URL Rule Generalization using Web Structure Mining for Web

De-duplication

Rekha V R¹, Resmy V R²

¹Assistant Professor in Information Technology, Department of Information Technology, College of Engineering Kidangoor, Kottayam Dt, Kerala, India Affiliated to CUSAT&KTU
²Associate Professor in CSE, Department of CSE, Sarabhai Institute of Science & Technology, Vellanad, Thiruvananthapuram Dt, Kerala, India

Abstract - World Wide Web has become the most populated database with increased number of users every day. This makes the search engines to produce duplicate data which has to be solved by de-duplication process. Various methods have been formulated in recent days to solve the issue but every method has one or other demerit that prevents it to be adapted successfully. Hence, in this paper, the structures of the URLs are utilized to develop a framework for de-duplicating the web pages. The machine learning technique is used to study the structure and precise rules are generalized. This helps in increasing the coverage. The pairwise rules are generated from URL pairs present in the duplicate clusters. When the web crawlers apply these rules, it normalizes the URLs. The normalized URLs are tokenized and a tree structure is constructed. This is performed over the selected clusters and thus the conversion rule proves efficient in avoiding redundancies in the search results. The feasibility of the proposed methodology is studied with an experimental setup with two different datasets. The results shows that the duplication detection and removal is achieved with good performance.

Key Words: Structure matching tree – URL – Base Tokenization, Data duplication detection – Machine Learning – Clustering.

1. INTRODUCTION

The web is a rich source of information and persists to increase in size and difficulty. To recover from this, web mining provides a solution through mining process which analyzes data and summarizes to useful non-redundant data. This process of web mining helps technologists and also the technology users to reduce costs and increase their profit. Moreover, data mining proves to be one of the best analytical tool to analyze, categorize and summarize data. In real-time applications, major industries are using the data mining technology to their favor. The concept of data mining is used to correlate the internal and external factors. This gives clues to find out the sales impact, customer mindset, economic indicators etc. For instance, Blockbuster entertainment uses data mining to suggest products to their customers based on their video rental history in its database. Web has grown enormously and the usage of web is unbelievable so it is essential to understand the data structure of web. The mass amount of information becomes very hard for the users to find, extract, filter or evaluate the relevant information.

The web mining can be performed with different level of analysis, namely, Artificial Neural Network (ANN), Genetic Algorithms (GA), Decision Trees, Nearest neighbor method, Rule induction, Data Visualization.

The technological infrastructure required for the data mining applications are ranging from a small space PC platform to the mainframes. The main parameters that should be considered are The size of the database and The query complexity. Search engines are huge such databases with web page files generated from the existing external sources and are automatically assembled. The search engines can be classified as Individual search engine and Meta searchers. Here the individual search engine possesses its own database where information were compiled to be accessed by the users. While Meta searchers doesn’t have their own databases but uses different individual search engines and displays the best results.

These Meta searchers use either one of the two ways to show their results. (i) After removing the duplicated results from the results collected from various individual search engines,
a merged single list of data is presented.

(ii) Without removing the duplicate data multiple lists are produced.

So this duplication is the undesired property which can be eliminated by the process of de-duplication. This helps to decrease the storage requirement as only distinct data is stored.

The redundant data is avoided by replacing a pointer to the distinct data copy. The disadvantage of duplication is that it affects crawling and relevance of the results. Hence rule induced mining is performed over the URL’s in this proposal. Since all the search engines strives to be the popular one based on the closest results that tends to provide.

Also the other main parameter to be considered is data duplication. The demerits if the data duplication are

- High storage space occupied
- Less efficient use of disk space
- Low Recovery Time Objectives (RTO)
- Need of tape backups
- Requires more transmissions

The existing system that is chosen to compare our result is Detecting Near-Duplicates for Web crawling. It uses simhash to address the large query. It also develops the hamming distance problem for both single and multi-queries online. However the existing system has the disadvantages like

- High bandwidth usage during crawling.
- Costs high
- Limit of accuracy

Our focus in this paper is on efficient and large-scale de-duplication of documents on the WWW. Web pages which have the same content but are referenced by different URLs, are known to cause a host of problems. Crawler resources are wasted in fetching duplicate pages, indexing requires larger storage and relevance of results are diluted for a query.

II. RELATED WORK

Poria et al [1] proposed a rule-based mining that exploited the knowledge and sentence dependency trees. It solved the issue in extracting aspect information from the reviews of the products. Though the detection accuracy was high it did not provide prediction of user classes and had not studied the result for different sample sizes. Puzio et al [2] presented ClouDedup for secure and efficient storage of data duplication. This involved high memory usage and high cost for computation. A bipartite graph was Steorts et al [3] recorded to detect the duplicate record in a file without any supervision. Its dimensionality was found to be high. He et al [4] gave techniques to overcome issues of deep-web sites which were entity oriented. It helped in effective URL de-duplication. Rodrigues et al [5] suggested DUSTER, for detecting and eliminating the redundant content of the web during crawling. The duplicate URLs are reduced 54% more than that of earlier techniques. Dutta [6] used crawl log mining and found the topics that are searched by the users frequently. It provided automated recommendations for the other users. Shivaprasad et al [7] performed Web Usage Mining (WUM) to identify the pattern of data search. It also reduced the noise and unnecessary data in those logs. Sethi et al [8] proposed a new algorithm for extracting data. Also the rule extraction was also tested for its feasibility. Jain and Srivastava [9] conducted a study on the effect rule extraction with ANN and GA and found to be robust and self-adaptive.

Cai et al [10] presented learning approach which was based on pattern tree. The work was acknowledged for its ability to implement rule based mapping and was employed by the processor. A set of URL samples from the targeted website was retrieved by the web crawler of the search engine. Saha Roy et al [11] formulated the issue of probabilistic de-duplication as a binary classification task for unknown visitors. Zawoad et al [12] Since the number of potential malicious URLs from diverse sources is large, URL de-duplication is needed for the efficient identification of malicious websites. URL duplication removal as-a-Service (UDaaS) was developed to help a URL analyst to deploy and manage a cloud-based distributed and parallel URL de-duplication infrastructure easily; this can improve the performance of malicious websites detection while reducing duplication and quantity of local storage requirements. Wu et al [13] presented HACE theorem to process the big data in terms of data mining. Creating a global model based on this theorem is a challenging task, however it served good for understanding the working of data mining. Lin et al [14] presented three algorithms namely SP-C, DP-C and FP-C. These algorithms helped to understand the implementation result of apriori algorithm using Map reduce framework. The parallelization technique proved good for all sizes of datasets and for all cluster sizes. Kolb et al [15] proposed Dadoo, which was a powerful, high performance tool for de-duplication using Hadoop. It was demonstrated for larger datasets. The proposed methodology was based on browser specifications that used machine learning to generate match classifiers. Das Sarma [16] presented a system called CBLOCK, to address the de-duplication challenges. The proposed CBLOCK framework is designed in such a way to learn hash functions derived from attribute domains. The blocking functions are represented as hierarchical tree structure constraints. The method was tested with two large datasets and the utility was proved. Shim [17] analyzed the efficiency of Map Reduce algorithms for web mining, machine learning. Jangra and Singh [18] addressed the challenges of redundant data using No-SQL. The authors proposed an effective storage. Li et al [19] suggested a baseline key management approach to with security. The proposal also introduced Dekey construct, which enabled the storage of secure keys and managed to achieve good efficiency with security for cloud storage server. Rafieeq and Kumar [20] proposed the Open Stack Swift scheme for
secure de-duplication from client-side. The presented scheme provided confidentiality, secured storage, outsourced data and shared them through cloud. The major demerit of the proposed work was that there was increase in un-structured files and name space gets populated. Santhiya and Bhuvaneswari [21] addressed the de-duplication issue using Uniform Resource locator. The web crawler used the ontology by which the domain specific data were extracted and clustered. SVM issue of probabilistic de-duplication as a binary classification task for unknown visitors. Zawood et al [12] Since the number of potential malicious URLs from diverse sources is large, URL de-duplication is needed for the efficient identification of malicious websites. URL duplication removal as-a-Service (UDaaS) was developed to help a URL analyst to deploy and manage a cloud-based distributed and parallel URL de-duplication infrastructure easily; this can improve the performance of malicious websites detection while reducing duplication and quantity of local storage requirements. Wu et al [13] presented HACE theorem to process the big data in terms of data mining. Creating a global model based on this theorem is a challenging task, however it served good for understanding the working of data mining. Lin et al [14] presented three algorithms namely SPC, DPC and FPC. These algorithms helped to understand the implementation result of apriori algorithm using Map reduce framework. The parallelization technique proved good for all sizes of datasets and for all cluster sizes. Kolb et al [15] proposed Dedoop, which was a powerful, high performance tool for de-duplication using Hadoop. It was demonstrated for larger datasets. The proposed methodology was based on browser specifications that used machine learning to generate match classifiers. Das Sarma [16] presented a system called CBLOCK, to address the de-duplication challenges. The proposed CBLOCK framework is designed in such a way to learn hash functions derived from attribute domains. The blocking functions are represented as hierarchical tree structure constraints. The method was tested with two large datasets and the utility was proved. Shim [17] analyzed the efficiency of Map Reduce algorithms for web mining, machine learning. Jangra and Singh [18] addressed the challenges of redundant data using No-SQL. The authors proposed an effective storage. Li et al [19] suggested a baseline key management approach to classifiers were used to exploit the keywords and URLs.

III. PROPOSED METHOD

The presented work provides few techniques to prevent data duplication removal in World Wide Web (WWW). The approach mine rules from the URLs. These rules are utilized for data de-duplication. The host specific tokens and delimiters are extracted from the URLs. Peer to peer URL rule generation is performed and hence the source URL and target URL is selected. The rules are fine-tuned using generalization technique through machine learning.

Target Selection: The target URL is selected from the duplicate clusters of the URLs. This is done by selecting the shortest matching URL in the cluster. Another criteria for target selection is the length of the URL, which must be shorter. The other parameters that could be considered are the number of inlinks, minimum hop distance etc.

Source Selection: The statistical based ranking helps to decide the URL to be chosen as a source. The online page ranker is utilized for this task.

Fig 1. System Architecture

![System Architecture](image)

The basic modules of the proposed system are

1. View URL Dataset
2. Basic Tokenization
3. URL Clustering
4. Peer-Peer URL rule generation
5. Rule Optimization

Fig 2 presents the modules of the proposed work.

![Modules of the proposed system](image)
1. **View URL Dataset**

The work included two sets of data to achieve data de-duplication. The feasibility of data sets, both small and large data sets are used for experimentation are known. These datasets contain either the URLs of many websites or the URLs of many web pages. The pre-requisite to select these small and big data set is that it should contain at least 2 sized duplicate clusters in both data sets. Also it is characterized by the number of hosts, URLs and the duplicate clusters present in them. The collection Mixer is constructed with the data sets containing web pages and clusters. Based on the human judgment, the core content is collected.

The stop words are also chosen in order to get proper understanding and good performance for de-duplication.

2. **Basic Tokenization**

Basic tokenization is the process of parsing URL to extract tokens. The protocols, hostnames, query arguments and the path components are also extracted.

Rule Optimization

In the process of rule generalization, one of the cluster is selected from the cluster groups. A key is selected from the previously selected cluster. We know that all keys have information gains, so the key selection is made by studying the maximum information gains possessed by the key. Finally the transformation process of transmitting the source to the target is performed. Generalization is performed by generating a decision tree. This tree is constructed with the selected keys and their branch is formed with the key’s matching pair else it is branched out with a wildcard.

Number of linear rules generated by the generalization technique. Only after rule generalization, the new values can be accommodated. The decision tree based generalization enabled the work to be error proof and robust. The so generated decision tree follows bottom-Up approach. The rules are used in online mode and hence the memory requirement to store these rules are minimal. The contexts as well as transformation format are generated by the rule generalization process. Thus it provides a compatible contexts as well as target URLs. The feasibility is improved as the iteration counts high. During the initial phase, the frequency is generated for each key. Then context generalization is performed. The generalization is performed over the contexts.

The proposed work cross verifies both the data sets so as to provide the optimal results. Through comparison of both the data sets the data set with maximum number of de-duplicated data are known.

3. **URL Clustering**

The process of cluster formation with the URLs are known as Clustering. It is the basic step of module 3 in which the cluster is formed and is produced to the rule generalization module. The URLs which consists of more similarity in the web page content is termed as a duplicate cluster. The rules are generated for all the URL pair present in the duplicate clusters.

4. **Peer-Peer URL Rule Generation**

Pairwise rule generation module is designed for generating pairwise rules from the URL pairs of the duplicate clusters. The transformational rules are framed in this module. This is the critical part of the work which decides the efficient working of de-duplication process. Here target URLs are used for generating transformation. The clusters have few URLs which are closest to the normal URL.

Out of these URLs, one is selected as source URL. The source URL is changed frequently based on the study. Now, using these source and target URLs the pairwise rule is generated. The learning of these pairwise rules generated through URLs out of duplicate cluster happens which are further generalized so as to normalize the unseen URLs as well.

1. **Performance**

Performance is the measure of achievement of the particular task verified against the previous attainments. The performance of the proposed method is compared with the performance of the existing methods. The analysis result is shown in Fig 3. The performance of the proposed pairwise rule generalization technique is found superior to that of the earlier methods.

V. CONCLUSION AND FUTURE WORK

The main blocks of the web search through a search engine is crawling, relevance and indexing. These are affected due to large amount of duplication present in the web. This pose a serious issue for internet search engine users. Hence de-duplication becomes the need of the hour as there is lots of redundant data produced even by the autonomous users. Here a novel idea of de-duplication is performed by framing generalized rules for machine learning. The methodology is unique in the process of extracting unique URLs. Two data sets are used and their duplicated data are analyzed. Then, tokenization is

© 2016, IRJET

ISO 9001:2008 Certified Journal

Page 562
performed over the datasets and tokenized URLs are clustered and pairwise rules are generated and the generated rules are generalized using decision tree. This ensures the precision of rules. Finally, the URLs are transformed and compared to give de-duplicated results. The performance of the presented approach is evaluated and found to be bandwidth efficient and precise. The methodology can be adapted for various other larger data sets.

REFERENCES

