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Abstract -In this paper, we study the problem of data 
gathering with compressive sensing (CS) in wireless 
sensor networks (WSNs). Unlike the conventional 
approaches, which require uniform sampling in the 
traditional CS theory, the wireless sensor networks 
are very useful in such area where the human being is 
unable to go and monitor. In such areas the 
continuous monitoring is require without failure of 
network or nodes but wireless sensors network have 
some energy constrain and cost constrain. we propose 
a random walk algorithm for data gathering in WSNs 
and  for future purpose we can compare the result of 
random walk approach to chain based algorithm for 
data gathering which is traditional algorithm 
regularly used for network formation in WSNs. 
Random walk algorithm approach will absorb the 
constrain like path constrain for network efficiently 
and give non-uniform measurement. In this paper, 
from the perspectives of Compressive sensing theory 
and graph theory, we provide mathematical 
foundations to allow random measurements to be 
collected in a random walk based manner We obtain 
random matrix from expander graph which will 
constructed by node measurement and for 
reconstructing we use l1 minimization theorem. 
Comparing two approaches with respect to their 
probability of data gathering .we also carry out 
simulation of both the scheme. Simulation result 
shows that our proposed scheme random walk 
approach can significantly reduce communication cost 

and reduce noise. 

 
Key Words: Random walk, Compressive sensing, l1-
minimization, Gaussian and binomial function, Data 
gathering. 

 
1. INTRODUCTION 
 
As we know, in the past few years, wireless sensor 
networks (WSNs) have been deployed in a wide range of 
application scenarios, such as battle field surveillance, 
environment monitoring, and security systems.  

We consider data collection problem in large-scale WSNs. 
sensor are deployed to monitor physical phenomena such 
as temperature, humidity and light over geometric area. 
Data gathering is one of most important functions provided 
by WSNs, where sensor will sense the data collect all data 
and transfer this data to one another i.e. from nodes to sink 
or sink to nodes. Due to the fact that there may exist high 
correlations among these sensor readings, it is inefficient 
to directly deliver raw data to the destination. Many 
techniques that attempt to reduce the traffic load have 
been developed, such as distributed compression 
algorithms [2], [3] and distributed source coding (DSC) 
approaches [3], [4]. 
       However, the classical compression techniques for 
WSNs, [1], [2], [4], [5], [9], [18]. Typically associated with 
routing algorithms, impose high computation and 
communication overhead on sensor nodes. We have 
various kind of technique to study and apply to networks 
i.e. WSNs networks to collect data Compressive data 
gathering using sub-Gaussian random matrix which use 
term as opportunistic pipelining to data gather [8].forming 
chain-based networks To data gathering explain in chain-
based protocol under compressive sensing framework[9]. 
In that paper the some protocol for energy efficient data 
gathering are explain such as LEACH[9] which is cluster-
based method to collect data and another one is 
PEGASIS[9](Power-Efficient Gathering In Sensor 
Information System) which is chain-based method to 
collect data in networks. Various other papers will discuss 
about application on data gathering with or without 
compressive sensing method. 
        In particular the compressive sensing method is now 
most emerging technique in the field of wireless network 
which will give more advantages than any other sampling 
theorem spatially Shannon sampling theorem or Nyquist 
theorem .as we know conventional approaches to sampling 
signals or image follow shannon’s theorem: the sampling 
rate must be at least the twice the maximum frequency 
present in the signal so called Nyquist rate. Main fact is 
that, this principle will only consider nearly all the signal 
acquisition protocol used in consumer audio and video 
electronics, medical imaging devices, radio receivers, and 
so on. For some signal such as images that are not naturally 
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band limited, the sampling rate is dictated not by the 
Shannon theorem but by the desired temporal or spatial 
resolution. The main difference in compressive sensing and 
Shannon,s theorem  that in shannon’s theorem with the use 
of all sample signal only we can reconstruct the original 
signal and without it or missing some sample signal will 
not give the exact original signal which is required. This 
disadvantage will recover in case of compressive sensing 
theorem technique which will work efficiently with only 
few or little sampled signal so this will give a big advantage 
in case of Wireless Sensing Network in which the signals 
are very weak and very low range. 
       In this paper, specifically we target on two problems of 
wireless sensor networks. First, there are a very limited 
number of active sensors compare with the total number of 
sensor in the network. The number of events is much less 
compared to the number of sources. second one is, 
different events may happen simultaneously and cause 
interference to detect them individually, as a result the 
received signal are superimposed all together and an 
efficient algorithm is needed to separate the signal. To 
overcome the above two problem [4] proposed a sparse 
event Detection scheme in wireless sensor networks by 
employing compressive sensing we have to consider 
following important points: 

1.   Most compressive sensing works formulate the 
problem in image processing, especially bio image 
processing. Formulate the compressive sensing 
problem using sparse nature of Wireless Sensor 
Networks 

2.   To improve we can use different like Bayesian 
detection and a heuristic, using      the prior 
information that the event are binary. so the 
estimation probability can be substantially 
increased, compared with the l1-recovery 
algorithm in the survey[15]. 

3.  Most compressive sensing scheme suffer 
susceptibility under Gaussian noise environment, 
since Gaussian noise can be Unbounded [8].by use 
of simulation we can investigate the effect the 
noise.  

 

       Various application of compressive sensing for data 
gathering in WSNs, have been recently in investigated in 
some papers as shown above and other paper are shown 
in section2 in the supplementary file found on the 
computer  society digital library at: http://doi.org/10.11. 
09/TPDS.2014.2308212.Which has been shown that 
compressive sensing is able to reduce communication cost. 
Traditional CS Based approaches for data gathering suffer 
from two major problems: many approaches generate 
random projection by using dense random matrices, which 
result in high intercommunication cost between sensors  
nodes and thus limits the efficiency for the application of 
CS in WSNs  [6],[10].on other hand, although some 
approaches are built on sparse random matrices to help for  

reducing communication cost, it requires the sink collect 
random manner, in which sensor readings have to collect  
and transfer form randomly selected nodes to the sink 
along multiple paths through any routing method for 
example multi-hop routine, which means precise and exact 
routing algorithm for network is needed .in most of the 
real world scenarios, it is more practical and efficient for 
compressive sensing to collect a linear combination of 
measurement along with the routing path or network path 
through which communication between sink and nodes 
will be done. 
        In this paper, we study the application of CS with 
random walk approach for data gathering in WSNs. 
actually we adopt the standard random walk algorithm to 
collect random measurement along multiple random walk. 
According to the base paper this compressive sensing will 
applicable or lead to non-uniform selection of 
measurement which is different from uniform sampling in 
the traditional compressive sensing (CS) theory and 
according to taken non-uniform scenario the CS will be 
appropriate and this will again show that this approach 
can be used to recover sparse signals in WSN scenario. In 
[14] L. Lovảsz et al. investigated the problems of graph 
theory and random walk. In his survey, the author stated 
the basic concept of the probability for random walk and 
establishing the probability from graph. Similarly, in [13] 
Peter.G.Doyle et al. Give the whole idea about random 
walk and relation to electric network. Author has given 
network solution of model of graph G(n,p) in which an 
edge exist between any two nodes with probability p in 
the network with node n and p depend on the dimension 
of the network i.e. one dimension or two Dimension 
network 
       In this paper, we did the first step to understand why 
and where CS based approach combined with random 
walk might work in a WSN scenario. Most importantly, we 
provide mathematical foundation for CS to use random 
walk in a more general wireless network from the 
perspective of the graph theory [14] and CS theory 
[11][12].   
 

2 PRELIMINARIES AND BASIC CONCEPTS 
 
2.1 Compressive sensing basics 
Compressive sensing provides a new technique for signal 
acquisition and processing. As per the theory of CS, a 
sparse or compressible signal can be reconstructed with 
high probability from a small number of measurements, 
which is far smaller than the length of the original signal. 
       Let’s consider an n-dimensional signal vector 
x .We say that the vector x is perfectly k-sparse 

if it has at most k (k<<n) nonzero entries. For convenience,  
 
we emphasize and study k-sparse signals including perfect 
sparse and approximately sparse signals. Further, suppose 
that x can be represented as x=  in some domain 
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Ψ=(Ψ1......Ψn) where θi are the transform coefficients in 
domain Ψ. Generally, we say that the vector x is also k- 
sparse (In domain Ψ) if there are at most k nonzero 
entries in the vector . The theory of CS 

states that the k-sparse signal x can be recovered from m  
(m< n) linear combinations of measurements with high 
probability, which can be obtained through an m x n 
measurement matrix A, i.e., y = Ax. Each element of y is 
called a projection. Candẻs et al. [5] have shown that 
recovering the signal x from y can be achieved through 
solving an l1-minimization problem: 
 
      S.t y=Ax,                                                       (1) 

 
Or 
       
       S.t y=AΨθ, x=Ψθ.                                     (2) 

 
The above l1-minimaization problem can be solved using 
linear programming techniques. 
       The measurement matrix A plays a key role for CS 
recovery. It has been shown that the l1-minimization 
algorithm can perform an accurate recovery if the matrix 
A satisfies the following restricted isometry property 
 

Definition1: 
(Restricted Isometry Property) 
Let A be an m x n measurement matrix. For some constant 
d, if, for any k-sparse vector x, the following condition is 
satisfied 
 
             (1-δ)||x||p<=||Ax||p<=||x||p                    (3) 
 
It has been shown that some dense random matrices such 
as Gaussian or Bernoulli Random matrices satisfy this 
property. [23] 
The compressive sensing has two basic principles: 
sparsity, which pertains to the signals of interest, and 
incoherence, which refer to the sensing modality. Sparsity 
expresses the idea that the “information rate” of a 
continuous time signal may be much smaller than 
suggested by its bandwidth, or that a discrete-time signal 
depends on a number of degrees of freedom which is 
comparably much smaller than its length. More precisely, 
CS theory explain the fact that many natural signals are 
sparse or compressible in the sense that they have concise 
representations when expressed in the proper basis Ψ. 
Incoherence extends the duality between time and 
frequency and expresses the idea that objects having a 
sparse representation in Ψ must be spread out in the 
domain in which they are acquired, just as a Dirac or a 
spike in the time domain is spread out in the frequency  
domain. Incoherence says that unlike the signal of interest, 
in which the sampling waveforms have an extremely 
dense representation in Ψ. 

 

2.2 The Sensing Problem 
 
In this section, we discuss sensing mechanisms of 
information about a signal f (t) and how it is obtained by  
 
Linear functional recording the values 
   
       yk = (f, ϕk),               k = 1, . . . , m.                                     (4) 
 
We will consider correlations of the object we wish to 
acquire with the waveforms ϕk(t ). This is a standard 
setup. If the sensing waveforms are Dirac delta functions 
then y is a vector of sampled values of f in the time or 
space domain. If the sensing waveforms are indicator 
functions of pixels, then y is the image data typically 
collected by sensors in a digital camera. If the sensing 
waveforms are sinusoids, then y is a vector of Fourier 
coefficients. This is the sensing modality used in magnetic 
resonance imaging (MRI). Although one could develop a 
CS theory of continuous time/space signals, we restrict 
our attention to discrete signals f ∈ . The reason for 

considering discrete signal is essentially twofold: first, this 
is conceptually simpler and second, the available discrete 
CS theory is far more developed we are then interested in 
under sampled situations in which the number m of 
available measurements is much smaller than the 
dimension n of the signal f. Such problems are extremely 
common for a variety of reasons. 
       Due to These circumstances there are some basic 
questions we should consider. Is accurate reconstruction 
possible from m<< n measurements only? Is it possible to 
design m<<n sensing waveforms to capture almost all the 
information about f? And how can one approximate f from 
this information? Letting A denote the m× n sensing 
matrix with the vectors ϕ*1, . . . , ϕ*m as rows (a* is the 
complex transpose of a), the process of recovering ḟ∈  

from y = Aḟ ∈  is ill-posed in general when m < n there 

are infinitely many candidate signals ḟ for which Aḟ = y. 
this will become easy by taking or imagine the realistic 

model of objects ḟ which naturally exist. 
 

2.3 Under sampling and signal recovery 
 
This section will give information about recovery part of 
the CS theory. Ideally, we would like to measure all the n 
coefficients of f, but we only get to observe a subset of 
these and collect the data [1] 
 
       yk = (f, ϕk),          k ∈ M,                                                        (5) 
 
Where M ⊂{1 . . . n} is a subset of cardinality m < n. With  
this information, we decide to recover the signal by l1-
norm minimization: the proposed reconstruction f* is 
given by f*= Ψx*, where x* is the solution to the convex 
optimization program (||x||l1:= i|)  

 Subject to yk=(ϕk,Ψx), k∈M.                (6)                                            
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That is, among all objects f = Ψx consistent with the data, 
we pick that whose coefficient sequence has minimal l1 
norm. 
 

THEOREM 1 [22] 
Fix f ∈ and suppose that the coefficient sequence x of f 

in the basis Ψ is S-sparse. Select m measurements in the Φ 
domain uniformly at random. Then if 
  
            m ≥ C · (Φ,Ψ) · S · log n                                              (7) 

 
For some positive constant C, the solution to (6) is exact 
with overwhelming probability. (It is shown that the 
probability of success exceeds 1−δ if m ≥ C· (Φ,Ψ)·S· 

log(n/δ). In addition, the result is only guaranteed for 
nearly all sign sequences x with a fixed support. [5] 
 
 

 

 

 
 

Fig1 (a) A sparse real valued signal (b) its reconstruction 
from 60 Fourier coefficient by l1 minimization.(c) The min. 
energy reconstruction obtained by l2 norm.  
 

3. RANDOM SENSING 
 
Returning to the RIP, here we find sensing matrices with 
the property that column vectors taken from arbitrary 
subsets are nearly orthogonal. It’s better to have larger 
subset. This is where randomness re-enters the picture. 
From available material we Consider the following sensing 
matrices: i) form A by sampling n column column vectors 
uniformly at random on the unit sphere of Rm; ii) form A 
by sampling i.i.d. entries from the normal distribution with 
mean 0 and variance 1/m; iii) form A by sampling a 
random projection P as in “Incoherent Sampling” and 
normalize: A =√ n/mP; and iv) form A by sampling i.i.d. 
entries from a symmetric Bernoulli distribution (P (Ai, j= 
±1/√m) = 1/2) or other sub-Gaussian distribution. With 
overwhelming probability, all these Matrices obey the RIP 
(i.e. the condition of our theorem) provided that 
 
                 m ≥ C · Slog(n/S)                                                        (8) 
 
        It has also been proven that some sparse 0-1 matrices, 
such as the adjacency matrices of expander graphs, can 
satisfy the RIP-1 property. Using sparse matrices, the l1-
minimization algorithm can also be used to recover k-
sparse signals. Another in which each entry Aij is i.i.d 
drawn according to 
  

Aij=  

 
       It has been shown that we can construct matrix from 
expander graph which will show the connection of all 
nodes connected during formation of network by random 
walk. This matrix will give the exact connection between 
nodes and graph will give detailed connection for example 
as shown below: 
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              A=  

 
       This matrix will give the connection such as first node 
is not connected and denoted by 0 respectively. Second 
node is 1 so this form connection with another node and 
so on. Further nodes are shown connected in diagram let 
G= (V, E) be an undirected graph with |V|=n and A be the 
Boolean matrix with m x n. If we perform Independent 
random walk let say m walks then each row of A can be 
seen as the characteristic vector of a subset vertices in V 
visited by the walk as shown in following figure. The 
nodes on left hand side of following figure corresponds to 
the signal coefficient set V and on right hand side 
corresponds to measurements set M as |M|=m. For our 
project we take one example of random measurement 
matrix and based on the obtained matrix we form the 
bipertile graph only for the understanding purpose of 
connection in random walk and how it will form the 
wireless network within nodes and sink.   
.   
 

 
 
Fig2: Illustration of expander graph corresponding to the 
measurement matrix A 
 

3.1 Theory on Random walk 
According to the author of random walk and electric 
networks[13] give the information about random walk 
basics. Let G= (V, E) be a connected graph with n nodes 
and m edges. If we perform random walk on G and if we 
start at V0 and up to the node Vt with t-steps then 
probability of connecting neighbour node is 1/d(Vt) and 
for other node in network the overall probability is also  
 

same as distribution  
 
                       Pt(i) = Prob(vt = i): 

So 
                  pij = 1/d(i)          ; if  ij ε E, 
                       = 0                  ; otherwise. 
                             
 
A) Random walks on Finite networks 
In one dimension network the probability will be ½ the 
example below illustrate the finite network             

                                                                            

 
 
Fig3 (a): Random walk in one dimension 
 
 In 2 - dimension network the probability will be ¼ and 
example are shown below and the walker moves from x = 
(a; b) to each of the four neighboring points (a + 1; b), (a -
1; b), (a; b + 1), (a; b-1) with probability 1/4    
 
 

 
 
Fig3 (b): Random walk in two dimensions 

 
B) Gaussian distribution and Binomial  
    distribution 
[23]The graph of a Gaussian is a characteristic symmetric 
“bell curve” shape. The parameter ‘a’ is the height of the 
curve’s peak; ‘b’ is the position of the centre of the peak 
and controls width of the “bell”. Gaussian function are 
widely used in statistics where they describe the normal 
distribution , in signal processing where they serve to 
define Gaussian filter and give probability function of 
signals. In image processing where two-dimensional  
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Gaussian distribution used for Gaussian blurs. Gaussian 
distribution will give the continuous distribution as 
output. Gaussian function arises by composing the  
exponential function with a concave quadratic function. 
This function will is in the Form of              
 

                F(x) =a                                                     (8) 

 
       We are using this Gaussian distribution for finding 
exact probability from output. Similarly, we are using 
binomial distribution to convert that continuous 
distribution in discrete format. In probability theory and 
statistics, the binomial distribution with parameter n and 
p is the discrete probability distribution of the number of 
successes in a sequence of n independent yes or No 
experiments, each of which yield success with probability 
p. he binomial distribution is frequently used model the 
number of successes in a sample of size n drawn 
replacement from a population of size N. The Binomial 
Cumulative Distribution function which we used in finding 
probability is expressed as 
 

 F (k;n,p)=Pr (X<=k) =                        (9) 

 
The following diagram will show Gaussian and binomial 
distribution function: 
 

 
Fig4 (a): Gaussian distribution with variance function 
 
 
 
 
 
 

 
Fig4 (b): Binomial distribution with probability ‘p’ and 
number of nodes ‘n’. 
 

4. PROBLEM STATEMENT 
 
For formation of network we consider the m sensor nodes 
for initialize m independent random Walk. As we proceed 
as per the walk, each step one node will choose one of its 
neighbours and perform linear combination with the 
previous measurement of the neighbour. At the end of 
random walk, m random projection are generated and all 
will be send to sink through shortest path routine 
Strategy. So at sink we will get the constructed signal of all 
measurement and at sink we used recovery algorithm to 
construct original signal of measurement. Step for 
describe the operation of random walk is follows: 
Step (1): at the beginning, i nodes let’s say vi ε V is uniform 
and randomly selected. 
Step (2): after selected and collecting measurement form 
beginning node it will choose node vj uniformly at random 
walk and adds previous and current measurement 
collected as 
 
                     xj(1)=  xi(0) + xj(0)  
 
At the same time the node vi decrements the length t. 
Step (3): Repeat the above steps up to t =0 i.e. length 
become 0 and at the end the final constructed signal 
equation will be: 
 
            xp(t’) = xk(t’-1) + xp(t’-1).  
 
For p last node and k previous node in random walk. This 
way we can form the overall network and as explained 
above, that final signal will collect by sink and we can 
recover the original signal. For performing the random 
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walk with compressive sensing we used following 
methodology: 
        

               Taking matrix form of reading 

    

 

                       Form Bipertile graph 

 

 

              Finding random walk probability 

 

                 

                     Finding exact probability    

 

 

The above methodology will rough sketch for project. Here 
we are finding efficiency of our algorithm in wireless 
sensor network for finding network and dependent 
application with respect to other algorithm like chain 
Based algorithm or different routine strategies like: 

1. Tree routing strategy 
2. Cluster based strategy 
3. Distributed strategy and  

4. Random strategy 
 

5. ANALYSIS 
 
In this section we will prove that our strategy i.e. random 
walk strategy will give considerably good probability than 
other strategy and for future aspect we can compare well 
know and regularly used chain based strategy. The vertex 
visited by random walk will prove with the used of lemma 
1: 

Lemma 1. Let Bt(v) be the even that the random walk W 
starting at u visits v by time t(t >=T). Then the probability 

Pr (Bt(v)) will be between and  where 

 and c is a constant 

The above lemma shows that the upper bound and the 
lower bound of the probability that a random walk visits a 
certain vertex are on the same order. the proof of above 
lemma is provided by supplementary file on online 
material and further information is in material random 
walk and electric network[13] and the introduction about 
graph will provided by random walk on graph[14]. 
 

6. NUMERICAL SIMULATION 
 
       In this section, we will study performance of our 
proposed algorithm through simulation. We consider the n 
nodes which are connected randomly. The prescribed 

Distance for two nodes will be . For simulation 

we used MATLAB for simulation. We taken 100 nodes with 
in square area and perform random walk with sparse 
signal. For finding exact probability as explain above we  

used Gaussian and binomial distribution at simulation 
stage. With prescribe algorithm and flowchart we get 
output. 
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Fig5: Probability of random walk for 100 nodes covers 1 

unit square area. 

       In simulation, we make bar graph to showed simplified 
solution and it’s easy to understand. For algorithm, we 
specify the length of spec steps and time steps that are 
‘delta’ and ‘tau’ specify in program and as per user we can 
change the value of both parameter and see the different 
probability. For our simulation we stick to 0.1 and 0.01 
values we give us probability value up to 0.1 and for 
different values of nodes and our parameter, we can 
observe different probability graph. For future purpose, 
we can compare this different probability result to 
distinguish different algorithm.Fig6 will give us the graph 
with exact probability. We used binomial function to find 
the exact probability. We can find mean value distance 
between two bars, maximum distance between two nodes 
and RMS distance between two nodes. Simulation will 
consider for the sparse and uniformly random numbers of 
nodes and form network with our scheme.Fig7 shown 
original signal which is sense by the different nodes. Here 
we take sample signal from available source and using 
compressive sensing we mixed the original signal with one 
randomly generated matrix. We have our original signal in 
the form of m x n matrix form and at the sink node we use 
recovery method to recover the original signal by 
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simulation we got exact Original signal so we use 

compressive sensing for our scheme very efficiently. 
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Max Distance: 3.4

Mean Distance: 0.022

RMS Distance: 0.97304

Simulation

Exact Probability

Gaussian

Fig6: Exact probability with both Gaussian and binomial 

distributions. 

Fig7: Construction and recovery of original signal with 
compressive sensing. 

7. CONCLUSIONS 
 
In this paper, we studied the problems in wireless sensor 
network when we actually build networks. Actual problem 
with data gathering in networks and we discuss the 
compressive sensing technique. random walk approach 
which is more applicable for most of the WSN applications 
like data gathering, dissemination and recovery. We 
studied the details of random walk and approach to apply 
in data gathering with compressive sensing. Simulation 
result will show that the sparse signal can be 
reconstructed with probability which will change 
according to random sparse signal and this will go up to 
maximum of 0.1. The exact probability with mean distance 
0.02 will give the brief probability in case of n=100. Hence 
this will give us that all signals can be reconstructed with 
random walk strategy whose average probability will go 
up to 0.1. This will show that the random walk algorithm 
will give high probability of data gather. This will also 
reduce the cost of the network as probability increases. As 
we get the average probability of random walk approach 
in WSN network as 0.1 i.e.  90% this will show that this 
approach have more chance to establish the network 
efficiently and maintain continuously. The SNR ratio will 
up to 25% shows efficient network in presence of noise 
and finally the compressive sensing used with recovery 

theorem to obtain original signal. 
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