Thermal Energy Estimation Technique of 3-φ Induction Machine: An Application Review

Fanidhar Dewangan¹, Abhijit Mandal²,
¹,² Dept. of Electrical and Electronics Engineering
Disha Institute of Management and Technology, India,

Abstract – Many Industrial applications involves the 3-phase induction machine for various drive purpose. The method of controlling such machine requires proper attentions towards the exact modeling of the system. For loss calculation and efficiency modeling it becomes a prior need for engineers and the researcher for the analysis. In this paper various methods of rotor resistance estimation technique is discussed with its application and requirement. In addition a method is proposed for the development of the same is given for the actual modelling. The whole idea behind this work is to execute the thermal behavior of induction of machine.

Key Words: Rotor resistance, temperature estimation, fuzzy based system, induction motor modelling, rotor loss model estimation. However, this technique is also affected by the ambient temperature. The requirement of temperature estimations is very important to prevent the system from permanent damage. The allowable temperature is set accordingly to chemical composition of the insulation. These chemical analyses provide the multiple target behavior of the insulation level.

1.1 Review and Models

In [5] an empirical thermal model has been presented for the analysis of thermal behavior in the system. In this paper author presented an empirical model of the system to develop a thermal mechanism of three phase induction machine. Also, a simulation system is presented to validate the theoretical model. However, some of the parameter in the presented equation carries ambience of the system analysis and can provide a wrong result on the environmental effect.

Figure 1 Per Phase equivalent circuit of 3-Phase Induction Machine.

Also this method provide the

\[
\text{Iron loss} \propto \frac{V_s^2}{f_s} \quad (1)
\]

\[
\text{Cu loss} \propto I_s^2 \quad (2)
\]

\[
P_i = \frac{2}{3} I_s^2 + \frac{1}{3} V_s^2 f_s \quad (3)
\]

In figure 1 per phase equivalent model is given, as in traditional way and very popular for the studies in various
applications. The system performance is calculated and monitored as per the analysis mentioned in this work.

A developed model of the system with thermal and electromechanical system is presented in [6]. In this paper, author had performed computer simulation on squirrel cage induction machine using coupled thermal and electromechanical model of the system. The various effect such as electromechanical interference, iron saturation and variation due to skin effect are taken in account.

Simplified model for induction machine is given in figure 2 provided for the more detailed units including the effect of saturation of iron, inductive model and slip resistance.

In the model presented in [6] more emphasis was given for the electrical loss model compared to the thermal extraction of the system. In this regard, many author provided the thermal junction temperature analysis of the system with the integer order derivative for the exact calculations. Moreover, some of the authors discussed an electrical equivalent of the thermal model as compared to heat model of the system. Table 1 provides the class of insulation according to their temperature range with peak magnitude settled.

![Figure 2 Detailed Equivalent Circuit of Induction Machine](image)

Figure 2 Detailed Equivalent Circuit of Induction Machine [6]

![Figure 3 Simplified thermal model of Induction Machine](image)

Figure 3 Simplified thermal model of Induction Machine

<table>
<thead>
<tr>
<th>Class of Insulation</th>
<th>Temperature Level [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>90</td>
</tr>
<tr>
<td>A</td>
<td>105</td>
</tr>
<tr>
<td>E</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>135</td>
</tr>
<tr>
<td>F</td>
<td>150</td>
</tr>
<tr>
<td>H</td>
<td>180</td>
</tr>
<tr>
<td>C</td>
<td>>180</td>
</tr>
</tbody>
</table>

Table 1 Level of allowable temperature for Various Insulation Class

In addition, lifetime analysis of any equipment is done on the bases of the class of insulation and mean time temperature variations. If the class of insulation is selected properly for the equipment the lifecycle of the same will be increased by an exponential multiplier.
Figure 4 Temperature analysis for various part of the IM

Figure 4 shows the Temperature analysis of the induction machine for various parts. In circled waveform the mean stator temperature is evaluated through the equations used in [6]. However, the system used in the experiment is low rating and the mounting mechanism is used in order to develop the analytical study for the thermal behaviour.

Figure 5 Temperature Rise under No-Load Condition

Figure 5 gives the rise of temperature in the system with respect to the time if the ambient temperature variation is also taken in account.

Figure 6 Temperature Rise under Loaded Condition

In figure 5 and figure 6 waveforms for the temperature variation is given with respect to winding temperature and the temperature of frame. However, figure 5 is provided for the no-load operation. In fact, during no load all the power drawn by the system is fed to the unit of consumption of the no-load losses. Moreover, when load is connected other than the fixed loss various more loss will also draw power from the source to compensate and fulfill the demand of the power loss.

Figure 7 Temperature Rise Including the effect of Ambient Temperature

Figure 7 gives the rise of temperature in the system with respect to the time if the ambient temperature variation is also taken in account.

2. Variable Frequency Drive: A Solution for Complex Temperature Measurement

Variable frequency drives are becoming more and more popular on the industrial application. In this power network all types of measurement are calibrated with the numerical and digital analyzer. These analyzers provide instantaneous fault values and states for the various equipments as it acquire signal continuously for the each instant and the variations. Variable instances are also recorded during the abnormal situations which provide the real time data for the system. Various equipments temperature that the VFD models sensed are:

- IGBT-Converter Temperature
- Model Converter Temperature
- Machine Temperature
 - Rotor
 - Stator
REFERENCES

BIographies

Fanidhar Dewangan pursued Bachelors Degree in Electrical and Electronics Engineering from Chhattisgarh Swami Vivekanand Technical University, Bhilai, India. Currently he is doing M.Tech from Disha Institute of Technology, Raipur in the Electrical drives and Power system.

Abhijit Mandal, Bachelors Degree in Electronics & Telecommunication Engineering from Pandit Ravishankar Shukla University, Raipur, India and Masters Degree in Electrical Engineering from Chhattisgarh Swami Vivekanand Technical University, Bhilai, India. Currently he is working as an Assistant Professor in Department of Electrical and Electronics Engineering at Disha Institute of Management & Technology, Raipur, India. His research interest includes Power Electronics Converters, Non Conventional Energy Sources and Energy Conservation.