process speed of task that has entered the phase.
For that phase that no task has processed, no need to
compute their remaining time, which is reasonable to all
tasks. Since task might handle distinctive measure of data,

adjusting

, this ration is of the input size of this task

to the average input size of all tasks. Now remaining time
of the tasks is calculated as follows:

 ∑ …………………...... (2)

……………………………………………….. (3)

To estimate the backup time of a slow task, use the sum of
est_timep for each phase in this task as estimation.
Therefore, calculate the backup time as follows:

 ∑ ………………………... (4)

As seen, process speed in reduce phase decreases as time
goes on. So process speed fluctuation will occur and
impact the precision of time estimate. To avoid such
impact, compute the remaining time of copy phase.
Calculate the remaining time of the copy phase using the
following equation:

 ………………. (5)

In the above equation, the process speedcopy is estimated
by EWMA.

3.1.4 Maximizing Cost Performance of Cluster
Computing Resources

Design a cost-benefit model that decides backing up of
tasks and saves the status of both original and backup
tasks i.e., two slots were used remTime and BackupTime.
Therefore, define the profit of the two actions as follows:

 ()

 …………………………………………………...… (6)

 …….………...……... (7)

In above equation, rem_time and backup time are already
known and and are the weight of benefit and cost,
respectively.

Then choose the action that gains more profit. And choose
proper backup node.

 ……… (8)

Where, (

) .To simplify this formula, we replace

by . Then the formula is

. fWhen a cluster

is idle and has free slots, the cost or speculative execution
is not considered, because it doesn’taffect other task’s
performance. On the other hand, when the cluster is busy
and has many pending tasks of other jobs, the cost is an
important issue because backing up a task will take more
time to do the job. We assume that g varies with the load of

the cluster:

gets its lowest value () when the load

of the cluster is low while reaches its highest value .we set
 to the load_factor of the Hadoop cluster:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2051

………………….…….……(9)

Where,

numberpending_tasks= the number of pending tasks,

numberfree_slots = the number of free slots in the cluster.

When the cluster is idle and has many free slots,
decreases to 0 , so the backup condition becomes
rem_time>backup_time. When the cluster is busy and has

many pending tasks of other jobs, increases and

converges to 2 gradually. Then the backup condition will
berem_time> 2 * backup_time. As a result, less tasks will be
backed up. Hence, using load_factor as g works perfectly.

After going through all the running tasks, we get the set of
backup candidates. The candidate with longest remaining
time are backed up finally.

3.1.6 To Select Worker Nodes for Proper Backup

To extract the better performance, we have to assign fast
worker nodes to do backup tasks. To achieve this, use the
moving average process bandwidth of Data-local map
tasks completed on a worker node to represent the node’s
performance.

Also, consider the data-locality of map tasks when making
the backup decisions. In MCP, while assigning the tasks to
backup nodes, we estimate the time that this node will
take to complete the task. We will give the backup task to
the node if and only if it is estimated to finish faster.

3.2 Reduce Phase:-

During this stage system does the tasks like shuffling,
merging. Here it lessens the time head required for doing
these activities. For this reason, the system utilizes the
Network levitated merge algorithm. The working of this
algorithm is been characterized as follows. Likewise to
handle the parallel processing inside of the system this
proposition utilizes the pipelining system, i.e. this
pipelines the shuffle, merge and reducing procedures.

3.2.1 Network-Levitated Merge [NLM]

This algorithm avoids the repetitive disk access while in
processing. Also stays at local disks while processing the
data.

Fig 3.Network levitated merge

In Fig. 3a, three remote segments S1, S2, and S3 are to be
fetched and merged. Instead taking them to local disk NLM
only takes header containing partition length, offset, and
the first pair of <key,val>.These <key,val> pairs are
sufficient to construct a priority queue (PQ) to organize
these segments. This information is sufficient to form a
priority queue (PQ) to organize these segments. This
algorithm does not have to store or merge segments onto
local disks. Instead of merging segments when the number
of segments is over a threshold, we keep building up the
PQ until all headers arrive and are integrated. As soon as
the PQ has been set up, the merge phase starts. The leading
<key,val> pair will be the beginning point of merge
operations for individual segments, i.e., the merge point.
This is shown in Fig. 3b. According to <key, value>pair the
segments are merged as shown in fig. 3c. When merged the
data will be seen as shown in fig. 3d.

3.2.2 Pipelined Shuffle, Merge, and Reduce

Instead of avoiding repetitive merges, this algorithm takes
off serialization barrier occurring in merge and reduce. As
in Section 3.1, the merged data have <key, val> pairs
ordered in their final order and can be delivered to the
Java-side ReduceTask as soon as they are available. Thus,
the reduce phase no longer has to wait until the end of the
merge phase.

Fig4 pipelined shuffle, merge and reduce

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2052

In view of the possibility to closely couple the shuffle,
merge, and reduce phases, they can form a full pipeline as
shown in Fig. 4. In this pipeline, MapTasks map data split
as soon as they can. When the first MOF is available,
ReduceTasks fetch the headers and build up the PQ. These
activities are pipelined. Header fetching and PQ setup are
pipelined and overlapped with the map function, but they
are very lightweight, compared to shuffle and merge
operations. As soon as the last MOF is available, completed
PQs are constructed. The full pipeline of shuffle, merge,
and reduce then starts. One may notice that there is still a
serialization between the availability of the last MOF and
the beginning of this pipeline. This is inevitable in order
for Hadoop to conform to the correctness of the
MapReduce programming model. Simply stated, before all
<key,val> pairs are available, it is erroneous to send any
<key,val> pair to the reduce function (for final results)
because its relative order with future <key,val> pairs is yet
to be decided.

Therefore, our pipeline is able to shuffle, merge, and
reduce data records as soon as all MOFs are available. This
eliminates the previous serialization barrier in Hadoop
and allows intermediate results to be reduced as soon as
possible for final results.

3.3 Software Architecture of Hadoop-A

As fig.6 depicts architecture contains two components as
MOFSupplier and NetMerger are threaded C
implementations. This is to gain the support of RDMA.
These two are developed as native C programs that are
launched by TaskTracker. Use of this can be controlled by
the user with help of parameter im the config. file. We can
also run Hadoop without hadooop-A.

Hadoop-A supports RDMA platforms, for Infiniband,
TCP/IP interconnects. Infiniband supports zero-copy data
transfer. RDMA gives us the advantage to access the
remote processes’ memory buffers.

While the other left half works as normal Hadoop
architecture, which involves the tasks like shuffling,
merging of data segments.

Hadoop-A transport layer has a server in the MOFSupplier
and client in the NetMerger, at client side one thread
works for fetching/connection establishing request from
remote server.at server side, one thread is dedicated to
listen incoming request.

4. Result and Discussion

FIG. Without Joint of two method

FIG. with joint of two methods

From both the images we can see that the results before
the methods are combined and after they are combined

The graph for the results are shown in the blue line which
is slighet straight which means the map and reduce tasks
are in linear forms and the red line shows the combined
method results of method .

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2053

Fig . results

CONCLUSION

The proposed model designed to provide the better
performance while handling the straggler problem. By
using MCP method and to minimize the overhead between
map and reduce phases with help of network levitated
merge algorithm and pipelining technique. This MCP uses
EWMA for calculating the speed of worker nodes to
identify the proper straggler. Network levitated merge,
merges the partitioned data by just fetching the headers of
each block of data. The system also uses the pipelining of
shuffle, merge, and reduce phases which helps to parallel
execution of shuffle merge and reduce phases to improve
the performance. Proposed system is portable to any
network protocol for this it uses the Hadoop-A
implementation which is c based.

REFERENCES

1. Qi Chen, Cheng Liu, And Zhen Xiao, “Improving
MapReduce Performance Using Smart Speculative
Execution Strategy ”, IEEE Transactions On Computers,
Vol. 63, No. 4, April 2014 .

2. Weikuan Yu, Ieee, Yandong Wang, And XinyuQue,
“Design And Evaluation Of Network-Levitated Merge
For HadoopAcceleration ”, . IEEE Transactions On
Parallel And Distributed Systems, Vol. 26, No. 3, March
2014

3. J. Dean And S. Ghemawat,“MapReduce: Simplified
Data Processing On Large Clusters”, Proc. Sixth Symp.
Operating System Design And Implementation (Osdi
04), Pp. 137-160, Dec. 2004

4. ApacheHadoopProject,“Http://Hadoop.Apache.Org/ ”,
2013.

5. M. Isard, M. Budiu, Y. Yu, A. Birrell, And D. Fetterly,
“Dryad: Distributed Data-Parallel Programs From
Sequential Building Blocks ”, Proc. Second
AcmSigops/Eurosys European Conf. Computer
Systems (Eurosys 07), 2007

6. G. Ananthanarayanan, S. Kandula, A. Greenberg, I.
Stoica, Y. Lu, B. Saha, And E. Harris, “Reining In The
Outliers In Map-Reduce Clusters Using Mantri ”, Proc.
Ninth Usenix Conf. Operating Systems Design And
Implementation, (Osdi 10), 2010.

7. Infiniband Trade Association,
“Http://Www.Infinibandta.Org. ”, 2013

8. M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, And
I. Stoica, “Improving MapReduce Performance In
Heterogeneous Environments ”, Proc. Eighth Usenix
Conf. Operating Systems Design And Implementation,
(Osdi 08), 2008.

9. T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K.
Elmeleegy, and R. Sears, “MapReduce Online”, Proc.
Seventh USENIX Symp. Networked Systems Design
and Implementation (NSDI), pp. 312-328, Apr.
2010.29

10. R. Recio, P. Culley, D. Garcia, and J. Hilland“An
RDMA Protocol Specification (Version 1.0) ”, Oct. 2002.

11. B. Nicolae, D. Moise, G. Antoniu, L. Bouge, and M.
Dorier,“Blobseer: Bringing High Throughput under
Heavy Concurrency to Hadoop Map-Reduce Applications
”, , Proc. IEEE Intl Symp. Parallel Distributed
Processing (IPDPS), Apr. 2010.

12. J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, and J.
Dittrich,“Rafting MapReduce: Fast Recovery on the Raft
”, IEEE 27th Intl Conf. Data Eng. (ICDE), Apr. 2011.

13. . Ranger, R. Raghuraman, A. Penmetsa, G.R.
Bradski, and C. Kozyrakis,“Evaluating MapReduce for
Multi-Core and Multiprocessor Systems ”,Proc.IEEE
13th Intl Symp. High Performance Computer
Architecture (HPCA 07), pp. 13-24, 2007.30

