
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 02 | Feb-2016                       www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET    |               Impact Factor value: 4.45             |          ISO 9001:2008 Certified Journal        |              Page 149 
 

Mapping spatial variability of soil physical properties for site-specific 
management 

Henry Oppong Tuffour1,*, Awudu Abubakari1, Janvier Bigabwa Bashagaluke1,2, Ebenezer 
Djaney Djagbletey1,3   

1Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 
2Department of Soil Science, Faculty of Agriculture, Catholic University of Bukavu, DR Congo 

3Ghana Forestry Commission, Cape Coast 
 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Description of the spatial patterns of soil 
properties at the field or watershed scale is very important for 
site-specific soil and crop management, and environmental 
modelling. The study was conducted to determine the spatial 
distribution patterns of soil physical properties in an 
agricultural field in the surface (0-20 cm) and subsurface (20-
40 cm) layers. Descriptive statistics and geostatistics were 
used to describe the amount and form of variability and 
spatial distribution patterns of the soil physical properties in 
the field using GraphPad Prism version 6.0 and GS+ 9.0, 
respectively. The descriptive statistics revealed that the soil 
properties exhibited weak to higher variations in both layers 
cross the field, with aggregate stability being the most reliable 
soil physical property in the field. The spatial distribution 
model, spatial dependence levels and spatial distribution maps 
showed remarkable variations in both layers across the field. 
The significance of semivariogram modelling for the 
subsequent interpolation was proven to be an effective tool for 
delineation of management zones for site-specific soil 
management. 
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1. INTRODUCTION 
 
Spatial variability of soil physical properties within or among 
agricultural fields is inherent in nature due to both geologic 
and pedologic factors of soil formation. However, 
management practices such as tillage, irrigation, and 
fertilizer application may also induce variability within the 
field and may further interact with each other across 
different spatial and temporal scales, and are further 
modified locally by erosion and deposition processes [1]. 
Spatial properties of field soils, thus, vary in a complex 
manner, especially in arid and semi-arid environments 
where this phenomenon affects the quality and production of 
crops, hydrologic responses and transport of herbicides to 
surface and/or groundwater.  [2, 3]. Traditionally, 
researchers have attempted to remove spatial variability by 
blocking and/or statistical averaging procedures. However, 
these attempts have often resulted in the failure to 
understand the spatial interdependence of the soil 
properties. An appropriate understanding of the spatial 
variation of soil properties and the relationships between 
them is needed to scale up measured soil properties, and 

model soil processes for precision farming/forestry and 
environmental modelling. The study was, therefore 
conducted to analyze the extent of spatial variability in 
selected soil physical properties. 
 

2. MATERIALS AND METHODS 
2.1. Site location and characteristics 
The study was conducted at the Plantations Section of the 
Department of Crop and Soil Sciences, of the Kwame 
Nkrumah University of Science and Technology, Kumasi, 
Ghana. The experimental field was located in an uprooted oil 
palm (Elaies guineensis) field, where spatial variability was 
predictable due to the variable biological activity and the 
presence of dead root channels and burrows of soil animals 
[4]. The area is within the semi-deciduous forest zone of 
Ghana. It is subjected to two growing seasons (a major and a 
minor season) with a bimodal rainfall pattern. The major 
season starts in May and is interrupted by a dry period in 
August. The minor season starts from September to 
November. Annual rainfall is about 1375 mm. Annual 
temperature ranges from 25 – 35°C. The dominant soil is the 
Kumasi series described as Plinthi Ferric Acrisol [5] or Typic 
Plinthustult [6]. 
 

2. Design of sampling grid and soil sampling  
A total field of 75 x 40 m was gridded with 10 x 5 m intervals 
in the north to south and east to west directions, and soil 
samples were collected at 80 intersection points, since 
geostatistical analyses requires at least 50 – 100 measuring 
grid points [4,7]. The sampling grid size was chosen because 
as a “rule of thumb”, the estimation of semivariograms is 
considered reliable for lags not exceeding 20% of the total 
transect length [8]. The sampling points were established 
and maintained using a Global Positioning System (GPS) 
device, and systematically located at the nodes of a 
rectangular shaped object superimposed on the field and 
systematic grid sampling was employed, since there was 
little prior knowledge of the within-field variability, and also 
offered the advantage of applying simple techniques to map 
attributes within the field. Regarding the soil as an 
anisotropic medium, varying in both vertical and horizontal 
dimensions, the fundamental feature of horizonation was 
considered and soil samples were collected from the 0 – 20 
cm and 20 – 40 cm depths.  
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2.3. Soil sampling and analyses 
Cylindrical core samplers of 8.1 cm diameter and 20 cm 
length were used for the collection of soil samples. The 
collected samples were used for the analyses of particle size 
distribution using the hydrometer method [9], volumetric 
moisture content [10], bulk density and total porosity [11], 
and aggregate stability [12]. 

 
2.4. Data analyses 
Measured variables in the data set were analyzed in two 
distinct stages. First, the descriptive statistics including the 
minimum, maximum, mean, coefficient of variation (CV), 
skewness and kurtosis were estimated for each property at 
each depth using GraphPad Prism version 6.0. 
Characterization of CV was conducted as described by 
Tuffour et al. [4] and Wilding [13]. The symmetry and 
peakedness of the data distribution based on the coefficients 
of skewness and kurtosis were used to determine the order 
of data distribution in the field. However, since it was 
expected that small variations could arise and produce a 
chance fluctuation of skewness and kurtosis measures from 
zero (Normal distribution), each variable was validated to 
determine the type of distribution from which the samples 
were taken using the D’Agostino-Pearson “Omnibus K2” test 
[4, 14]. 
 
Geostatistical calculations and interpolations were used to 
describe the spatial dependence of each soil property using 
GS+ 9.0 software. Regarding the fact that normality of 
distribution is not a pre-requisite of geostatistical processing 
the original data set was processed without any 
transformation [4, 15]. Spatial variability was evaluated 
using the semivariogram for both isotropical and 
anisotropical orientations. The anisotropic evaluations were 
performed in four different directions (0°, 45°, 90° and 135°) 
with a tolerance of 22.5° to determine whether 
semivariogram functions depended on sampling orientation 
and direction (i.e., they were anisotropic) or not (i.e., they 
were isotropic), and the commonly used models were fitted 
for each soil property [4]. The best fit model was chosen 
using the Least Squares method and the spatial dependence 
(SD) was defined using the nugget/sill ratio [4, 16]. Surface 
maps of the soil properties were prepared using 
semivariogram parameters through ordinary Kriging and 
prediction performance was assessed by cross-validation 
[4]. 
 

3. RESULTS AND DISCUSSIONS 
3.1. Descriptive statistics 
The spot-to-spot variations in the soil physical properties as 
observed from the measured descriptive statistical values 
are presented in Table 1. The results showed significant 
differences between the mean values at both sampling 
depths across the field. These variations could be ascribed to 
a combination of factors including experimental errors, and 
temporal and spatial variations.  

 

 

3.1.1. Variation in particle size distribution 
The top layer showed different textural classes of loamy 
sand, sandy loam and sandy clay loam. Except for two spots 
with sand, and sandy clay texture each, soils in the 
subsurface were dominantly sandy loam and loamy sand 
textured. The coefficients of variation for sand content in 
both layers were classified as low, whereas those of silt and 
clay were classified as very high, with the sub surface layer 
showing higher variability than the upper layer. Among the 
primary soil particles, the mean sand and silt contents were 
slightly lower in the subsurface layer than in the surface 
layer, whereas the mean clay content was higher in the 
subsurface layer than in the surface layer. The high CV values 
of silt and clay could have resulted from the previous land 
use system and soil management strategies in the field.  
 
Although studies by Santra et al. [17] showed that soil 
mixing due to tillage operations can result in little variation 
of particle size distribution in the surface layer than the 
subsurface layer, the modified minimum tillage method 
employed in the land preparation process in this study 
yielded similar results, except for clay content. The low 
variability of particle size fractions at the surface layer as 
compared to the subsurface layer could, thus, be attributed 
to the susceptibility of the soil aggregates to erosion and 
deposition of soil particles from one spot to another in the 
field. This is because these processes tend to distribute the 
soil particles, somehow, uniformly in the field. Additionally, 
the eluviation-illuviation processes due to downward 
movement of water through the soil may have resulted in the 
deposition of fine-grained particles (especially clay) within 
the underlying layers beneath the soil surface. The 
differences in the influence of parent materials (i.e. 
resistance or susceptibility to weathering) may also have 
affected the distribution of soil particles in the field.  
 
Silt and clay fractions gave positive and highest kurtosis in 
the surface layer and subsurface layers, respectively. The 
kurtosis value for sand in the surface layer, although 
positive, showed a normal (mesokurtic) distribution, not 
only because it was closer to zero, but also established from 
the K2 test. On the other hand, the kurtosis values for the 
different soil fractions in subsurface layer were too tall or 
slender than a normal distribution. The results also showed 
positive skewness for clay and silt contents, and negative 
skewness for sand content in both layers. Similarly, even 
though the coefficient of skewness for sand in the surface 
layer extended toward the left, showing a shift from normal 
distribution, the K2 test revealed it was normally distributed 
across the field. This indicates that the variation of sand 
content in the surface layer as revealed by the coefficient of 
variability could be due to chance. 
 

3.1.2. Variation in soil structure indicators 
Soil structure in the experimental field was described in 
terms of bulk density, total porosity and aggregate stability. 
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From the results, average bulk density and total porosity 
were highly variable in the surface layer than the subsurface 
layer, however, the variation in both layers were categorized 
as weak as revealed by the coefficients of variability [4,13]. 
Similarly, values of aggregate stability in both layers, 
although very low, were found to be weakly variable, 
indicating an almost homogeneous aggregate stability across 
the field. This could be accredited to the high susceptibility 
of the soil aggregates to erosion and depositional events 
occurring at the soil surface, causing an almost evenly 
distribution of the soil aggregates at the soil surface. On the 
other hand, the differences in organic carbon [4] and 
moisture contents in both layers could be accountable for 
the unequal distribution of aggregate stability with depth. 
Thus, aggregate stability was described as the most reliable 
soil property in the field, implying that any single value from 
any spot in the field for a particular layer could be used to 
represent the whole field for that particular layer. The low 
aggregate stability observed within both layers could be 
attributed to the previous tillage operations (ploughing and 
harrowing), which caused significant disturbance to the 
surface and subsurface soil structure, organic matter and 
clay contents resulting in considerable amounts of 
compaction as evidenced by the high bulk density and low 
total porosity. This further resulted in the destruction of soil 
aggregates [18]. The relatively high aggregate stability 
observed in the surface layer than the subsurface layer could 
have resulted from the accumulation of organic residues 
(high organic carbon content) on the soil surface [4]. 
 
With regards to the frequency distribution, the kurtosis 
values for aggregate stability in both layers were negative 
and platykurtic (i.e., flat). However, the coefficients of 
skewness were zero, signifying that aggregate stability was 
normally distributed across the field in both layers. Except 
for one outlier, which caused a tall peaked distribution, the 
distribution of aggregate stability of the surface layer was 
almost uniform and flat across the field as evidenced by the 
coefficient of variation (0.16%), which was the weakest for 
the entire data set in the study. The K2 test values further 
showed that aggregate stability was normally distributed 
within the field in both the surface and subsurface layers. 
For bulk density and total porosity in the surface layer, the 
coefficients of kurtosis were positive and close to zero, 
which described a leptokurtic distribution. Moreover, the 
coefficients of skewness for the properties indicated a 
distribution towards the more negative values, however, the 
outcome of the K2 test (2.88), which was the same for both 
properties described a normal distribution for both 
parameters. The coefficient of skewness also showed a 
distribution more toward the positive direction.  

 
3.1.3. Variation in soil moisture content 
The soil moisture values (i.e. volumetric moisture content) 
determined in the different locations and depths were used 
to describe the spatial variability of soil moisture content in 
the field. Although the spot-to-spot measured values ranged 

from 6.64 – 17.52% and 7.78 – 17.44%, the average values 
were 11.33% and 12.68% for the surface and subsurface 
layers, respectively. From the coefficients of variation, it was 
realized that soil moisture was varied moderately across the 
field. The variability of soil moisture as observed in this 
study could have been influenced by both static (topography 
and soil properties) and dynamic (precipitation and initial 
moisture content) variables [19, 20], which may be 
responsible for the different moisture patterns during 
wetting, draining and drying periods [21]. In addition, K2 
test value, as well as the coefficients of kurtosis (negative) 
and skewness (positive) all showed that soil moisture 
content was normally distributed in the field. The observed 
variability of soil water content may have very important 
impact on rainfall-infiltration/runoff/erosion processes, 
especially under high rainfall conditions, and also result in 
spatial variability of available water for crop growth, which 
is identified as one of the major reasons for the variations in 
crop growth and productivity in an area. 
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Table 1: Summary of descriptive statistics of measured soil physical properties 

Soil property Depth (cm) 
Descriptive statistics 

Min. Max. Mean §CV (%) Skew Kurt †K2 

Sand (%) 
0-20 60.80 86.80 78.31 7.64c -0.57 0.073 4.41ns 

20-40 40.80 84.80 74.16 10.98c -1.35 3.11 27.93*** 
         

Clay (%) 
0-20 8.00 36.00 14.50 38.98a 1.60 2.76 31.46*** 

20-40 10.00 44.00 21.06 35.28a 1.01 0.89 13.88*** 
         

Silt (%) 
0-20 3.20 17.20 7.24 46.50a 0.81 0.17 8.28* 

20-40 1.20 17.20 4.75 58.11a 1.37 4.03 31.15*** 
         

 (g/cm3) 
0-20 1.20 1.52 1.41 4.51c -0.45 0.045 2.88ns 

20-40 1.33 1.58 1.48 3.26c -0.59 0.89 6.98* 
         

 (%) 
0-20 42.75 54.57 46.82 5.12c 0.45 0.048 2.88ns 

20-40 40.57 49.96 44.31 4.10c 0.59 0.90 7.08* 
         

ASt (%) 
0-20 19.86 19.98 19.93 0.16c 0.00 -0.49 1.01ns 

20-40 19.71 19.93 19.83 0.13c 0.00 -0.68 2.91ns 
         

 (%) 
0-20 6.64 17.52 11.33 19.81b 0.18 -0.064 0.49ns 

20-40 7.78 17.44 12.68 18.33b -0.01 -0.45 0.80ns 

 = Bulk density;  = Total porosity;  = Volumetric moisture content; ASt (%) = Aggregate stability; Min. = Minimum 

parameter value; Max. = Maximum parameter value; §CV = Coefficient of variation (a, b, c = very high, moderate and weak 
variations, respectively); †K2 = Omnibus Normality Test (***, **, *, ns = highly significant, moderately significant, significant and 
not significant, respectively). 
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3.2. Spatial structure and attributes 
Spatial structure analyses using semivariograms and 
autocorrelograms revealed significant spatial variability of 
the soil properties across the field. The best-fit models and 
model parameters are presented in Table 2. Among the 
different theoretical models tested, exponential model was 
found to be the best-fit in most cases. The observed 
differences in spatial relationships for the soil properties 
were attributed to both intrinsic and extrinsic factors of soil 
formation. Isotropic models were selected as ideal 
representation of semivariograms for the soil properties 
since the best-fit models were the same in all directions. The 
behaviour of the soil properties in space is visually 
presented in Figures 1-3. Except for silt content in the 
subsurface, and aggregate stability and porosity in the 
surface layer, which were best-fitted by linear model (i.e. 
pure nugget effect or absence of spatial correlation), all the 
other parameters in both layers were best-fitted by the 
transitive semivariogram models (i.e. Gaussian, Exponential 
and Spherical models), indicating variations in the spatial 
correlation structure with the lag. The results also revealed 
that as lag increased, correlations dropped either gradually 
or rapidly to zero, and then fluctuated about or remained at 
it, which suggests that the correlated values had dependent 
and/or interdependent relationships.  
 
Class ratios to identify the distinctive classes of spatial 
dependence (i.e. autocorrelation) for the resulting 
semivariograms indicated the existence of weak to strong 
spatial dependence for the soil properties. This implies that 
at greater separation distance than the range, sampling 
points would not be spatially correlated, which would have 
great implications on sampling design. Thus, separation 
distances should be shorter than the range in order to 
properly understand the spatial distribution pattern of the 
given property. As a result, Balansundram et al. [22] have 
recommended that sampling points should be spaced 0.25 – 
0.50 of the range. Therefore, in view of the range, sampling 
spacing should be closer for shorter ranges than those with 
longer ranges. 
 

3.2.1. Spatial structure of particle size distribution 
The best-fit semivariogram models for the various soil 
particles are presented in Figures 1a- c. Considering the 
surface layer the models were exponential, Gaussian and 
spherical for sand, clay and silt contents, respectively, 
whereas, in the subsurface layer, Gaussian, spherical and 
linear models best-fitted the soil particles in the same 
respective order as in the surface layer. The soil particles 
also expressed low positive non-zero nugget values, which 
could be explained as due to minimum sampling errors, 
sampling intensity and data recording, short range 
variability, and random and inherent variability. From the 
analyses, silt content in the surface layer displayed a well-
defined spatial structure (clear characteristic sill and range) 
with important, but not too large nugget semivariance 
typical of a spherical model.  

Sand and clay contents in the surface and subsurface layers, 
on the other hand, displayed clear nugget and sill values, but 
gradually approached the range, specifying an exponential 
model. Contrarily, sand and clay in the subsurface and 
surface layers, respectively, were best-fitted by a Gaussian 
model, owing to the smooth variation with small nugget 
semivariance as compared to the spatially dependent 
random variation. For silt content in the subsurface layer, 
the property was found to vary at all scales, hence it was 
best-fitted by a linear model. With regards to the range of 
influence, defined as the maximum distance of spatial 
dependence between sample pairs, the results showed that 
the best sampling distance alternated within 165.76 – 
415.80 m for sand, 188.62 – 216.90 m for clay and 11.70 m 
for silt contents. This implies that any pair of particle size 
values with a lag greater than 415.80, 216.90 and 11.70 m 
for sand, clay and silt, respectively will be spatially 
independent. Thus, sampling for the analysis of soil texture 
should not exceed a maximum distance of 416 m, and this 
will very much depend on the sampling interval, which 
greatly influences the semivariogram range [23].  
 
From the range, the degree of homogeneity of soil particle 
size fractions was highest in the surface and subsurface 
layers for sand and clay, respectively, and lowest for silt in 
both layers. The nugget/sill ratio of the soil fractions 
demonstrated weak to strong spatial dependence in both 
layers. With the exception of clay content, which expressed 
moderate spatial dependence, the parameters were 
described as highly spatially dependent in the surface layer 
as presented in Table 2. In respect of the subsurface layer, 
silt content displayed a pure nugget effect (i.e. absence of 
spatial dependence), sand and clay contents were 
moderately and strongly spatially dependent, respectively. 
These observations clearly showed that silt content in the 
subsurface layer was spatially independent or spatially 
uncorrelated, which could have probably been due to the 
high variability observed for this property as shown in Table 
1. Although, generally, small nugget values were observed 
for the semivariogram models, moderate spatial dependence 
displayed by some of the parameters could be attributed to a 
relatively higher residual variance (nugget) values. The 
differences in the spatial correlation patterns observed for 
the soil particles in the different layers could be attributed to 
the degree of influence of the factors and processes of soil 
formation in the field. This inferred that the explainable 
proportions of the total variation of soil particles in both 
surface layer were 87.66, 58.30 and 99.68% for sand, clay 
and silt contents, respectively, and 51.51 and 79.52% for 
sand and clay contents, respectively in the subsurface layer. 
The remaining variations could be accounted for by random 
sources. This implies that the total variation of silt content in 
the subsurface layer arose from random sources.  
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Figure 1a: Best-fitted isotropic semivariogram for 
sand content for the surface and subsurface layers 

 
Figure 1b: Best-fitted isotropic semivariogram for clay 

content for the surface and subsurface layers 
 

 

 
Figure 1c: Best-fitted isotropic semivariogram for silt 

content for the surface and subsurface layers 
 

3.2.2. Spatial structure of soil structure indicators 
Soil properties describing soil structure exhibited 
considerable spatial variability across the field with 
considerably low nugget values indicating small errors of 
estimation, which could have resulted from factors such as 
sampling intensity, positioning, data recording and 
measurement errors. From the results, bulk density was 
fitted by spherical and Gaussian models, total porosity by 
linear and exponential models, and aggregate stability by 
linear and spherical models for the surface and subsurface 
layers, respectively as presented in Figures 2a-c. In general, 
the nugget/sill ratios were described as strong to weak 
spatial dependence. For instance, in the surface layer, the 
strong SD (13.30%) was observed for bulk density, whereas, 
aggregate stability exhibited pure nugget or very strong 
spatial independence (100%). With regard to bulk density, 
the values for nugget, sill, SD and range increased with depth 
within the soil profile. This increase indicated higher 
structured variance, nugget effect/random variability and 
range with increase in depth, which may reflect a 
depositional event or a series of depositional events. 
Contrary to this, Tsegaye and Hill [24] found lower 
structural variability in the surface bulk density, as judged 
from a higher nugget (0.003) and lower sill (0.004), which 
implied that 75% of the total variability was attributable to 
the nugget within a range of 22 m. This lower range could 
have been due to a much smaller sampling interval of 1 m in 
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a relatively small area (45 x 37 m) as compared to the 75 x 
40 m area with 10 x 5 m sampling intervals used in this 
study. 
 

 
Figure 2a: Best-fitted isotropic semivariogram for 
bulk density for the surface and subsurface layers 

 

 
Figure 2b: Best-fitted isotropic semivariogram for 

total porosity for the surface and subsurface layers 
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Figure 2c: Best-fitted isotropic semivariogram for 
aggregate stability for the surface and subsurface 

layers 
 

3.2.3. Spatial structure of moisture content 
The semivariogram functions for volumetric moisture 
content were exponential and spherical the surface and 
subsurface layers, respectively as shown in Figure 3. In the 
surface layer, a fairly higher nugget and sill, and higher range 
were observed in contrast to the subsurface layer, with 
exception of the range. These observations were indicative 
of small estimated errors, which occurred in the subsurface 
layer. The range in the subsurface layer also showed that 
moisture content was spatially correlated at a very short 
distance, which implied that sampling for moisture 
measurements should be within a distance of 0.30 m. The 
nugget/sill ratios for both layers exhibited strong spatial 
dependence. However, the results showed that the surface 
layer was fairly strongly dependent at a longer distance, and 
a shorter distance for the subsurface layer. This indicates 
that future sampling for soil moisture measurements (by 
volume) should be within a maximum distance of 237.30 m.  
 
  
 

 
Figure 3: Best-fitted isotropic semivariogram for 
volumetric moisture content for the surface and 

subsurface layers 
 

3.3. Kriging and cross-validation 
The real output of the geostatistical process is maps showing 
the spatial distribution of the measured properties. The 
parameters of the best-fit semivariogram models were used 
for Kriging to produce these spatial distribution maps of the 
soil physical properties considered in this study. Thus, the 
parameters of the selected models were used to provide 
estimates of the soil properties at unsampled locations 
within the field. The observed values for the sampling 
locations were plotted against their predicted values from 
the spatial maps. The associated relative prediction indices 
for the various soil properties from the contour maps are 
presented in Table 3. From the Kriged maps (Figures 4-6), 
regions with white colours always represented zones with 
higher parameter values. The existence of minor bordered 
surfaces of different colours also indicate high resolution of 
the maps given by the high measuring density. Therefore, 
these maps have greater resolution than maps presented for 
mapping units, indicating that very detailed observations can 
be made on the distribution of soil properties when 
considering land use [25].  On the other hand, the results 
revealed that while models could be fitted to the data, the 
models’ relative abilities to predict the soil parameter values 
at unsampled locations within the field were not good.  
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An ideal model was expected to have a slope of 1.0, an R2 of 
1.0 and Y-intercept of 0 in order to predict the right value at 
every single unsampled location. However, in this study, the 
prediction indices were different from the ideal values, 
which indicated that the best-fit models over predicted 
lower parameter values and under predicted higher ones 
[26]. Since a rigorous model prediction is somewhat difficult 
to achieve, a limit of 0.75 was set for the slope to test the 
strength of the prediction. Thus, the slopes were 
characterized in the order of: < 0.5, between 0.5 and 0.75, 
and ≥ 0.75 to describe poor, moderate and good 
predictability of the models. Generally, the scatter plots of 
the observed and predicted data and their spread about the 
1:1 line revealed that aggregate stability and total porosity in 
the surface layer, and silt content and aggregate stability in 
the subsurface layer were poor. 
 

3.3.1. Spatial distribution maps and cross-
validation of particle size distribution 
The spatial maps for particle size distribution (Figures 4a-c) 
showed that the entire study area was characterized by 
moderate to high levels of sand content, with only few 
patches rich in clay content. From a detailed observation of 
the spatial maps for sand content (Figure 4a), the parameter 
was found to increase from the north to south in both layers, 
but decreased with increasing depth along the profile. The 
south-western, mid-eastern and south-eastern zones in the 
field were observed as the areas with higher sand content in 
both layers. On the contrary, significant differences were not 
observed in silt content in both layers (Figure 4c). The main 
reason accountable for the poor prediction of silt content in 
the subsurface layer was the fact it was best-fitted by linear 
model, which is characterized by a pure nugget effect. The 
distribution maps for clay content also revealed that the 
parameter decreased from the north to south, with a fairly 
uniform distribution from east to west in both layers, except 
for some few patches (Figure 4b). From the spatial maps, 
clay content was generally less than 22 and 30% in the 
surface and subsurface layers, respectively. Thus, clay 
content was generally higher in the subsurface layer than in 
the surface layer.  
 
Although the spatial variability of sand and clay contents 
appeared to be more continuous in the field as depicted by 
the natural behaviour of the best-fitted semivariogram 
model, the distribution of areas with higher sand content 
seemed to be more towards the south-western and mid-
eastern zones in both layers in the field. However, very few 
clay patches appeared around the mid-western zone in the 
field. Moreover, areas with lower clay contents were found 
to be well distributed throughout the field. It was, therefore, 
assumed that these locations with lower clay contents 
resulted from the effects of erosion and lessivage.  
 
 
 
 

 

       

 
Figure 1a: Kriged map for sand content (%) in both 

surface and subsurface layers 
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Figure 1b: Kriged map for clay content (%) in both 

surface and subsurface layers 
 

          

 
Figure 1c: Kriged map for silt content (%) in both 

surface and subsurface layers 
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Table 3: Prediction indices for the soil properties  

Soil property Depth (cm) 
Cross-validation parameter 

Slope SE R2 Y-intercept SE-prediction 

Sand (%) 
0-20 0.985 0.092 0.595 1.130 0.063 

20-40 0.900 0.119 0.422 7.710 6.192 
       

Clay (%) 
0-20 1.111 0.104 0.594 -1.090 3.603 

20-40 1.085 0.107 0.568 -1.170 4.885 
       

Silt (%) 
0-20 0.775 0.329 0.066 2.230 2.759 

20-40 -0.117 0.496 0.001 5.210 0.063 
       

 (g/cm3) 
0-20 0.587 0.399 0.027 0.584 0.063 

20-40 0.771 0.219 0.137 0.340 0.044 
       

 (%) 
0-20 0.244 0.608 0.002 35.380 2.396 

20-40 0.820 0.261 0.112 8.030 1.712 
       

ASt (%) 
0-20 -0.559 1.045 0.004 33.060 8.026 

20-40 0.490 0.173 0.093 10.110 0.058 
       

 (%) 
0-20 0.849 0.133 0.342 1.800 1.819 

20-40 0.788 0.298 0.082 2.870 2.228 

 = Bulk density;  = Total porosity;  = Volumetric moisture content; ASt (%) = Aggregate stability; SE = Standard error of 

regression coefficient; R2 = Coefficient of determination; SE-prediction = Standard error of prediction 
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3.3.2. Spatial distribution maps and cross-
validation of soil structure indicators 
From the Kriged maps, the southern and north-eastern parts 
of the field had bulk densities in the order of 1.50 – 1.52 
g/cm3 in the subsurface layer, however, lower values (1.38 – 
1.43 g/cm3) were observed in the surface layer (Figure 5a). 
The high bulk density values in the surface layer were 
observed in the south-eastern, with few patches in the 
middle part of the field as shown in the spatial distribution 
map. This was a clear evidence of compaction in the 
subsurface layer in the southern part of the field, which 
could have probably resulted from the accumulation of clay 
(i.e. clay pan), and plough pan. A general trend of increasing 
bulk density with depth was observed throughout the field.  
 

         

 
Figure 5a: Kriged map for bulk density in both surface 

and subsurface layers 
Patterns of the distribution of total porosity in both layers 
are presented in Figure 5b. The parameter values ranged 

from 45.8 – 47.8% in the surface layer and 42.4 – 46.6% in 
the subsurface layer. The distribution of the property in the 
surface layer had no distinct trend (patchy), with higher 
values concentrated in the northern, mid-north-eastern and 
mid-south-western areas of the field as evidenced by the 
spatial map. The distribution of porosity in the subsurface 
layer, however, showed a smooth and continuous trend. The 
dominant parameter values (43.3 – 44.4%) were found in 
the middle part of the field, and stretched from the north to 
the south. The lower parameter values (42.4 – 43.3%) were 
found to be concentrated in the southern part of the field, 
with a few patches in the north-eastern part, while the 
higher values (45.7 – 56.6%) were found in the south-
eastern and north-western parts of the field.  
 

              

 
Figure 5b: Kriged map for total porosity in both 

surface and subsurface layers 
 
The poor prediction of total porosity in the surface layer 
(Table 3) was attributed to the best-fit semivariogram model 
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(linear model), which is characterized by a pure nugget 
effect. Figure 5c presents the spatial map displaying the 
distribution of aggregate stability in the field. The 
distribution of the property in the surface layer ranged from 
19.9 – 21.9%, with the mid-southern region stretching to the 
northern part of the field possessing the higher values. These 
zones formed approximately 8% of the total area, which 
implied that the remaining 92% of the field was covered by 
aggregates with very low stability. Based on these values, it 
was appropriate to conclude that aggregate stability in the 
entire field was low. The distribution of aggregate stability in 
the subsurface layer, however, showed a different trend 
from that in the surface layer, since the property appeared to 
be distributed in a patchy pattern. The best-fit 
semivariogram model for the property in the surface layer 
being linear was the main reason for its poor prediction.     
 

3.3.3. Spatial distribution maps and cross-
validation of moisture content 
Spatial maps and cross-validation graphs prepared for 
volumetric moisture content through ordinary Kriging for 
both surface and subsurface layers are presented in Figures 
6. From the spatial maps, it is evident that moisture content 
was maximum in both the surface and subsurface layers at 
the mid north-western part of the field where the clay 
content was highest. Cross-validation analysis showed that, 
the prediction of moisture content in the field was better for 
the surface than subsurface layer. 
 

4. CONCLUSIONS 
The presented discussions have demonstrated that soil 
physical properties varied in space and exhibited random 
spatial patterns. The distribution maps generated in the 
study suggest that the field could be prone to erosion since it 
is characterized by low aggregate stability, high bulk density, 
and subsequently, low porosity. The documentation of these 
physical properties in field scale distribution maps will allow 
derivation of zones of defined physical and mechanical 
sensitivity. This can help define management zones, which 
can be combined with less-dense soil samples to provide a 
more accurate prediction of spatial variability of soil 
properties for site-specific soil management under 
agricultural and forest land use systems.  
 
 
 
 
 

            

 
Figure 5c: Kriged map for aggregate stability in both 

surface and subsurface layers 
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Figure 6: Kriged map for volumetric moisture content 

in both surface and subsurface layers 
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