
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 448

Component Based Software Engineering

Sharanjit Singh1, Amardeep Singh2, Samson3, Sandeep Singh4

1Professor, Department of Computer Science, GNDU Regional Campus Gurdaspur, Punjab, India
2Professor, Department of Computer Science, GNDU Regional Campus Gurdaspur, Punjab, India

3Student (M.TECH), Department of Computer Science, GNDU Regional Campus Gurdaspur, Punjab, India
4Professor, Department of Computer Science, GNDU Regional Campus Gurdaspur, Punjab, India

--- ----------

Abstract—Component Based Software Engineering is an

approach in which software system is developed through
assembly of components. Development of parts as reusable
entities is desired. In this paper we have discussed about the
component based software life cycle. CBSE technology risks
are discussed and model of RAM process which is used to
control the risks is described. Embedded system
implementation using component based approach is also
discussed.

Keywords —COTS, Components, ASL, Interfaces, RAM.

I. INTRODUCTION
Modern software systems become more and more

large-scale, complex and uneasily controlled, resulting in
high development cost, low productivity, unmanageable
software quality and high risk to move to new technology.
Therefore, there is a growing demand of searching for a
new, efficient and cost-effective software development
paradigm. One of the most promising solutions today is
the component-based software engineering approach.
This approach is based on the idea that software systems
can be developed by selecting appropriate off-the-shelf
components and then assembling them with a well-
defined software architecture. Over the last few years, we
have seen the focus of software development shift from
the generation of individual programs to the assembly of
large number of components into systems or families of
systems. The two central themes that emerged from this
shift are components, the basic system building blocks,
and architectures, the descriptions of how components
are assembled into systems. There is the use of
commercial-off-the- shelf (COTS) products as system
components. COTS means to refer to things that one can
buy, ready-made off some manufacturer’s virtual store
shelf e.g. through a catalogue. It carries with it a sense of
getting, at a reasonable cost, something that already does
the job. It replaces the difficulties of developing one’s own
unique.

These commercial off-the shelf(COTS) components can be
developed by different developers using different
languages and different platforms. This can be shown in
Figure 1, where COTS components can be checked out

from a component repository, and assembled into a target
software system[5].

Fig. 1. Component based software development

Component-based software engineering becomes a new
approach in software development. The idea behind the
component-based approach is designing the desired
system in terms of components. The advantage of the
component-based approach is providing the reusability of
these components. Moreover, if the component is the
logical unit of work, maintenance, testing and updating
systems using these components will be easy and fast.
With component-based software engineering (CBSE), it
may be argued that software development risk is reduced,
as one is reusing existing tried-and-tested software rather
than software developed from scratch.

II. PROBLEM
The development of software systems from existing

components continues to hold the attention of the
software engineering community. Problem is to select
those components so to reduce cost and development
time, while increasing the quality of systems. Component
Based Software Engineering or CBSE represents a new
development paradigm: assembling software systems
from components. Reuse of components should be
increased.

III. RELATED WORK
Jim Q. Ning, 1997, has discussed the technology

infrastructure necessary to support CBSE. Component-
based Architecture Specification Language called ASL is
also described in this paper. Interfaces and specification of
components is also discussed. Ivica Crnkovic, 2003, has
discussed established methodologies and tool support
covering the entire component and system lifecycle
including technological, organisational, marketing, legal,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 449

and other aspects. Advantages of cbse is also discussed in
this paper. Xia Cai, Michael R. Lyu, Kam-Fai Wong Roy KO
2000, discussed the current component-based software
technologies, describe their advantages and
disadvantages, and discuss the features they inherit.
Researchers also address QA issues for component-based
software. As a major contribution, they propose a QA
model for component-based software development, which
covers component requirement analysis, component
development, component certification, component
customization, and system architecture design,
integration, testing, and maintenance. W. Lam, A.J. Vickers
1997, discusses the risks associated with the adoption of
CBSE technology. A model of the risk analysis and
management (RAM) process for CBSE technology is
proposed as a means of controlling risks. Five CBSE
technology risk areas are identified – domain
inadequacies, shortfalls in reuse components, shortfalls in
the architecture, deficiencies in the CBSE infrastructure
and educational issues - and examined. A number of risk
management techniques are proposed. Mohammed A.
Abdallah 2008, discusses the use of CBSE in embedded
systems. This paper considers the basic overview of
component-based model and general issues about
embedded systems. The core issue is providing an
example showing that how useful to implement an
embedded system using the component-based software
engineering.

IV. DETAIL DESCRIPTION

Component based software engineering is a approach
which mainly depends on building systems from the
existing components and, providing support for the
development of systems as assemblies of components.

A. Basic Principles of the Component-based Software

Engineering
1) Reusability: It means that the same component
can be used in many systems. The desire to reuse a
component leads to some technical constraints such
as: good documentation should be available to be
able to reuse a component as well as a well-
organized reuse process and the similar architecture
of the components should be provided to ensure the
consistency and the efficiency of the system.

2) Substitutability: The overall system should work
in spite of which component is used. There are some
limitations in this area such as: the runtime
replacement of the components.

3) Extensibility: Extensibility can take one of two
shapes either extending components that are part of
a system or increase the functionality of individual
components. But there are technical challenges such
as: design-time.

B. Characteristics of the Component-Based Software
Engineering
Component-based software development is a new

way for more flexibility of software generation,
composition and integration. The main characteristics of
the components are -

 components general do something useful,
 a small related set of functions or services,
 real OO programs are component based,
 classes are not components,
 components are composable,
 frameworks often define component families.

C. Architecture Specification Language.

ASL stands for Architecture Specification Language.
Its key features are interfaces, components, bindings, and
configurations.

1) Component Interfaces: Component is a functional
unit of system and its functionality is defined by its
interfaces[1]. A component has one or more provided
and required interfaces. Provided interfaces specify
those services or capabilities that a component offers
to other components. Conversely, the required
interfaces specify those services that a component
must receive from other components in order to
carry out its own responsibilities. A component with
required interfaces does not have to be “hard-wired”
to specific server components and can therefore be
manufactured and distributed for reuse
independently. ASL supports features such as
operations, attributes, exceptions, multiple
inheritance and name spaces. Interface also has
additional semantic-oriented features such as pre-
and post conditions, invariants, and states. States are
used to specify the legal sequences of operation
invocations on the interface, i.e., they specify the
protocol of the interface.

2) Components and Bindings: A component can be
either primitive or composite. A composite
component contains other components as its sub-
components, which are themselves atomic or
composite. Components are connected together to
form composite components. A connection is realized
by binding a required interface of one component
with a provided interface of another component.

 Configurations–Configuration specifications
provide the information necessary to
integrate heterogeneous component
instances into an executable distributed
system. Configurations address the issue that
component implementations have
dependencies on their development such as
programming languages, object model, etc.
and on execution environments such as
platforms, middleware, etc. These
dependencies are called the component

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 450

configuration properties. Default values are
assumed for essential properties that are not
specified. Multiple configurations may be
specified for a single component and used in
system assembly.

D) Component-Based System Development Lifecycle

CBSE covers both component development and
system development with components. Components are
built to be used and reused in many applications. A
component must be well specified, easy to understand,
sufficiently general, easy to adapt, easy to deliver and
deploy and easy to replace. The component interface must
be as simple as possible and strictly separated both
physically and logically from its implementation.
Development with components is focused on the
identification of reusable entities and relations between
them, starting from the system requirements. The early
design process includes two essential steps Firstly,
specification of a system architecture in terms of
functional components and their interaction, this giving a
logical view of the systems and secondly, specification of a
system architecture consisting of physical components.
The different steps in the component-based system
development process are:

1) To find components which may be used in the
system. Components are listed for further
investigation. To perform this procedure
successfully, a vast number of possible candidates
must be available as well as tools for finding them.
This is an issue not only of technology, but also of
business.

2) Select the components which meet the
requirements of the system. Often the requirements
cannot be fulfilled completely, and a trade-off
analysis is needed to adjust the system architecture
and to reformulate the requirements to make it
possible to use the existing components.

3) Alternatively, create a proprietary component to be
used in the system. This procedure is less attractive as
it requires more efforts and lead-time. However, the
components that include core functionality of the
product are likely to be developed internally as they
should provide the competitive advantage of the
product.

4) Adapt the selected components so that they suit the
existing component model or requirement
specification. Some components would be possible to
directly integrated in to the system, some would be
modified through parameterization process, some
would need wrapping code for adaptation, etc.

5) Compose and deploy the components using a
framework for components. Typically component
models would provide that functionality.

6) Replace earlier with later versions of components.

This corresponds with system maintenance. Bugs may
have been eliminated or new functionality added.

The component-based development (CBD) model

incorporates many of the characteristics of the spiral
model. It is evolutionary in nature, demanding an iterative
approach to the creation of software. It composes
applications from pre-packaged software components.
The engineering activity begins with the identification of
candidate components by examining the data to be
manipulated by application. Components created for the
previous software engineering projects are stored in the
library or repository. Once components are identified, the
repository is searched to determine if these components
already exists. If they exist, they are extracted from the
repository and reused. If the component does not exist, it
is engineered. The first iteration of the application to be
built is then composed, using components extracted from
the repository and any new components built to meet the
unique needs of the application. Process flow then returns
to the spiral and will ultimately re-enter the component
assembly iteration during subsequent passes through the
engineering activity.

Fig. 2: Component-Based Development

The development cycle for a component-based

system is different from those of the traditional systems,
such as the waterfall, iterative, spiral and prototype
models [2]. Obviously, the development with components
differs from traditional development (Larsson, 2000).

Fig. 3: Component Development Cycle versus Waterfall
Model (Larsson, 2000).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 451

Determining requirements and designing in the
waterfall process correspond to the finding and selection
of components in component-based system.
Implementation, test and release phases of waterfall
model correspond to create, adapt, deploy and replace
process of component-based system[2].

E) Component infrastructure technologies

The infrastructure of components (sometimes called a
component model) acts as the “plumbing” that’ allows
communication among components. Among the
component infrastructure technologies that have been
developed, some have become somewhat standardized:
OMGs CORBA, Microsoft‘s Component Object Model
(COM) and Distributed COM (DCOM).

1) Common Object Request Broker
Architecture(CORBA)- CORBA is an open standard for
application interoperability that is defined and
supported by the Object Management Group (OMG),
an organization of over 400 software vendor and
object technology user companies. Simply stated,
CORBA manages details of component
interoperability, and allows applications to
communicate with one another despite of different
locations and designers. The interface is the only way
that applications or components communicate with
each other. The most important part of a CORBA
system is the Object Request Broker (ORB). The ORB
is the middleware that establishes the client-server
relationships between components. Using an ORB, a
client can invoke a method on a server object, whose
location is completely transparent. The ORB is
responsible for intercepting a call and finding an
object that can implement the request, pass its
parameters, invoke its method, and return the
results. The client does not need to know where the
object is located, its programming language, its
operating system, or any other system aspects that
are not related to the interface. In this way, the ORB
provides interoperability among applications on
different machines in heterogeneous distributed
environments and seamlessly interconnects multiple
object systems. CORBA is widely used in Object-
Oriented distributed systems including component-
based software systems because it offers a consistent
distributed programming and run-time environment
over common programming languages, operating
systems, and distributed networks.[5]

2) Component Object Model (COM) and Distributed
COM (DCOM) Introduced in 1993, Component Object
Model (COM) is a general architecture for component
software. It provides platform-dependent, based on
Windows and Windows NT, and language-
independent component based applications. COM
defines how components and their clients interact.

This interaction is defined such that the client and
the component can connect without the need of any
intermediate system component. Specially, COM
provides a binary standard that components and
their clients must follow to ensure dynamic
interoperability. This enables on-line software
update and cross-language software reuse As an
extension of the Component Object Model (COM),
Distributed COM (DCOM), is a protocol that enables
software components to communicate directly over a
network in a reliable, secure, and efficient manner.
DCOM is designed for use across multiple network
transports, including Internet protocols such as
HTTP. When a client and its component reside on
different machines, DCOM simply replaces the local
interprocess communication with a network
protocol. Neither the client nor the component is
aware the changes of the physical connections.

F) Risks in CBSE technology
 Software development is an inherently risky

process. For the customer, there is no absolute guarantee
that procured software will: a) be delivered on-time and
within budget, b) fulfill all its requirements and c)
perform without fault. In the following, the risks in each
risk area are described in greater detail[4]

1) Domain Inadequacies - The reuse research
community is currently showing great interest in the
notion of domain-specific reuse.

 Domain not properly scoped -The
boundaries of the domain are not explicitly and
clearly defined. Its consequence is that not all the
components are identified.
 Domain lacks stability- Applications in
the domain differ significantly ; there is only a
slight similarity between applications.
 Weak domain history – The organization
has little experience of developing applications in
the domain.
 Insufficient economic justification- Few
applications are developed in the domain to cover
the up-front costs of developing reusable
components.

2) Shortfalls in the components - There are broadly
two kinds of components: those which are developed
'in-house' by the organization to serve a specific
purpose (often as a result of domain analysis), and
more general purpose components, such as
databases and OLE (Object linking and embedding)
applications that are typically developed by others.

 Inefficient implementation- The
components leads to an inefficient
implementation in code. This may be because in
an attempt to make a component generic, the
component need to process additional
parameters or include large conditional CASE
statements.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 452

 Not trusted- Application developers do
not trust the components. This may be through
“bad press” via the organizations grapevine or
just the result of a “not developed here”
syndrome.

3) Shortfalls in the Architecture- Garlan highlighted
the problem of 'architectural mismatch' when
attempting to integrate large components which
themselves are stand-alone applications in their own
right. Clearly, components developed in isolation
from each another are unlikely to work together
without an agreed management and communication
protocol.

 Not open enough – It is difficult to update
or extend the architecture with extra functionality
without affecting the existing components.
 Inflexible – The architecture is difficult to
adapt a for particular circumstances for use on a
variety on different processor configurations.

4) Deficiencies in the CBSE Infra-structure- Successful
technology transfer relies on having an
infrastructure within the organization for refining
new technology for full production use. Deficiencies
in the infrastructure are likely to impede the
technology transfer process.

 Lack of defined procedures- Application
developers do not have adequate guidance in the
access, selection, customization or general use of
components.
 CBSE technology not properly prepared-
CBSE components, methods, tools , training and
documentation have not reached an acceptable
level of quality for use on real projects.
 Conflict with existing methods- CBSE
technology does not integrate with existing
methods or tools used within the organization.

5) Educational Issues- Educational issues are often at
the centre of cultural issues - one tends to
encourages culture shifts through re-education.

 Lack of managerial commitment –
management fails to see the benefits of CBSE
technology to the business and is unwilling or
enable to support the development of CBSE
technology.
 Technology not understood- The
technology and its potential benefit is not
understood by its key individuals within the
organization.

G) Risks Analysis And Management In CBSE
Gilb’s risk principle states: “If you don’t activity

attack the risks, they will actively attack you“. Risk
Analysis and Management (RAM) is a structured process
for controlling risks. During risk analysis, one is
concerned with a) the identification of risks b) the
estimation of risks (often in terms of a measure of

severity), and c) the evaluation of risks. Risk management
involves making decisions about the risks after they have
been analyzed – one is concerned here with the selection
and implementation of risk management techniques, and
the monitoring of their effectiveness during the project.

1) RAM Process: The RAM process can be described
as follows[4]:
 Identify risk areas: From experience, the
CBSE technology developer identifies and records
the main areas of risk in the use of CBSE
technology, so that other CBSE technology
developers and CBSE technology users are aware
of the pitfalls.
 Estimate risk severity: The CBSE
technology developer assesses the severity of a
risk, so that risks of a high severity can be given
special priority.
 Define possible risk management
techniques: Risk areas are related to possible risk
management techniques for dealing with specific
risks in the risk area.
 Select appropriate risk management
techniques: The CBSE technology user recognizes
the main risk areas in his/her own project, and
selects the most appropriate risk management
techniques for handling the risks.
 lmplement the risk management
techniques: The risk management techniques are
built into the project plan or ‘put into action’
during the project.
 Monitor effectiveness: The CBSE
technology user keeps a vigil over the risks in the
project, and monitors how well the implemented
risk management techniques are controlling the
risks.
 Add or update risk knowledge: The
organization learns from its experience by
identifying new risk areas and /or developing
new risk management techniques.

2) Advantages
The component-based approach has some

advantages over the traditional programming.
 Advantages from the business point of view in

terms of shorter time-to-market, lower
development and maintenance costs.

 Advantages from technical and engineering point
of view which can be increased understandability
of complex systems and increased the reusability,
interoperability, flexibility, adaptability,
dependability.

 They have advantages from strategic point of
view of a society such as increasing software
market, generation of new companies.

3) Disadvantages
 Time and effort required for development of’

components- Among the factors which . can

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 453

discourage the development of reusable
components is the increased time and effort
required, the building of a reusable unit requires
three to five times the effort required to develop a
unit for one specific purpose.

 Unclear and ambiguous requirements. In general,
requirements management is an important part
of the development process, its main objective
being to define consistent and complete
component requirements. Reusable components
are, by definition, to be used in different
applications, some of which may yet be unknown
and the requirements of which cannot be
predicted.

 Conflict between usability and reusability. To be
widely reusable, a component must be sufficiently
general, scalable and adaptable and therefore
more complex (and thus more complicated to
use), and more demanding of computing
resources (and thus more expensive to use).

 Component maintenance costs. While application
maintenance costs can decrease, component
maintenance costs can be very high since the
component must respond to the different
requirements of different applications running in
different environments, with different reliability
requirements and perhaps requiring a different
level of maintenance support.

 Reliability and sensitivity to changes. As
components and applications have separate
lifecycles and different kinds of requirements,
there is some risk that a Component will not
completely satisfy the application requirements
or that it may include concealed characteristics
not known to application developers.[2]

H. Case study

In this section, a research system is introduced with
implementing it via the component-based approach. A
general overview on this system is introduced to know the
purpose of this system and where it can be useful. This
system depends on the system - on-a-chip design
technology. Systems-on-a-chip design technology provide
the computational power to eliminate the need of a
computer and interfaces by providing integrated design of
processors, on chip memory, and peripheral controllers.
State of the art advances in integrated circuit technology,
especially in the programmable logic devices, initiated the
era of Systems-on-Programmable-Chips. Field
Programmable Gate Arrays (FPGA) are modern, complex
programmable logic devices (chips) that are
manufactured with a high density of configurable
blocks.[3]

1) The Purpose of the System: This system is
considered as a data acquisition system. It can
capture analog signals from an environment such as

industrial or medical environments without using a
PC. Then these analog signals are converted into
digital form and then go to some processing such as
filtering or amplification. In addition to the capability
of plotting these original signals in a Liquid Crystal
Module (LCM) for monitoring or testing. This system
is designed using the latest advances in FPGA chip
design. It eliminates the need of a personal computer
and the cumbersome and expensive data acquisition
systems currently in use in the field. As shown in this
figure, the FPGA board is able to capture the signals
and then all signal analysis and processing are take
place inside the FPGA. Finally, the original signals can
be plotted into this LCM.

2) Implementation of the System using Traditional
Programming Figure 4 shows how the desired
system is implemented via the traditional
programming. The language that is used to
implement this system is the Verilog. The IDE that
used is the Altera Quartus II. The whole code is
written in the single module.

 Fig.4. Implementation of the System using
Traditional Programming

3) Component-based implementation: Without
component based implementation, there are many
functions listed in the same block and all these blocks
were written in the same module. So, this single
module is the only responsible of the total task of the
system. If any error is occurs, the designer cannot
know easily where the location of the error because
the whole module is not working although there is
one error in a specific part in this module which is
faulty. So, if we can collect the functions that do a
single kind task in single module, it will be easier to
detect the location of the error knowing the nature of
it. These collected functions can be done in a
component. So, a single component is responsible for
a single task and then it is necessary to integrate
these components together via interfaces to build the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 454

total system. This idea can be supported in Altera
Quartus II using Verilog language. This language
deals with modules so, each component is considered
as module do a specified task. It is needed to design a
top level module that will integrate or woven these
components together to achieve the total system
requirements in efficient way. Figure 3 illustrates
how the traditional programming can be handled in
more efficient way if it deals with components. Each
block now is corresponding to a single component
which in turn is mapped to a single module.

Fig.5.Component-based implementation

V. CONCLUSION

Component based software engineering is a approach
of developing software systems by selecting off-shelf
components and then assemble the components with well
defined software architecture. This approach is used to
deploy the reusability in the software engineering and to
assure the quality for software development. Model of
RAM process is a structured approach which is used for
controlling risks involved in the system.

VI. FUTURE SCOPE

CBSE can be widely used by non-programmers for
building their applications for which tools can be
developed by component assembly. Automatic component
update over the Internet, will be a standard means of
application improvement. Quality Assurance model can be
applied to real world projects so that it can actually guide

the practices of component based software development.
Standardization of domain-specific components on the
interface level will make it possible to build applications
and system from components purchased from different
vendors.

REFERENCES

[1] Jim Q. Ning, ”Component-Based Software Engineering

(CBSE)”, IEEE 1997.
[2] Ivica Crnkovic, ”Component-based Software

Engineering - New Challenges in Software
Development” , 2nd Int. Conf. information
Technology lnterfaces ITI/ 2003, June 16-1 9, 2003,
Cavtat, Croatia.

[3] Mohammed A. Abdallah” Implementing the
Component-based Software Engineering in
Embedded Systems” IEEE 2008

[4] W. Lam, A.J. Vickers “Managing the Risks of
Component-Based Software Engineering” ,IEEE 1997.

[5] Xia Cai, Michael R. Lyu, Kam-Fai Wong ,Roy KO”
Component-Based Software
Engineering:Technologies, Development
Frameworks, and Quality Assurance Schemes”, IEEE
2000.

