
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1174

“AN OPTIMIZED PARALLEL ALGORITHM FOR LONGEST COMMON

SUBSEQUENCE USING OPENMP” – A Review

1Hanok Palaskar, 2Prof. Tausif Diwan

1 M.Tech Student, CSE Department, Shri Ramdeobaba College of Engineering and Management, Nagpur, India

2Assistant Professor, CSE Department, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
---***---
Abstract - The LCS problem is to find the maximum
length common subsequence of two or more given
sequences. Finding the Longest Common Subsequence has
many applications in the areas of bioinformatics and
computational genomics. LCS problem has optimal
substructure and overlapping sub problems, problems with
such properties can be approached by a dynamic
programming problem solving technique. Due to growth of
database sizes of biological sequences, parallel algorithms
are the best solution to solve these large size problems in
less amount of time than sequential algorithms. In this
paper we have carried out a brief survey of different parallel
algorithms and approaches to parallelize LCS problem on
the multi-core CPUs and as well as on GPUs. We have also
proposed our optimized parallel algorithm to solve LCS
problem on multi-core CPUs using a tool OpenMP.

Key Words: LCS, Dynamic Programming, Parallel

Algorithm, OpenMP.

1. INTRODUCTION

One of the classical problems in computer science
is the longest common subsequence. In LCS
problem we are given two sequences A = (a1,
a2,….am) and B = (b1,b2,….bn) and wish to find a
maximum length common subsequence of A and
B. By using the Dynamic Programming technique
LCS can be solved in O(mn) time. Dynamic
Programming algorithms recursively break the
problem up into overlapping sub problems, and
store the answer to the sub problems for later
reference. If there is an enough overlapping of sub
problems, then the time complexity can be
reduced drastically, typically from exponential to
polynomial. LCS has the application in many
areas, such as speech recognition, file comparison,
and especially bioinformatics.

Most common studies in the bioinformatics field
have evolved towards a more large scale, for
example, analysis and study of genome/proteome

instead of a single gene/protein. Hence, it
becomes more and more difficult to achieve these
analyses using classical sequential algorithms on a
single computer. The bioinformatics requires now
parallel algorithms for the massive computation
for their analysis. Parallel algorithms, are
different from a traditional serial algorithms, and
can be executed a piece at a time on many
different processing devices, and at the end to get
the correct result can be combined together.

Due to the spread of multicore machines and
multithreading processors in the marketplace, we
can create parallel programs for uniprocessor
computers also, and can be used to solve large
scale instances problems like LCS. One of the best
tools to do parallel processing on multi-core CPUs
is OpenMP, which is a shared-memory application
programming interface (API) and can be used to
describe how the work is to be shared among
threads that will execute on different processors
or cores.

2. THE LONGEST COMMON SUBSEQUENCE
PROBLEM

The deduction of longest common subsequence of
two or more sequences is a current problem in
the domain of bioinformatics, pattern matching
and data mining. The deduction of these
subsequences is frequently used as a technique of
comparison in order to get the similarity degree
between two or more sequences.

2.1 Definition

A sequence is a finite set of characters or symbols.
If P = <a1,a2, ..,an> is a sequence, where a1,a2, ..,an
are characters, the integer n is the magnitude of P.
A sequence Q = <b1,b2, ..,bn> is a subsequence of P
= <a1,a2, ..,an> if there are integers i1, i2, .., im(1 ≤ i1
< i2 < .. < im ≤ n) where bk = aik for k ∈ [1,m].
For example, X = <B,C,D,E> is a subsequence of Y
= <A,B,C,D,E,F>. A sequence W is a common

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1175

subsequence to sequences X and Y if W is a
subsequence of X and of Y. A common
subsequence is largest subsequence if it is having
maximum length. For example: sequences
<C,D,C,B> and <C,E,B,C> are the longest common
subsequences of <B,C,D,C,E,B,C> and of
<C,E,D,B,C,B>.

2.2 Score Matrix

A classical approach for solving the LCS problem
is the dynamic programming. This technique is
based on the filling of a score matrix by using a
scoring mechanism. The last calculated score is
the length of the LCS and by tracing back the table
we can get the subsequence.
Consider n and m be the lengths of two strings
which are to be compared. We determine the
length of a largest common subsequence in X =
<x1,x2, ..,xn> and Y = <y1,y2, ..,ym>.
We find L(i, j) the length of a largest common
subsequence in <a1,a2, ..ai> and <b1,b2, ..,bj>(0 ≤ j
≤m,0 ≤ i ≤n).

 0 if i=0 or j=0
L(i,j) = L(i-1,j-1) + 1 if ai = bj
 Max(L(i,j-1), L(i-1,j)) else

We use the above scoring function in order to fill
the matrix row by row (fig. 1).

Fig. 1: Example of Filling LCS Score Matrix

The length of the LCS is the highest calculated
score in the score matrix. In Fig. 1, the length is 4.
To find the LCS we trace back from the highest
score point (4) to the score 1 in the score matrix.

3. LITERATURE SURVEY

To find an optimized solution, lot of research is
going on for over thirty years for the LCS problem.
The solutions are based on Dynamic
Programming, Divide-and-conquer, or Dominant
Point technique etc. also, many attempts has been
made to parallelize the existing algorithms. This
section briefly explains the techniques and
approaches used by the various authors to
parallelize the LCS problem in order to get the
optimized solution.

 Amine Dhraief, Raik Issaoui and Abdelfettah
Belghith in “Parallel Computing the Longest
Common Subsequence (LCS) on GPUs:
Efficiency and Language Suitability” focused on
parallelization of LCS problem using Dynamic
Programming approach. They have presented
parallelization approach for solving LCS problem
on GPU, and implemented their proposed
algorithm on NVIDIA platform using CUDA and
OpenCL. To parallelize their algorithm they have
computed the score matrix in the anti-diagonal
direction instead of row wise. They have also
implemented their proposed algorithm on CPU
using OpenMP API. Their algorithm achieves good
speedup on GPU than CPU, and for their proposed
algorithm CUDA is more suitable, for NVIDIA
platform, than OpenCL[1].

 Quingguo Wang, Dmitry Korkin, and Yi Shang
in “A Fast Multiple Longest Common
Subsequnce (MLCS) Algorithm” presented an
algorithm for general case of Multiple LCS and its
parallelization. Their algorithm is based on
dominant point approach and a fast divide-and-
conquer technique is used to compute the
dominant points. The parallelization of the
algorithm is carried out using multiple processors
having one master processor and other as slaves.
Master processor starts the divide-and-conquer
algorithm, splits the dominant points and assigns
them evenly to two children processor. The
program is recursively executed at the children
processor to form binary tree based on parent-
children relationship. This algorithm shows
asymptotically linear speed-up with respect to
sequential algorithm [2].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1176

 Amit Shukla and Suneeta Agrawal in “A
Relative Position based Algorithm to find out
the Longest Common Subsequence from
Multiple Biological Sequnces” proposed a
parallel algorithm for LCS based on the calculation
of the relative positions of the characters from
any number of given sequences. The speed-up in
this algorithm has been achieved by recognizing
and rejecting all those subsequences which
cannot generate the next character of the LCS. For
this algorithm it is required to have the number of
characters being used in the sequences in
advance. Parallelization approach of this
algorithm uses multiple processors where
number of processors is equal to the number of
characters in the finite symbol set. Calculations
are done at each processor and the results are
stored at local memories of each processer which
are then combined to get the final LCS. The
complexity for the sequential algorithm is O(n)
where n is length of the sequence and the
complexity for the parallel algorithm is O(k)
where k is the slowest processor. Complexity for
the parallel algorithm is independent of the
number of sequences [3].

 R. Devika Ruby and Dr. L. Arockiam in
“Positional LCS: A position based algorithm to
find Longest Common Subsequence (LCS) in
Sequence Database (SDB)” in their paper
presented a position based algorithm for LCS
which is useful in Sequence Database
Applications. Their proposed algorithm focuses
only on matched position, instead of unmatched
positions of sequences, to get LCS. Primary idea
for their algorithm is to remove backtracking time
by storing only the matched position, where LCS
occurs. Also to reduce the time complexity,
instead of searching entire score matrix, matched
position array is used. In their proposed
algorithm score matrix is computed for entire
sequences, but to find the LCS their algorithm
scans only the matched positions. Time
complexity of their proposed algorithm is reduced
to half than time complexity of dynamic LCS [4].

 Jaimei Liu and Suping Wu in “Research on
Longest Common Subsequence Fast
Algorithm” proposed a fast algorithm for LCS, for
two sequences having length ‘m’ and ‘n’, by
transforming the problem of LCS into solving the
problem of matrix m[p,m] (where p< min(m,n)).
They have also presented the parallelization of
their proposed algorithm based on OpenMP. For
optimizing computation of each element in the
score matrix, they have used their proposed

theorems. To find the LCS instead of backtracking
the score matrix, they have used a simple formula
which gives the required LCS in constant time.
Time complexity of their proposed algorithm is
O(np) and the space complexity is O(m+n). They
have realized the parallelization of their proposed
algorithm by using OpenMP constructs on the
nested outer loops [5].

4. PROPOSED WORK

We propose the new optimized parallel LCS
algorithm. Major factor in finding the LCS is the
computation of score matrix hence we will
optimize the calculation of elements in the score
matrix by using theorems, instead of classical
method. We will implement our parallel algorithm
on the multi-core CPUs using OpenMP API
constructs. To increase the performance of our
parallel in terms of speed and memory
optimization we will divide the load among the
threads by applying load balancing techniques
and cache optimization respectively. We expect
that our proposed algorithm will be faster than
the existing Parallel LCS algorithms. In future we
will expand our algorithm, to support the Multiple
Longest Common Subsequence (MLCS) and also
to make the hybrid version of our algorithm by
combining OpenMP and MPI.

5. CONCLUSION

Problem of LCS have the variety of applications in
the domain of pattern matching, data mining and
bioinformatics. Due to the recent developments in
the multi-core CPUs, parallel algorithms using
OpenMP are one of the best ways to solve the
problems having large size inputs. This paper
presented a review of parallel algorithm for the
Longest Common Subsequence problem and
approaches to parallelize LCS problem on the
multi-core CPUs and as well as on GPUs. We also
have proposed our parallel algorithm and the
optimizations in order to increase the
performance, which we expect to be the faster
algorithm in comparison to the existing parallel
algorithms for solving LCS.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1177

6. REFERENCES

[1] Amine Dhraief, Raik Issaoui, Abdelfettah
Belghith, “Parallel Computing the Longest
Common Subsequence (LCS) on GPUs: Efficiency
and Language Suitability”, The First International
Conference on Advanced Communications and
Computation, 2011.

[2] Quingguo Wang, Dmitry Korkin, Yi Shang, “A
Fast Multiple Longest Common Subsequnce
(MLCS) Algorithm”,IEEE transaction on
knowledge and data engineering, 2011.

[3] Amit Shukla, Suneeta Agrawal, “A Relative
Position based Algorithm to find out the Longest
Common Subsequence from Multiple Biological
Sequnces ”, 2010 International Conference on
Computer and Communication Technology, pages
496 – 502.

[4]R. Devika Ruby, Dr. L. Arockiam, “Positional
LCS: A position based algorithm to find Longest
Common Subsequence (LCS) in Sequence
Database (SDB)”, IEEE International Conference
on Computational Intelligence and Computing
Research, 2012.

[5] Jiamei Liu, Suping Wu “Research on Longest
Common Subsequence Fast Algorithm”, 2011
International Conference on Consumer
Electronics, Communications and Networks,
pages 4338 – 4341.

[6] Zhong Zheng, Xuhao Chen, Zhiying Wang, Li
Shen, Jaiwen Li “Performance Model for OpenMP
Parallelized Loops ”, 2011 International
Conference on Transportation, Mechanical and
Electrical Engineering (TMEE), pages 383-387.

[7] Rahim Khan, Mushtaq Ahmad, Muhammad
Zakarya, “Longest Common Subsequence Based
Algorithm for Measuring Similarity Between Time
Series: A New Approach” World Applied Sciences
Journal, pages 1192-1198.

[8] Jiaoyun Yang, Yun Xu,“A Space-Bounded
Anytime Algorithm for the Multiple Longest
Common Subsequence Problem”, IEEE transaction
on knowledge and data engineering, 2014.

[9] I-Hsuan Yang, Chien-Pin Huang, Kun-Mao
Chao, “A fast algorithm for computing a longest
common increasing subsequence”, Information
Processing Letters, ELSEVIER, 2004.

[10] Yu Haiying, Zhao Junlan, Application of
Longest Common Subsequence Algorithm in
Similarity Measurement of Program Source Codes.
Journal of Inner Mongolia University, vol. 39, pp.
225–229, Mar 2008.

[11] Krste Asanovic, Ras Bodik, Bryan, Joseph,
Parry, Samuel Williams, “The Landscape of
Parallel Computing Research: A view from
Berkeley” Electrical Engineering and Computer
Sciences University of California at Berkeley,
December 2006.

[12] Barbara Champman, Gabriel Jost, Ruud Van
Der Pas “Using OpenMP”, 1-123

