Modeling and Analysis of Aqueduct using Staad. Pro

Naveen Shukla¹, Zalakkumar R. Chhaya², Partik A. Parekh³,

¹PG student, Master of Structural engineering - HJD_ITER- KERA (KUCHCHH), Gujarat, India
²Assistant Professor, Dept. of civil Engineering, L. D. College of Engineering, Ahmedabad, Gujarat, India
³Assistant Professor, Dept. of civil Engineering - HJD_ITER- KERA (KUCHCHH), Gujarat, India

Abstract - Present paper deals with modeling and analysis of aqueduct structure in Staad. Pro. An attempt is made to model aqueduct in software and results are observed with given loading condition.

Aqueduct is a cross drainage structure carrying canal supported with piers which concerned with river current. In the paper loading action on barrels and stresses are observed after analysis.

In the paper loadings are mainly acting on the barrels are considered to check behavior of the barrel. Seismic static loading is applied by the virtue of self weight and other loadings.

Key Words: Aqueduct, barrel, Hydrostatic loading, stresses, Earthquake loading

1. INTRODUCTION

Whenever a canal crosses a natural drainage on its passage it is necessary to construct masonry works to dispose of drainage discharge so that the canal water supply continues uninterrupted. These masonry works are termed as cross drainage works.

Canal are generally aligned on the watershed so that they meet minimum number of drain. However, before watershed is reached, they usually cross a number of drainage lines. At the watershed itself cross a number of local drainage. A canal system taking off from a large river may irrigate area comprising a number of doabs or area between different streams.

In this paper under a fix set of input aqueduct is analysed as beam element and plate elements.

2. Types of Drainage Works

Drainage water intercepted by a canal may be disposed of by any one of the following method:

1. By passing the irrigation canal over the drainage. This is achieved through:
 1. An aqueduct or
 2. A syphon aqueduct
2. By passing the drainage over the canal. This is achieved through:
 1. A super passage
 2. A syphon.

3. By passing the drainage through the canal so that the drainage and irrigation water are intermixed. This is affected by:
 1. A level crossing
 2. An inlet and outlet

Fig -1: Aqueduct layout of structure

3. Input data and Design of aqueduct

In this section following is the manual design of aqueduct for the canal and drainage levels as described below:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Canal discharge</td>
<td>39.8 cumec</td>
</tr>
<tr>
<td>ii</td>
<td>Bed width of canal</td>
<td>13.0 m</td>
</tr>
<tr>
<td>iii</td>
<td>Water depth</td>
<td>2.4</td>
</tr>
<tr>
<td>iv</td>
<td>Total head loss</td>
<td>(entry 0.033,aqueduct 0.132m and exit 0.065m total 0.23m)</td>
</tr>
<tr>
<td>v</td>
<td>Upstream bed level of canal</td>
<td>70.97m</td>
</tr>
</tbody>
</table>
3.1 Design

Span between piers = 13.70 m
Span between bearing = 12.95 m
Trough dimensions = 6*3.2
Free board = 0.8 m
(i) Weight of upper and lower slab = 0.4*2.4 = 0.96 t/m
(ii) Water thrust at sides: water depth = 2.8 m, lower bed of trough; pressure = 2.8 t/m
(iii) Water load on bottom slab = 1*2.8*1 = 2.8 t/m
(iv) Weight of wearing coat = 0.075*2.4 t/m

The maximum load as per IRC class A loading is (5.7 t per 1.83 m)
For the design of trough section 5.7 t AB = CD = 6.4 m; BC = AD = 3.6. The load for maximum bending moment will be as per following fig.

![Fig -2: Load Diagram for the Barrel](image-url)

Table - 1: Input data

<table>
<thead>
<tr>
<th></th>
<th>Downstream bed level of canal</th>
<th>Manning's rugosity coefficient</th>
<th>Side slope of canal</th>
<th>Bed level of river</th>
<th>Ground level on the u.s side of river bed</th>
<th>Ground level on d.s of river bed</th>
<th>Maximum flood level in river</th>
<th>Maximum discharge in the river</th>
<th>Maximum water table level at site</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi</td>
<td>70.23-0.23=70.76</td>
<td>0.016</td>
<td>1.5:1</td>
<td>62.79m</td>
<td>67.24m</td>
<td>66.875m</td>
<td>71.16m</td>
<td>1025m^3\s</td>
<td>64.28m</td>
</tr>
<tr>
<td>vii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xiii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xiv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table - 2: Maximum moments and shear in different member of the box

<table>
<thead>
<tr>
<th>Member</th>
<th>Support</th>
<th>Span</th>
<th>Shear force t</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>10.283</td>
<td>9.46</td>
<td>10.31</td>
</tr>
<tr>
<td>BC</td>
<td>11.485</td>
<td>2.336</td>
<td>9.41</td>
</tr>
<tr>
<td>CD</td>
<td>11.485</td>
<td>8</td>
<td>12.1</td>
</tr>
<tr>
<td>DA</td>
<td>11.202</td>
<td>2.336</td>
<td>9.04</td>
</tr>
</tbody>
</table>

3.2 Design of box section

Use of M20 concrete will be made; permissible stress in concrete = 50 kg/cm²
Permissible stress in bending = 70 kg/cm²; q = 7 kg/cm² tons steel will be used.

The following stresses in reinforcement will be taken in design

(i) Direct tensile strength = 1500 kg/cm²
(ii) Bending tensile strength = 1500 kg/cm²
(iii) Tensile stress in member 225 mm thick and away from water face, in bending 1900 kg/cm²
(iv) Tensile stress in shear in shear reinforcement for member 225 mm or more in thickness under shear = 1750 kg/cm²

Modular ratio = 2800/3 * permissible stress in concrete in bending compression = 2800/3*70=13.33 (IS 456)
Table 3: Maximum moments and shear in different member of the box

<table>
<thead>
<tr>
<th>Member</th>
<th>Face</th>
<th>Desired reinforcement</th>
<th>Provided reinforcement cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Inside</td>
<td>20.70 (span)</td>
<td>24.5</td>
</tr>
<tr>
<td>AB</td>
<td>Outside</td>
<td>17.5 (support)</td>
<td>21.75</td>
</tr>
<tr>
<td>CD</td>
<td>Inside</td>
<td>25.2 (support)</td>
<td>25.75</td>
</tr>
<tr>
<td>CD</td>
<td>Outside</td>
<td>13.5 (span)</td>
<td>20.10</td>
</tr>
<tr>
<td>BC</td>
<td>Inside</td>
<td>25.2 (support)</td>
<td>27.625</td>
</tr>
<tr>
<td>BC</td>
<td>Outside</td>
<td>3.95 (span)</td>
<td>5.5</td>
</tr>
<tr>
<td>AD</td>
<td>Inside</td>
<td>25.2 (support)</td>
<td>27.625</td>
</tr>
<tr>
<td>AD</td>
<td>Outside</td>
<td>3.95 (span)</td>
<td>5.5</td>
</tr>
</tbody>
</table>

4.1 Rectangular shape beam element

Fig 4: Rectangular model

4.3 Rectangular shape bending moment

Fig 5: Bending moment

4. ANALYSIS AND 3D MODELING

In this paper it is aimed to observe analysis results for fixed discharge and geometrical conditions.

Modeling is carried out as per following:

(a) Taking geometry as beam element.

The solution of problem is derived by simplifying it as beam elements and analyzed under various loadings and according shear force and bending moment evaluated.

(b) Modeling the aqueduct with three dimensional geometry.

In this action whole aqueduct is analyzed by modeling it under different loading condition and actual element such as plate and then analyses / design.

Loadings we taken or various element as described in IS 7784-1993 Part 1
4.4 Trapezoidal shape

Fig -6: Trapezoidal model

4.5 Bending moment

Fig -7: Bending moment

4.6 Analysis of rectangular shape Aqueduct with 3D modelling

Fig -8: 3D render view of aqueduct
4.7 Plate stress

Fig -8: Load diagram

4.8 plate stresses

Fig -9: Plate stresses due to barrel loading

Fig -10: Plate stresses due to EQX + Loading
5. CONCLUSION

From the analysis, for the given data following points are concluded:

1. For rectangular cross section, Maximum moment is in top horizontal member as 107 kN.m (Sagging) and support moment as 108 kN.m (negative) in bottom member.

2. For Trapezoidal cross section, Maximum moment is in top horizontal member as 131 kN.m (Sagging) and support moment as 133 kN.m (negative).

3. In case of Bending stresses due to self weight, hydrostatic loading, Vehicular loads, it is observed that maximum stress concentration at centre in bottom slab is 1.53 kN m/m and minimum 0.29 kN m/m. Also free end of wall concentrated with 77.9 kN m/m at top portion.

4. In case of Shear stresses due to EQX loading, it is observed that maximum stress concentration in Right hand side wall at centre 0.015 kN m/m and minimum 0.012 kN m/m.

ACKNOWLEDGEMENT

I am pleased to publish the paper titled “Modelling and analysis of aqueduct using Staad. Pro”. I am highly thankful to my guide for providing guidance as and when required. I also thankful to my college for giving opportunity to carry out the work.

REFERENCES

[7] IS Code 7784, Design of cross drainage cross work part 2
[8] IS Code 7784, Design of cross drainage cross work part 1