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ABSTRACT - Given the interactive nature of Internet 
auctioning today, we feel it most appropriate to study 
auctioning strategies from an online algorithms perspective.  
That is, algorithms must make immediate decisions based on 
existing, incomplete information, and are not allowed to 
delay responses to wait for future offers. This has the 
additional advantage of obviating the requirement for a 
closing time which leads to various inefficiencies. Moreover, 
given that existing auctioning web sites must implement what 
are essentially algorithmic rules for accepting or rejecting 
bids, in this paper we focus on algorithmic strategies for sellers. 
Even so, we restrict our study to strategies that are honest and 
fair to buyers. 

 

Key Words:  Offline Auctions, Online Auctions, Lower 
bound, Price and Pack, Optimal offline algorithm.  
 

INTRODUCTION 
 

Auctions are among the oldest forms of economic activity 
known to mankind. Of late there has been a renewed 
interest in auctioning as the Internet has provided a forum 
for economic interaction on an unprecedented scale. A number 
of web sites have been created for supporting various kinds 
of auctioning mechanisms.  For example, at 
www.priceline.com, users present bids on commodity items 
without knowledge of prior bids, and the presented bids 
must be immediately accepted or rejected by the seller. 
Alternately, web sites such as www.ebay.com and 
www.ubid.com allow bidding on small lots of non-commodity 
items, with deadlines and exposure of existing bids. The rules 
for bidding vary considerably, in fact, even in how equal bids 
for multiple lots are resolved.  Interestingly, it is a simple 
exercise to construct bidding sequences that result in 
suboptimal profits for the seller. For example, existing rules 
at www.ubid.com allow a $100 bid on 10 of 14 items to beat 
out two $70 bids on 7 items each. Thus, we feel there could be 
considerable interest in algorithmic strategies that allow 
sellers to maximize their profits without compromising 
fairness.  

 
 

 

EXISTING TECHNIQUES AND WORK 
 

Offline scenarios for auctioning, where all bids are 
collected at one time, such as in sealed bid auctions, have 
been studied and understood in terms of knapsack problems, 
for which the algorithms community has produced 
considerable previous work [12, 8, 9].  

 
The general area of online algorithms [5] studies 

combinatorial optimization problems where the problem 
instance is presented interactively over time but decisions 
regarding the solution must be made immediately. Even 
though such algorithms can never know the full problem 
instance until the end of the sequence of updates, it might not 
even know when the sequence has ended, online algorithms 
are typically compared to optimal offline algorithms. We say 
that an online algorithm is c-competitive with respect to an 
optimal offline algorithm if the solution determined by the 
online algorithm differs from that of the offline algorithm by 
at most a factor of c in all cases. The goal, therefore, in online 
algorithm design is to design algorithms that are c-
competitive for small values of c.  Often, as will be the case 
in this chapter, we can prove worst-case lower bounds on 
the competitive ratio, c, achievable by an online algorithm. 
Such proofs typically imply an adversary who constructs 
input sequences that lead online algorithms to make bad 
choices.  In this paper, we restrict our attention to oblivious 
adversaries, who can have knowledge of the online algorithm 
we are using, but cannot have access to any random bits that it 
may use.  

 
In work that is somewhat related to online 

auctioning, Awerbuch, Azar and Plotkin [3] study online 
bandwidth allocation for throughput competitive routing 
in networks.  Their approach can be viewed as a kind of 
bidding strategy for bandwidth.  Leonardi and Marchetti 
Spaccamela  [9] generalize the result of Awerbuch et al. 

 
Work for online call control [1, 13, 9] is also related to the 

problems we consider. In online call control, bandwidth 
demands made by phone calls must be immediately accepted 
or rejected based on their utility and on existing phone line 
usage.  In fact, our work uses an adaptation of an 
algorithmic design pattern developed by Awerbuch et al. 
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[4] and Lipton [10], which Awerbuch et al. call “classify-and-
select.” In applying this pattern to an online problem, one 
must find a way to partition the optimization space into q 
classes such that, for each class, one can construct a c- 
competitive algorithm (all using the same value of c).  
Combining all of these individual algorithms gives an online 
algorithm with a competitive ratio that is O(cq). Ideally, the 
individual c-competitive algorithms should be parameterized 
versions of the same algorithm, and the values c and q 
should be as small as possible.  Indeed, the classify-and-
select pattern is best applied to problems that can be shown 
to require competitive ratios that are Ω(cq) in the worst case 
against an oblivious adversary.  
 

OUR WORK 
 

1.1 MULTIPLE-ITEM B-BOUNDED 
ONLINE AUCTIONING 
 

In this section we introduce the multiple-item B-
bounded online auctioning problem.  We have n instances of 
the item on sale and the bids which come in for them offer 
varying benefit per item.  Each bid can request any number 
of items and offer a given benefit for them.  The objective 
is to maximize the profit that can be earned from the 
sequence of bids with the additional requirement that the 
seller accept or reject any given bid before considering any 
future bids, if they exist.  

 
The price density of a bid is defined as the ratio of the 

benefit offered by the bid to the number of instances of the 
item that the bid wants to buy.  In other words the price 
density is the average price per item the bidder is willing to 
pay. The range of possible price densities that can be offered is 
between 1 and B, inclusively.  This restriction is made 
without loss of generality in any scheme for single-item 
bidding that has bounded bid magnitude, as we can 
alternately think of B as the ratio of the highest and 
lowest bids that can possibly be made on this item.  A 
sequence of bids need not contain the two extreme values, 1 
and B, and any bid after the first need not be larger than or 
equal to the previous bid.  

 
We assume that the algorithm knows the value of B.  

We discuss at the end of this section how this assumption can 
be dispensed with. For this problem we propose an algorithm 
that uses an adaption of a random choice strategy of 
Awerbuch and Azar  [2] together with the  “classify and 
select” technique of [4], where we break the range of possible 
optimization values into groups of ranges and select sets of 
bids which are good in a probabilistic sense based on these 
ranges.  Our algorithm is described in Figure 1.1.  

 
 

 

Algorithm Price And Pack  

 
  

•  Select i uniformly at random from the integers 0 to         
log B − 1.  
 

•  If i is 0 then set pdr  = 1 else set pdr  = 2i−1 .  

 

•  Define a bid as legitimate if it has a price density 
of at least pdr  

-  Toss a fair coin with two outcomes before 
any bid comes in.  

 
-  If the coin has landed heads then wait for a 
legitimate bid on more than n/2 items to come 
in rejecting all smaller bids and all illegitimate 
bids.  
 

-  Else keep accepting legitimate bids 
till there is capacity to satisfy them. 
Reject all illegitimate bids.  
 

 
Figure 1.1: Auctioning multiple items with bids of 
varying benefit. 

Theorem 2.2.1 Price And Pack is an O(log B) competitive 
algorithm for the multiple item B-bounded online auctioning 
problem.  
 
Proof. Let the optimal offline algorithm OPT achieve profit 
density p on a given input sequence I. So if the optimal 

algorithm sells n′ ≤ n items, its total profit is n′p. Let j be the 

largest integer such that 2j ≤ 4p/5. Define α = 2j/p. We say 

that Price and Pack chooses i correctly, if the chosen value of i 
equals j. It is easy to see that i is chosen correctly with 
probability 1/ log B. In that event, bids of price density 
greater than pα are legitimate while the rest are not. Note 
that α (2/5, 4/5].                    
 

Let Ip be a subset of I, comprising all bids in I which 
have price density greater than pα.  

Lemma 2.2.2 The sum of the revenues obtained by the 
optimal algorithm running on Ip is no less than n′p(1 − α) 
where p is the profit density of OPT on I and n′  is the 
number of items it sells.  

Proof: Suppose that OPT sells some nlt ≤ n′ instances to bids 
in I − Ip, and let revge be the revenue earned by OPT from 
items which were sold to bids in Ip. Clearly,  
 

revge + nlt .pα ≥ n′p 
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this gives us  

 
revge  ≥ n′p − nlt .pα 

 
and since nlt  ≤ n′  we get 

 
revge  ≥ n′p(1 − α) 

 
Since revge is the revenue obtained from a subset of 

the bids in Ip, the result follows.                    
 
We consider the following three cases, and show that 

in each case the expected revenue ofPrice And Pack is at least  
np /10 log B .  

 

Case 1: There is a bid of size greater than n/2 in Ip.  
 

With probability  at  least  1/logB,  Price And Pack  
chooses  i  correctly. With probability 1/2 Price And Pack 
chooses to wait for a bid of size greater than size n/2.Thus, 
with probability at least 1/2 log B Price And Pack will 
accept a bid of size at least n/2 and price density at least 
αp.So in this case the expected revenue of Price And Pack is at 
least   npα /4 log B. Since the revenue earned by OPT is np, and α 
> 2/5, in this case Price And Pack is 10 log B competitive with 
OPT. 
 
Case 2: There is no bid of size greater than n/2 in Ip, and 
the total number of items demanded by the bids in Ip is more 
than n/2.  

 
With probability 1/2 Price And Pack will choose to 

accept bids of any size. If it also chooses i correctly (the 
probability of which is 1/ log B), it will sell at least n/2 
instances, and earn a revenue of at least pα units for every 
item sold. Thus, with probability 1/2 log B, Price And Pack 
sells at least n/2 instances to bids whose price densities are no 
smaller than pα. This means that, in this case, the expected 
revenue of Price And Pack is at least npα /4 log B> np /10 log 
B, which makes it 10 log B competitive with OPT.  
 
Case 3: There is no bid of size greater than n/2 in Ip, and 
taken together the bids in Ip demand no more than n/2 
instances.  
 

Again, with probability ½ Price And Pack decides to 
accept all bids, and with probability 1/ log B, i is chosen 
correctly.  Thus, with probability 1/2 log B our algorithm 
accepts all bids in Ip, and, by Lemma 2.2.2, earns a revenue 
no smaller than n′p(1 − α) where n′  is the number of 
items sold by n′p(1 − α) /2 log B≥ n′p /10 log B , which 
makes it 10 log B competitive with OPT in this case.         
 

An important thing to note is that here the algorithm 
has to know the range of the input i.e. the algorithm has to be 

aware of the value of B. It is possible to dispense with this 
assumption to get a slightly weaker result following [4]. In 
other words, it is possible to give an O((log B)1+ϵ) 
competitive algorithm, for any ϵ > 0, which does not know 
the value of B beforehand.  We do not detail it here because 
it does not provide any further insight into the problem of 
auctioning. In the next section we give lower bounds which will 
show that Price And Pack gives the best possible competitive 
ratio for the this problem. 

 
1.2 LOWER BOUNDS FOR THE ONLINE 
AUCTIONING PROBLEM 
 

We consider the version of the online auctioning 
problem in which there is only one item to be auctioned and 
the range of possible prices that can be offered for this item is 
between 1 and B, inclusively.  We call this the single item B-
bounded online auctioning problem.  We give lower 
bounds for this problem.  Upper bounds for this problem 
are given in [5].  It is easy to see that a lower bound on any 
algorithm for the single-item problem is a lower bound for 
the multiple-item problem as well. 

 
 If Price And Pack accepts all bids in Ip, it sells at 

least n/2 instances. If it rejects any bid in Ip, it must not 
have enough capacity left to satisfy it. But then at least n/2 
instances must have been sold, since any bid in Ip in 
particular the rejected bid is of size no more than n/2. 

 
In this section we first prove that no deterministic 

algorithm can in the worst case have a competitive ratio 
better than the maximum for the single-item problem.  More 
precisely, we show that every deterministic algorithm must 
have a worst-case competitive ratio that is Ω(B).  This 
lower bound is based on the fact that a seller does not know 
in advance how many bids will be offered. Even so, we also 
show that even if the seller knows in advance the number of 
bids in the input sequence, any deterministic algorithm is 
limited to a competitive ratio that is Ω(√B) in the worst case.  

 

Theorem 1.2.1 Any deterministic algorithm for the 
single-item B-bounded auctioning problem has a 
competitive ratio that is Ω(B) in the worst case.  
 
Proof:  For a given deterministic algorithm A we 
construct an adversarial input sequence IA in the 
following way:  Let the first bid in IA be of benefit 1.  If A 
accepts this bid, then IA is the sequence {1, B}.  In this 
case, on the sequence IA, the deterministic algorithm A gets 
a benefit of 1 unit while the offline optimal algorithm would 
pick up the second bid thereby earning a benefit of B units. If 
A does not accept this first bid, then IA is simply the 
sequence {1}. In this case A earns 0 units of revenue while 
the optimal offline algorithm would accept the bid of benefit 
1.                     
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Of course, B is the worst competitive ratio that is 
possible for this problem, so this theorem implies a rather 
harsh constraint on deterministic algorithms. Admittedly, the 
above proof used the fact, perhaps unfairly, that the seller does 
not know in advance the number of bids that will be received.  
Nevertheless, as we show in the following theorem, even if 
the number of bids is known in advance, one cannot perform 
much better.  

 

Theorem 1.2.2 Any deterministic algorithm for the 
single-item B-bounded online auctioning problem, where the 
number of bids is known in advance, has a competitive ratio 
that is Ω( √B) in the worst case.  
 

Proof: Consider the input sequence Ibase = {1, 2, 4, . . .2i . . . B/2, 
B}. For any deterministic algorithm A we construct our 
adversarial sequence IA based on what A does with Ibase.  
 

We recall here that since we are considering the single-
item problem, any deterministic algorithm essentially picks 
at most one of the bids in the input sequence.  

 
Suppose A accepts some bid 2i   ≤ √B.  Then we 

choose IA to be the same as Ibase .  In this case A’s benefit is 
less than √B, whereas an optimal offline algorithm would 
earn B units thereby making A an Ω(√B) competitive 
algorithm.  

 
If A accepts some bid 2i > √B, on the other hand, then we 

choose IA to be {1, 2, 4,  . . . 2i−1, 1,  1,  . . . }, i.e., we stop 

increasing the sequence just before A accepts and then pad the 

rest of the sequence with bids of benefit 1. 3 This way A can 

get no more than 1 unit of benefit while the optimal offline 

algorithm gets 2i−1 which we know is at least √B. 

If A accepts none of the bids in Ibase then it is not a 
competitive algorithm at all (i.e. it earns 0 revenue while the 
optimal offline algorithm earns B units) and so we need not 
worry about it at all.                                                      
 
It is easy to see that the deterministic algorithm that either 
picks up a bid of benefit at least √B or, if it does not find such 
a bid, picks up the last bid, whatever it may be, succeeds in 
achieving a competitive ratio of O(√B).  
  

Theorem 1.2.1 tells us that no deterministic algorithm 
can effectively compete with an oblivious adversary in the 
worst case, if the number of bids is not known in advance. 
Indeed, although the proof used a sequence that consisted of 
either one bid or two, the proof can easily be extended to any 
sequence that is either of length n or n + 1. This bleak 
outlook for deterministic algorithms is not improved much 
by knowing the number of bids to expect, however, as shown 
in Theorem 1.2.2.  

 
 
 

Furthermore we show that even randomization does 
not help us too much. We can use Yao’s principle [15] to show 
that no randomized algorithm can be more competitive 
against an oblivious adversary than Price and Pack.  

 

1.3  EXPERIMENTAL RESULTS 
 

In order to give an idea of the efficacy of Price And 
Pack we present the results of simulated auctions which use 
this algorithm.  

 
The input sequences were generated by selecting each 

bid from a given probability distribution.  The three 
distributions used were:  Normal, Poisson and Uniform.  
Both the number of items being bid on and the price 
density offered by the bid were chosen from the same 
distribution.  

 
We chose three different combinations of n and B and 

generated 100 input sequences for each combination. To get a 
good approximation to the average benefit of Price And Pack 
we ran the algorithm 1000 times on each instance and 
averaged the benefit over all these runs.  

 
We determined a lower bound on the amount of revenue 

obtained by our algorithm compared to the maximum 
possible revenue.  To do this we implemented an offline 
algorithm which has been shown to be a 2 approximation 
[7]. By dividing the revenue obtained by Price And Pack by 2 
times the revenue obtained by the offline algorithm we were 
able to provide a number which is effectively a lower bound on 
the actual ratio.  

 
The numbers in Table 1.1 show that in practice Price 

And Pack performs quite well compared to the optimal 
offline algorithm and significantly better than the bound of 
O(log B) would suggest. We see that in the two distributions 
which tend to cluster sample points near the mean, i.e. Normal 
and Poisson, the algorithm does especially well. However 
these distributions provide fairly regular input instances.  
The real power of Price And Pack is on view when the input 
instances have widely varying bids.  
 

 
(n, B) 

 

Distribution 

 

 
Expected ratio 

(1/ log B) 

 
Ratio 

 

(50,1024) 

Uniform 

0.1 

0.31 

Normal 0.69 

Poisson 0.61 

(2000,1024) 

Uniform 

0.1 

0.34 
Normal 0.62 

Poisson 0.7 

(2000,2048) Uniform 0.09 0.34 








