Visualization of Sentences for Children with Intellectual Challenges

Rugma R¹, Sreeram S²

¹M.Tech Student, Dept. of Computer Science & Engineering, MEA Engineering College, Perinthalmanna
²Associate professor & HOD, Dept. of Computer Science & Engineering, MEA Engineering College, Perinthalmanna

Abstract - Children with intellectual challenges face difficulties in thinking, communication and socialization. However, advances in computer technologies have facilitated their learning and social activities. Computer-assisted teaching approaches provide a flexible learning platform for those children. Delay in language acquisition is one of the major problems faced by those children and it is one of the main reasons for their lack of academic success. Visualizing the verbal content present in their learning materials will improve language comprehension. This paper proposes a simple text-to-scene conversion system for assisting the education of intellectually challenged children.

Key Words: Natural Language Processing (NLP), Computer Assisted Language Learning (CALL), Text-to-Scene Conversion (TTS).

1. INTRODUCTION

There exist a number of assistive technologies for supporting the needs of intellectually challenged children. With recent advances in technologies, there has been a strong interest in the use of computer-assisted teaching approaches in the education of such children, since they offer great opportunities for them to have an enhanced and enjoyable learning process. According to studies, the main reason for the lack of their academic success is delayed language development [1], and there is a greater chance that these individuals may better understand what they see than what they hear. Words are abstract and rather difficult for the brain to retain, whereas visuals are more permanent and easily remembered. The use of visual representation makes it easier for the child to understand the abstract ideas present in the sentences. So a tool to convert text into corresponding visual representation will have positive impact on their learning process.

A text-to-scene conversion system consists of following three modules:

- Linguistic Analysis
- Semantic Representation
- Scene Generation

i.e. analysing the whole text, extracting the meaningful elements from it and modelling the scene corresponding to the semantic content.

2. RELATED WORK

Text-to-scene conversion is likely to have a number of important impacts because of the ability of an image to convey information quickly. However, relatively little research has considered the conversion from text to visual representations. Any implementation is however limited because of the semantic ambiguities present in the sentence, data set limitation or the lack of context and world knowledge. This section discusses some of those existing text-to-scene conversion systems.

One of the earliest systems was the SHRLDU (even though it did not have a graphics component), a natural language understanding computer program, developed by Terry Winograd at MIT in 1968-1970. In it, the user carries on a conversation with the computer, moving objects, naming collections and querying the state of a simplified “blocks world”, essentially a virtual box filled with different blocks.

NALIG (Natural Language Driven Image Generation) by Adorni G, Manzo M.D and Giunchiglia F (1984) is another early work which was aimed at recreating static 2D scenes. NALIG considered simple phrases in Italian of the type subject, preposition, object etc. One of the major goals of the work was to understand relationships between space and prepositions.

Another early program was the Put system by Clay and Wilhelms (1996), which studied spatial arrangements of existing objects on the basis of an artificial subset of English consisting of expressions of the form Put(X P Y), where X and Y are objects, and P is a spatial preposition.

Later, many other text-to-scene conversion systems have been developed. S2S [2], a system for converting Turkish sentences into representative 3D scenes, allowed intellectually challenged people establish a bridge between linguistic expressions and the concepts these expressions refer to via relevant images. The system used SYNSEM (SYNTAX-SEMANTICS) feature structure representation to store information and generated scene from this feature structure representation.

Another system was AVDT (Automatic Visualization of Descriptive Texts) [3], which stored POSIs (Parts of Spatial
3.1 Linguistic Analysis

Basic natural language processing techniques such as tokenization, lemmatization, Part of Speech (POS) tagging etc. are performed in this step. The system used Stanford CoreNLP library for performing NLP tasks. The Figure 1 shows the linguistic analysis module output corresponding to the example input sentence "A boy is sitting under the tree".

```
(a a):DT
(boy boy):NN
(is is):VBZ
(sitting sitting):VBG
(under under):IN
(the the):DT
(tree tree):NN
```

Fig -1: Linguistic Analysis

When the input text is entered, the linguistic analyzer first converts it into tokens, list of the words present in the sentence. The first part shows the tokenization process. These tokens are then converted in to their lemma form. For example 'sitting' is converted to its root form 'sit' and 'is' is converted into 'be'. Each of these tokens is then tagged with its part-of-speech. In figure, 'NN' stands for singular or mass noun, 'VBZ' stands for 3rd person singular present verb and so on. Part-of-speech tagging helps the system to keep visually relevant words such as nouns, verbs etc. Determiners like 'a', 'the' are not important in visual representation, so they can be omitted in further processing.

3.2 Semantic Analysis

After analyzing the whole text, the meaningful elements have to be extracted from the input sentence. Here text is converted into a dependency structure representation, and this dependency structure is then semantically interpreted and semantic representation is generated.

Figure 2 shows the dependency structure for the given example input sentence. 'Sitting' is the main root verb. 'Boy' and 'tree' are the two nouns dependent on the root verb. 'Under' is the preposition dependent on the

noun ‘tree’. All these semantically important elements can be extracted from this dependency structure. The dependency structure representation is more convenient for semantic analysis.

```
-> sitting/VBG (root)
   -> boy/NN (nsubj)
   -> a/DT (det)
   -> is/VBZ (aux)
   -> tree/NN (nmod:under)
   -> under/IN (case)
   -> the/DT (det)
```

Fig -2: Dependency Structure Representation

It is possible to generate dependency structure for large complex sentences. But this paper focuses only on simple sentences, which are easy for intellectually challenged children to understand. So the work is restricted to simple subject-verb-object sentences. If there are any propositions related to position, the system considers them too.

Next step includes the conversion of dependency structure into semantic representation. From the given dependency structure, system extracts meaningful semantic elements i.e. root verb, subject, object and preposition if any. Figure 3 shows the semantic representation that the system extracts out from the dependency structure.

In the given example, ‘sit’ is the main action, ‘boy’ is the subject performing the action, ‘tree’ is the object and ‘under’ is the positional relation. This semantic representation is used for the scene generation process.

3.3 Scene Generation

The semantic elements extracted from the previous step are converted into corresponding visual representation. The scene generation relies on the database which contains a number of images and location information for various relations. If the noun present in the input sentence is a human being, the database provides different poses and facial expressions too.

```
Action :sit
Subject :boy
Object :tree
Relation :under
```

Fig -3: Semantic Representation

4. EXPERIMENTAL RESULTS

Database for the system is created with the help of abstract scene data set provided by [8]. Some of the poses and facial expressions given in the database are shown in figure 4.

Fig -4: Poses and Facial Expressions

Image corresponding to the subject, object and their actions are retrieved from the database and scene is generated by positioning them according to the location information.

Figure 5 gives the output scene generated for the given sentence “The boy is sitting under the tree”. The scene is generated using attractive clipart objects. Other two example output scenes are depicted in figure 6 and 7.
5. CONCLUSION AND FUTURE WORK

The field of text-to-scene conversion is a very promising area of computer science. It is clear that text-to-scene conversion systems have a number of important impacts because of the ability of a picture to convey information quickly. A text-to-scene conversion system, as an assistive tool for the education of intellectually challenged children will have high social impact. The system can contribute much to the special education field, since visual representation may make it easier for those children to understand the abstract ideas in the verbal expressions.

To the best of our knowledge, S2S is the only system which had implemented the concept of text-to-scene conversion in the field of special education. But the system is restricted to positional relation representation. WordsEye and scene modeling using CRF has many advantages over other existing systems, since they use comparatively high quality models and generate scenes with various object features such as poses, facial expressions etc.

The proposed system also models the scene using various parameters such as facial expressions, poses and positional information. In this work, relatively simple and attractive clip art objects are used for scene generation. Those objects are highly effective in simply conveying the semantic information present in the input sentence for children with intellectual challenges. The dependency structure used in this work is very efficient in semantic analysis. The system now considers only simple sentences with subject-verb-object structure. However it can be modified for complex sentences too, because dependency structure representation is capable of dealing with large complex sentences.

This technique is not restricted to special education domain. It can also be used for other scene generation purposes. A small database of limited set of object and related information is used for the implementation of this work. Defining poses, expressions and location information for each relation was a very challenging task. A large dataset requirement is a limitation of the system. Developing an efficient database is an important area for future research. Learning from a trained set, computing the probability and making the system capable of generating the scene for a new given sentence is another area of future work. The possibility and efficiency of retrieving images from the internet is also has to be studied.

Fig-5: Output for “The boy is sitting under the tree”

Fig-6: Output for “The girl is crying on seeing the dog”

Fig-7: Output for “Airplane is flying over the clouds”

REFERENCES

BIOGRAPHIES

Rugma R is pursuing her M.Tech Course in Computer Science & Engineering at MEA Engineering College, Perinthalmanna, Kerala, India

Sreeram S is the HOD in the Dept. of Computer Science & Engineering at MEA Engineering College, Perinthalmanna, Kerala, India