

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2907

MULTIPLE-ITEM B-BOUNDED ONLINE AUCTIONING

Harish Kumar Singh1 Dr.Rajesh Singh2

1M.Tech Scholor ,Dept. of CSE, B. S. A. College of Engg. & Tech., Mathura

2A.P.,Dept. of CSE B. S. A. College of Engg. & Tech., Mathura
1harishsingh200785@gmail.com ,2rajesh.singh@bsacet.org

……………………………………………………………….......................*****..

ABSTRACT - Given the interactive nature of Internet
auctioning today, we feel it most appropriate to study
auctioning strategies from an online algorithms perspective.
That is, algorithms must make immediate decisions based on
existing, incomplete information, and are not allowed to
delay responses to wait for future offers. This has the
additional advantage of obviating the requirement for a
closing time which leads to various inefficiencies. Moreover,
given that existing auctioning web sites must implement what
are essentially algorithmic rules for accepting or rejecting
bids, in this paper we focus on algorithmic strategies for sellers.
Even so, we restrict our study to strategies that are honest and
fair to buyers.

Key Words: Offline Auctions, Online Auctions, Lower
bound, Price and Pack, Optimal offline algorithm.

INTRODUCTION

Auctions are among the oldest forms of economic activity
known to mankind. Of late there has been a renewed
interest in auctioning as the Internet has provided a forum
for economic interaction on an unprecedented scale. A number
of web sites have been created for supporting various kinds
of auctioning mechanisms. For example, at
www.priceline.com, users present bids on commodity items
without knowledge of prior bids, and the presented bids
must be immediately accepted or rejected by the seller.
Alternately, web sites such as www.ebay.com and
www.ubid.com allow bidding on small lots of non-commodity
items, with deadlines and exposure of existing bids. The rules
for bidding vary considerably, in fact, even in how equal bids
for multiple lots are resolved. Interestingly, it is a simple
exercise to construct bidding sequences that result in
suboptimal profits for the seller. For example, existing rules
at www.ubid.com allow a $100 bid on 10 of 14 items to beat
out two $70 bids on 7 items each. Thus, we feel there could be
considerable interest in algorithmic strategies that allow
sellers to maximize their profits without compromising
fairness.

EXISTING TECHNIQUES AND WORK

Offline scenarios for auctioning, where all bids are
collected at one time, such as in sealed bid auctions, have
been studied and understood in terms of knapsack problems,
for which the algorithms community has produced
considerable previous work [12, 8, 9].

The general area of online algorithms [5] studies

combinatorial optimization problems where the problem
instance is presented interactively over time but decisions
regarding the solution must be made immediately. Even
though such algorithms can never know the full problem
instance until the end of the sequence of updates, it might not
even know when the sequence has ended, online algorithms
are typically compared to optimal offline algorithms. We say
that an online algorithm is c-competitive with respect to an
optimal offline algorithm if the solution determined by the
online algorithm differs from that of the offline algorithm by
at most a factor of c in all cases. The goal, therefore, in online
algorithm design is to design algorithms that are c-
competitive for small values of c. Often, as will be the case
in this chapter, we can prove worst-case lower bounds on
the competitive ratio, c, achievable by an online algorithm.
Such proofs typically imply an adversary who constructs
input sequences that lead online algorithms to make bad
choices. In this paper, we restrict our attention to oblivious
adversaries, who can have knowledge of the online algorithm
we are using, but cannot have access to any random bits that it
may use.

In work that is somewhat related to online

auctioning, Awerbuch, Azar and Plotkin [3] study online
bandwidth allocation for throughput competitive routing
in networks. Their approach can be viewed as a kind of
bidding strategy for bandwidth. Leonardi and Marchetti
Spaccamela [9] generalize the result of Awerbuch et al.

Work for online call control [1, 13, 9] is also related to the

problems we consider. In online call control, bandwidth
demands made by phone calls must be immediately accepted
or rejected based on their utility and on existing phone line
usage. In fact, our work uses an adaptation of an
algorithmic design pattern developed by Awerbuch et al.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2908

[4] and Lipton [10], which Awerbuch et al. call “classify-and-
select.” In applying this pattern to an online problem, one
must find a way to partition the optimization space into q
classes such that, for each class, one can construct a c-
competitive algorithm (all using the same value of c).
Combining all of these individual algorithms gives an online
algorithm with a competitive ratio that is O(cq). Ideally, the
individual c-competitive algorithms should be parameterized
versions of the same algorithm, and the values c and q
should be as small as possible. Indeed, the classify-and-
select pattern is best applied to problems that can be shown
to require competitive ratios that are Ω(cq) in the worst case
against an oblivious adversary.

OUR WORK

1.1 MULTIPLE-ITEM B-BOUNDED
ONLINE AUCTIONING

In this section we introduce the multiple-item B-
bounded online auctioning problem. We have n instances of
the item on sale and the bids which come in for them offer
varying benefit per item. Each bid can request any number
of items and offer a given benefit for them. The objective
is to maximize the profit that can be earned from the
sequence of bids with the additional requirement that the
seller accept or reject any given bid before considering any
future bids, if they exist.

The price density of a bid is defined as the ratio of the

benefit offered by the bid to the number of instances of the
item that the bid wants to buy. In other words the price
density is the average price per item the bidder is willing to
pay. The range of possible price densities that can be offered is
between 1 and B, inclusively. This restriction is made
without loss of generality in any scheme for single-item
bidding that has bounded bid magnitude, as we can
alternately think of B as the ratio of the highest and
lowest bids that can possibly be made on this item. A
sequence of bids need not contain the two extreme values, 1
and B, and any bid after the first need not be larger than or
equal to the previous bid.

We assume that the algorithm knows the value of B.

We discuss at the end of this section how this assumption can
be dispensed with. For this problem we propose an algorithm
that uses an adaption of a random choice strategy of
Awerbuch and Azar [2] together with the “classify and
select” technique of [4], where we break the range of possible
optimization values into groups of ranges and select sets of
bids which are good in a probabilistic sense based on these
ranges. Our algorithm is described in Figure 1.1.

Algorithm Price And Pack

• Select i uniformly at random from the integers 0 to
log B − 1.

• If i is 0 then set pdr = 1 else set pdr = 2i−1 .

• Define a bid as legitimate if it has a price density
of at least pdr

- Toss a fair coin with two outcomes before
any bid comes in.

- If the coin has landed heads then wait for a
legitimate bid on more than n/2 items to come
in rejecting all smaller bids and all illegitimate
bids.

- Else keep accepting legitimate bids
till there is capacity to satisfy them.
Reject all illegitimate bids.

Figure 1.1: Auctioning multiple items with bids of
varying benefit.

Theorem 2.2.1 Price And Pack is an O(log B) competitive
algorithm for the multiple item B-bounded online auctioning
problem.

Proof. Let the optimal offline algorithm OPT achieve profit
density p on a given input sequence I. So if the optimal

algorithm sells n′ ≤ n items, its total profit is n′p. Let j be the

largest integer such that 2j ≤ 4p/5. Define α = 2j/p. We say

that Price and Pack chooses i correctly, if the chosen value of i
equals j. It is easy to see that i is chosen correctly with
probability 1/ log B. In that event, bids of price density
greater than pα are legitimate while the rest are not. Note
that α (2/5, 4/5].

Let Ip be a subset of I, comprising all bids in I which
have price density greater than pα.

Lemma 2.2.2 The sum of the revenues obtained by the
optimal algorithm running on Ip is no less than n′p(1 − α)
where p is the profit density of OPT on I and n′ is the
number of items it sells.

Proof: Suppose that OPT sells some nlt ≤ n′ instances to bids
in I − Ip, and let revge be the revenue earned by OPT from
items which were sold to bids in Ip. Clearly,

revge + nlt .pα ≥ n′p

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2909

this gives us

revge ≥ n′p − nlt .pα

and since nlt ≤ n′ we get

revge ≥ n′p(1 − α)

Since revge is the revenue obtained from a subset of

the bids in Ip, the result follows.

We consider the following three cases, and show that

in each case the expected revenue ofPrice And Pack is at least
np /10 log B .

Case 1: There is a bid of size greater than n/2 in Ip.

With probability at least 1/logB, Price And Pack
chooses i correctly. With probability 1/2 Price And Pack
chooses to wait for a bid of size greater than size n/2.Thus,
with probability at least 1/2 log B Price And Pack will
accept a bid of size at least n/2 and price density at least
αp.So in this case the expected revenue of Price And Pack is at
least npα /4 log B. Since the revenue earned by OPT is np, and α
> 2/5, in this case Price And Pack is 10 log B competitive with
OPT.

Case 2: There is no bid of size greater than n/2 in Ip, and
the total number of items demanded by the bids in Ip is more
than n/2.

With probability 1/2 Price And Pack will choose to

accept bids of any size. If it also chooses i correctly (the
probability of which is 1/ log B), it will sell at least n/2
instances, and earn a revenue of at least pα units for every
item sold. Thus, with probability 1/2 log B, Price And Pack
sells at least n/2 instances to bids whose price densities are no
smaller than pα. This means that, in this case, the expected
revenue of Price And Pack is at least npα /4 log B> np /10 log
B, which makes it 10 log B competitive with OPT.

Case 3: There is no bid of size greater than n/2 in Ip, and
taken together the bids in Ip demand no more than n/2
instances.

Again, with probability ½ Price And Pack decides to
accept all bids, and with probability 1/ log B, i is chosen
correctly. Thus, with probability 1/2 log B our algorithm
accepts all bids in Ip, and, by Lemma 2.2.2, earns a revenue
no smaller than n′p(1 − α) where n′ is the number of
items sold by n′p(1 − α) /2 log B≥ n′p /10 log B , which
makes it 10 log B competitive with OPT in this case.

An important thing to note is that here the algorithm
has to know the range of the input i.e. the algorithm has to be

aware of the value of B. It is possible to dispense with this
assumption to get a slightly weaker result following [4]. In
other words, it is possible to give an O((log B)1+ϵ)
competitive algorithm, for any ϵ > 0, which does not know
the value of B beforehand. We do not detail it here because
it does not provide any further insight into the problem of
auctioning. In the next section we give lower bounds which will
show that Price And Pack gives the best possible competitive
ratio for the this problem.

1.2 LOWER BOUNDS FOR THE ONLINE
AUCTIONING PROBLEM

We consider the version of the online auctioning
problem in which there is only one item to be auctioned and
the range of possible prices that can be offered for this item is
between 1 and B, inclusively. We call this the single item B-
bounded online auctioning problem. We give lower
bounds for this problem. Upper bounds for this problem
are given in [5]. It is easy to see that a lower bound on any
algorithm for the single-item problem is a lower bound for
the multiple-item problem as well.

 If Price And Pack accepts all bids in Ip, it sells at

least n/2 instances. If it rejects any bid in Ip, it must not
have enough capacity left to satisfy it. But then at least n/2
instances must have been sold, since any bid in Ip in
particular the rejected bid is of size no more than n/2.

In this section we first prove that no deterministic

algorithm can in the worst case have a competitive ratio
better than the maximum for the single-item problem. More
precisely, we show that every deterministic algorithm must
have a worst-case competitive ratio that is Ω(B). This
lower bound is based on the fact that a seller does not know
in advance how many bids will be offered. Even so, we also
show that even if the seller knows in advance the number of
bids in the input sequence, any deterministic algorithm is
limited to a competitive ratio that is Ω(√B) in the worst case.

Theorem 1.2.1 Any deterministic algorithm for the
single-item B-bounded auctioning problem has a
competitive ratio that is Ω(B) in the worst case.

Proof: For a given deterministic algorithm A we
construct an adversarial input sequence IA in the
following way: Let the first bid in IA be of benefit 1. If A
accepts this bid, then IA is the sequence {1, B}. In this
case, on the sequence IA, the deterministic algorithm A gets
a benefit of 1 unit while the offline optimal algorithm would
pick up the second bid thereby earning a benefit of B units. If
A does not accept this first bid, then IA is simply the
sequence {1}. In this case A earns 0 units of revenue while
the optimal offline algorithm would accept the bid of benefit
1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2910

Of course, B is the worst competitive ratio that is
possible for this problem, so this theorem implies a rather
harsh constraint on deterministic algorithms. Admittedly, the
above proof used the fact, perhaps unfairly, that the seller does
not know in advance the number of bids that will be received.
Nevertheless, as we show in the following theorem, even if
the number of bids is known in advance, one cannot perform
much better.

Theorem 1.2.2 Any deterministic algorithm for the
single-item B-bounded online auctioning problem, where the
number of bids is known in advance, has a competitive ratio
that is Ω(√B) in the worst case.

Proof: Consider the input sequence Ibase = {1, 2, 4, . . .2i . . . B/2,
B}. For any deterministic algorithm A we construct our
adversarial sequence IA based on what A does with Ibase.

We recall here that since we are considering the single-
item problem, any deterministic algorithm essentially picks
at most one of the bids in the input sequence.

Suppose A accepts some bid 2i ≤ √B. Then we

choose IA to be the same as Ibase . In this case A’s benefit is
less than √B, whereas an optimal offline algorithm would
earn B units thereby making A an Ω(√B) competitive
algorithm.

If A accepts some bid 2i > √B, on the other hand, then we

choose IA to be {1, 2, 4, . . . 2i−1, 1, 1, . . . }, i.e., we stop

increasing the sequence just before A accepts and then pad the

rest of the sequence with bids of benefit 1. 3 This way A can

get no more than 1 unit of benefit while the optimal offline

algorithm gets 2i−1 which we know is at least √B.

If A accepts none of the bids in Ibase then it is not a
competitive algorithm at all (i.e. it earns 0 revenue while the
optimal offline algorithm earns B units) and so we need not
worry about it at all.

It is easy to see that the deterministic algorithm that either
picks up a bid of benefit at least √B or, if it does not find such
a bid, picks up the last bid, whatever it may be, succeeds in
achieving a competitive ratio of O(√B).

Theorem 1.2.1 tells us that no deterministic algorithm
can effectively compete with an oblivious adversary in the
worst case, if the number of bids is not known in advance.
Indeed, although the proof used a sequence that consisted of
either one bid or two, the proof can easily be extended to any
sequence that is either of length n or n + 1. This bleak
outlook for deterministic algorithms is not improved much
by knowing the number of bids to expect, however, as shown
in Theorem 1.2.2.

Furthermore we show that even randomization does
not help us too much. We can use Yao’s principle [15] to show
that no randomized algorithm can be more competitive
against an oblivious adversary than Price and Pack.

1.3 EXPERIMENTAL RESULTS

In order to give an idea of the efficacy of Price And
Pack we present the results of simulated auctions which use
this algorithm.

The input sequences were generated by selecting each

bid from a given probability distribution. The three
distributions used were: Normal, Poisson and Uniform.
Both the number of items being bid on and the price
density offered by the bid were chosen from the same
distribution.

We chose three different combinations of n and B and

generated 100 input sequences for each combination. To get a
good approximation to the average benefit of Price And Pack
we ran the algorithm 1000 times on each instance and
averaged the benefit over all these runs.

We determined a lower bound on the amount of revenue

obtained by our algorithm compared to the maximum
possible revenue. To do this we implemented an offline
algorithm which has been shown to be a 2 approximation
[7]. By dividing the revenue obtained by Price And Pack by 2
times the revenue obtained by the offline algorithm we were
able to provide a number which is effectively a lower bound on
the actual ratio.

The numbers in Table 1.1 show that in practice Price

And Pack performs quite well compared to the optimal
offline algorithm and significantly better than the bound of
O(log B) would suggest. We see that in the two distributions
which tend to cluster sample points near the mean, i.e. Normal
and Poisson, the algorithm does especially well. However
these distributions provide fairly regular input instances.
The real power of Price And Pack is on view when the input
instances have widely varying bids.

(n, B)

Distribution

Expected ratio

(1/ log B)

Ratio

(50,1024)

Uniform

0.1

0.31

Normal 0.69

Poisson 0.61

(2000,1024)

Uniform

0.1

0.34
Normal 0.62

Poisson 0.7

(2000,2048) Uniform 0.09 0.34

