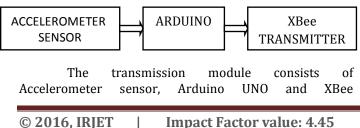


IMPLEMENTATION OF SPEED CONTROL USING MEMS BASED ACCELEROMETER WIRELESSLY

T. S. Abirami¹, A. Induja², G. Dheena Dhayalan³

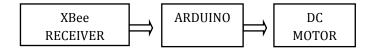
¹²³UG student, Dept. of EIE, Madras Institute of Technology campus, Anna University, Tamilnadu, India

Abstract -In all industries, there are many ways to control the speed of the motor. In this report, the innovative way to control the speed is done using MEMS based accelerometer. The speed of the motor is most important parameter and in some cases, the motor present in the industries are very difficult to access manually. So, the wireless access can be done using RF module. The various components used are MEMS based accelerometer, Arduino UNO, XBee transceiver and DC motor. The accelerometer is connected with Arduino. The position of accelerometer is changed (i.e.) axis gets varied and the data are transmitted by the XBee transmitter. It is received by the XBee receiver connected to microcontroller which controls the speed according to the position of the accelerometer.


Key Words: MEMS (Micro-electromechanical system) based accelerometer, XBee transceiver, Arduino UNO

1.INTRODUCTION

There are various ways to control the speed of the motor. In this report, a different method to control the speed is incorporated using MEMS based accelerometer. This approach is made as wireless speed control by transmitting the axial values of the accelerometer through XBee transceiver. So it acts as a axial regulator to control appliances. The specific objectives of this project are to control the speed of the motor without any contact between the operator and motor and in case of any malfunction in the industries, we are not able to manually operate the motor so wireless access is useful in this case


2. SYSTEM DESIGN

2.1 Transmission module

transceiver. The MEMS based accelerometer is interfaced with Arduino UNO. The output of the accelerometer is read in the Arduino UNO and it is transmitted by the XBee transmitter.

2.2 Reception module

The reception module consists of XBee transceiver, Arduino UNO and DC motor. The data is received by XBee receiver. By this method, the speed of the DC motor is changed.

2.3MEMS based Accelerometer

An accelerometer sensor measures the acceleration, vibration and force etc. The maximum supply voltage is 3.6V. In this report, the ADXL345 which is the 3-axis accelerometer sensor is used.

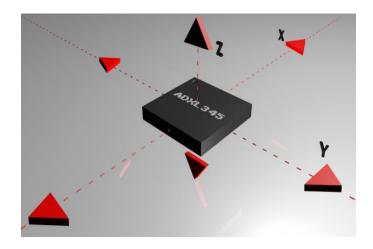


Fig-1: Three axis accelerometer

The main idea is to control speed of the DC motor. So the methodology includes the RF transmission and reception of accelerometer's axial positions that decides the speed of the DC motor.

In this method, the Arduino programming is done as follows. For the four different positions of the three axis accelerometer, the speed of the DC motor is varied. These X, Y and Z axis ranges are got when the Accelerometer sensor is changed to different positions

Table-1: Accelerometer sensor ranges

X-axis range	Y-axis range	Z-axis range	Speed of the DC motor
345 to	400 to	350 to	OFF
365	440	380	state
410 to	350 to	350 to	Low
440	370	390	speed
350 to	270 to	350 to	High
375	290	370	speed
270 to 290	335 to 360	350 to 375	Very high speed

2.4 Interfacing the Accelerometer sensor with Arduino

An Accelerometer measures both static and dynamic acceleration forces. There are two types of Accelerometer sensor. They are two axis accelerometer and three axis accelerometer.

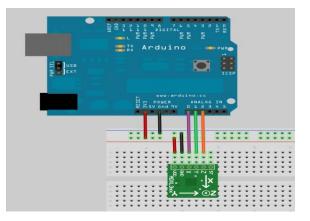
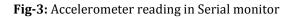


Fig-2: Interfacing the sensor with Arduino


The three axis accelerometer is preferred in this method due to its accuracy. The VCC and GND of the accelerometer are connected to VCC and GND of the microcontroller togivepower supply. The x, y and Z pin of the accelerometer is connected to any three analog pins of Arduino.

3. REAL TIME IMPLEMENTATION

3.1 Serial monitor in Arduino

Initially, the accelerometer is interfaced with the Arduino and it is calibrated. For different positions of the accelerometer, the analog values are read in the serial monitor of the Arduino. The figure below shows the value which are printed in the serial monitor.

0			COM10 (Arduino Uno)
1			
245	294	265	
249	293	265	
249	293	245	
248	293	265	
240	293	266	
249	293	265	
248	293	265	
282	285	279	
263	200	277	
261	193	223	
253	214	224	
256	214	218	
255	216	217	
255	216	217	
255	216	216	
255	218	216	
255	217	213	
254	219	213	
254	219	213	
254	220	213	
254	220	213	
254	220	213	
254	220	212	
253	221	212	
253	221	212	
253	221	212	
253	221	212	
253	222	212	
253	222	212	
254	223	210	
254	224	211	
253	224	211	
253	224	210	
253	224	210	
253	224	210	
254	225	210	
253	225	210	
253	225	210	

3.2 Transmission module

The figure below denotes the transmission module of the speed control using MEMS based Accelerometer.

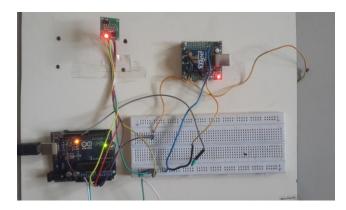


Fig-4: Transmission module

the speed control using MEMS based Accelerometer.

3.3 Reception module

The figure below denotes the reception module of

Fig-5: Reception module

4. CONCLUSIONS

Thus the online simulation using Arduino and hardware implementation of MEMS based Accelerometer and RF transceiver has been carried out. Accelerometer is the positional sensor which is used to detect the changes in position. As the position varies, the speed of the DC motor is varied wirelessly using RF module. This method is entirely customizable so that user can change the speed and the position as they needed.

REFERENCES

- Kumara MKSC, Dayananda PRD, Gunatillaka MDPR, Jayawickrama SS, "PC based speed controlling of a dcmotor", A fmal year report University of Moratuwa Illiniaus USA, 2001102
- [2] A Khoei Kh.Hadidi, "MicroProcessor Based Closed-Loop Speed Control System for DC Motor Using Power MOSFET", 3rd IEEE international conference on Electronics, Circuits and Systems(1996) vol.2, pp.1247-1250.

BIOGRAPHIES

T. S. Abirami B.E. in Electronics and Instrumentation Engineering, from Madras Institute of Technology, Chennai, TN-India.

A.Induja B.E. in Electronics and Instrumentation Engineering, from Madras Institute of Technology, Chennai, TN-India.

(Der
)OL

G. Dheena Dhayalan B.E. in Electronics and Instrumentation Engineering, from Madras Institute of Technology, Chennai, TN-India.