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Abstract - This paper investigates the effect of time 
delays on the stability of a generator excitation control 
system compensated with a stabilizing transformer 
known as rate feedback stabilizer to damp out 
oscillations. The time delays are due to the use of 
measurement devices and communication links for 
data transfer. A direct and exact method based on 
Rekasius substitution is proposed to determine the 
maximum amount of time delay known as delay margin 
that the system can tolerate without loosing its 
stability. The proposed method starts with the 
determination of all possible purely imaginary 
characteristic roots for any positive time delay. To 
achieve this, Rekasius substitution is first used to 
convert the transcendental characteristic equation into 
a polynomial. Then, Routh stability criterion is applied 
to determine the critical root, the corresponding 
oscillation frequency and the delay margin for stability. 
It is found that the excitation control system becomes 
unstable when the time delay crosses certain critical 
values. Theoretical delay margins are computed for a 
wide range of controller gains and their accuracy are 
verified by using Matlab/Simulink. Results also indicate 
that the addition of a stabilizing transformer to the 
excitation system increases the delay margin and 
improves the system damping significantly. 
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1. INTRODUCTION 
 
In electrical power systems, load frequency control (LFC) 
and excitation control system also known as automatic 
voltage regulator (AVR) equipment are installed for each 
generator to maintain the system frequency and generator 
output voltage magnitude within the specified limits when 
changes in real and reactive power demand occur [1, 2]. 
This paper investigates the effect of the time delay on the 
stability of the generator excitation control system that 
includes a stabilizing transformer by using an exact and 
direct analytical method. Figure 1 shows the schematic 

block diagram of a typical excitation control system for a 
large synchronous generator. It consists of an exciter, a 
phasor measurement unit (PMU), a rectifier, a stabilizing 
transformer (rate feedback stabilizer) and a regulator [1]. 
The exciter provides DC power to the synchronous 
generator’s field winding constituting power stage of the 
excitation system. Regulator consists of a proportional-
integral (PI) controller and an amplifier [2,3]. The 
regulator processes and amplifies input control signals to 
a level and form appropriate for control of the exciter. The 
PI controller is used to improve the dynamic response as 
well as to reduce or eliminate the steady-state error. The 
amplifier may be magnetic amplifier, rotating amplifier, or 
modern power electronic amplifier. 
 
The PMU derives its input from the secondary sides of the 
three phases of the potential transformer (voltage 
transducer) and outputs the corresponding positive 
sequence voltage phasor. The rectifier rectifies the 
generator terminal voltage and filters it to a DC quantity. 
The stabilizing transformer provides an additional input 
signal to the regulator to damp power system oscillations 
[4]. 
 
The operation of this system can be described as follows: 
When an increase in the power load demand, especially in 
the reactive power load demand occurs, a drop in the 
generator terminal voltage (Va ) is observed. The voltage 
magnitude is sensed by the PMU through a potential 
transformer. The measured voltage is rectified and 
compared with a reference DC voltage. The PI controller 
produces an analog signal that controls the firing of a 
controlled rectifier shown as amplifier in Figure 1. Thus, 
the regulator (PI controller and amplifier) controls the 
exciter field and increases the exciter terminal voltage.  
 
The generator field current is increased because of an 
increase in the exciter terminal voltage. Such an increase 
in the field current results in an increase in the generator 
electro-motor-force (emf). Thus, the reactive power 
generation is increased to a new equilibrium point, raising 
the generator terminal voltage to the desired value. 
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Fig -1:The schematic block diagram of the generator excitation control system 
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Fig -2: Block diagram of excitation control system including time delay 

 
 
In past studies [6-7], time delay was usually considered as 
constant value. However, in real power systems it usually 
fluctuates randomly in some range. Therefore, it is vital to 
determine the maximum amount of time delay known as 
delay margin that the system can tolerate without 
becoming unstable. There are several methods in the 
literature to compute delay margins of time-delayed 
continuous systems such as the generation excitation 
control system. The common starting point of them is the 
determination of all the imaginary roots of the 
characteristic equation. The existing procedures can be 
classified into the following five distinguishable 
approaches: i) Schur-Cohn (Hermite matrix formation) [8-
10]; ii) Elimination of transcendental terms in the 
characteristic equation [11]; iii) Matrix pencil, Kronecker 
sum method [8-10, 12]; iv) Kronecker multiplication and 
elementary transformation [13]; v) Rekasius substitution 
[14-17]. These methods demand numerical procedures of 
different complexity and they may result in different 
precisions in computing imaginary roots. A detailed 
comparison of these methods, demonstrating their 
strengths and weakness can be found in [18]. 

 
Among these methods, we have applied the method 
presented in [11] into the delay margin computation of 
excitation control system without a stabilizing 
transformer [19]. This paper aims to extend our earlier 
work by proposing a more efficient and less complex 
method as compared with one given in [11] to determine 

delay margin for stability of the time-delayed excitation 
control system. 
 
This study proposes Rekasius substation method reported 
in [14-17] to estimate the delay margin of the time-
delayed generator excitation system. The proposed 
method first uses Rekasius substitution [14] to convert the 
transcendental characteristic equation of the time-delayed 
model of the system into an algebraic polynomial, which is 
then analyzed relatively easily for cases with purely 
imaginary roots. This procedure does not use any 
approximation or transformation to eliminate the 
transcendentality of the characteristic equation. 
Therefore, it is exact and the purely imaginary roots of the 
new algebraic polynomial coincide with the purely 
imaginary roots of the transcendental characteristic 
equation exactly. As a result, this method reduces the 
stability problem effectively to one free of delay, which in 
turns requires calculating only imaginary roots of a single-
variable polynomial. For this reason, Routh stability 
criterion is then used to determine the critical root, the 
corresponding oscillation frequency and the delay margin 
for stability. It must be also stated that the proposed 
method has been successfully applied into the stability 
analysis of time-delayed electric power systems and 
mechanical systems to compute the delay margin for 
stability [20,21], which indicate the effectiveness of the 
method.  
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Moreover, in this current study, the excitation control 
system model studied in [19] is enhanced by including a 
stabilizing transformer. With this enhancement, it will be 
possible to investigate the impact of a stabilizing 
transformer to the delay margin and the stability of time-
delayed generator excitation control system. Such 
analyses do not exist in the literature. Using the proposed 
method, the delay margins are computed for a wide range 
of controller gains and the theoretical delay margin results 
are verified by using time-domain simulation capabilities 
of MATLAB/Simulink [22]. 
 

2. AVR SYSTEM MODEL WITH TIME DELAY AND 
STABILITY 
 
2.1 AVR SYSTEM MODEL WITH TIME DELAY 
 
For load frequency control and excitation control systems, 
linear or linearized models are commonly used to analyze 
the system dynamics and to design a controller. Figure 2 
shows the block diagram of a generator excitation control 
system including delays. Note that each component of the 
system, namely amplifier, exciter, generator, sensor and 
rectifier is modeled by a first-order transfer function [1,2]. 
The transfer function of each component is given below: 

( ) ; ( ) ;
1 1

( ) ; ( )
1 1

A E
A E

A E

G R
G R

G R

K K
G s  G s  

T s T s

K K
G s  G s

T s T s

 
 

 
 

             (1) 

where AK , EK , GK , and RK  are the gains of amplifier, 

exciter, generator, and sensor, respectively, and AT , ET , 

GT , and RT  are the corresponding time constants. 

 
Note that, as illustrated in Figure 2, using an exponential 
term, the total of measurement and communication delays 
( ) is placed in the feedback part of the AVR system. 

Moreover, a stabilizing transformer is introduced in the 
system to add a rate feedback to the control system. The 
stabilizing transformer will add a zero to the AVR open-
loop transfer function and thus, will increase the relative 
stability of the closed-loop system. The transfer function of 
the stabilizer is given as follows: 

( )
1

F
F

F

K s
G s

sT



              (2) 

where FK  and FT  are the gain and time constant of the 

stabilizer, respectively. The transfer function of the PI 
controller is described as [23]: 

( ) I
c P

K
G s K

s
                (3) 

where PK  and IK  are the proportional and integral gains, 

respectively. The proportional term affects the rate of 
voltage rise after a step change. The integral term affects 
the generator voltage settling time after initial voltage 
overshoot. The integral controller adds a pole at origin and 
increases the system type by one and reduces the steady-
state error. The combined effect of the PI controller will 
shape the response of the generator excitation system to 
reach the desired performance. 
 

2.2 STABILITY 
 
The characteristic equation of the excitation control system 
can be easily obtained as: 

( , ) ( ) ( ) 0ss P s Q s e                   (4) 

where ( )P s  and ( )Q s  are polynomials in s with real 

coefficients given below: 

6 5 4 3 2
6 5 4 3 2 1

2
2 1 0

( )

( )

P s p s p s p s p s p s p s

Q s q s q s q

     

  
           (5) 

The coefficients of these polynomials in terms of gains and 
time constants are given in the Appendix. 
 
The main goal of the stability studies of time-delayed 
systems is to determine conditions on the delay for any 
given set of system parameters that will guarantee the 
stability of the system. As with the delay-free system (i.e., 

0  ), the stability of the AVR system depends on the 

locations of the roots of system’s characteristic equation 
defined by (4). It is obvious that the roots of (4) are a 
function of the time delay  . As   changes, location of 

some of the roots may change. For the system to be 
asymptotically stable, all the roots of the characteristic 
equation given by (4) must lie in the left half of the 
complex plane. That is: 

( , ) 0,     s s C                  (6) 

where C  represents the right half plane of the complex 

plane. 
 
Depending on system parameters, there are two different 
possible types of asymptotic stability situations due to the 
time delay  : 

 
i) Delay-independent stability: The characteristic 

equation of (4) is said to be delay-independent stable if the 
stability condition of (6) holds for all positive and finite 
values of the delay, [0, )   . 

ii) Delay-dependent stability: The characteristic 
equation of (4) is said to be delay-dependent stable if the 
condition of (6) holds for some values of delays belonging 
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in the delay interval, [0, )  , and is violated for other 

values of delay    . 
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Fig -3: Illustration of roots of characteristic movement 
with respect to time delay 
 
In the delay-dependent case, the roots of the characteristic 
equations move as the time delay   increases starting 

from 0  . Figure 3 illustrates the movement of the roots. 

Note that the delay–free system ( 0)   is assumed to be 

stable. This is a realistic assumption since for the practical 
values of system parameters the excitation control system 
is stable when the total delay is neglected [1]. Observe that 
as the time delay   is increased, a pair of complex 

eigenvalue moves in the left half of the complex plane. For 
a finite value of 0  , they cross the imaginary axis and 

pass to the right half plane. The time delay value *  at 

which the characteristic equation has purely imaginary 
eigenvalues is the upper bound on the delay size or the 
delay margin for which the system will be stable for any 
given delay less or equal to this bound, *  . In order to 

characterize the stability property of (4) completely, we 
first need to determine whether the system for any given 
set of parameters is delay-independent stable or not, and 
if not, to determine the delay margin *  for a wide range 

of system parameters. 
 
In the following section, we present a practical approach 
that gives a criterion for evaluating the delay dependency 
of stability and an analytical formula to compute the delay 
margin for the delay-dependent case. 
 

3. DELAY MARGIN COMPUTATION 
 
A necessary and sufficient condition for the system to be 
asymptotically stable is that all the roots of the 
characteristic equation of the generator excitation control 
system with a stabilizing transformer, given in (4), lie in 
the left half of the complex plane. In the single delay case, 

the problem is to find values of *  for which the 

characteristic equation of (4) has roots (if any) on the 
imaginary axis of the s-plane. Clearly, (s, ) 0   is an 

implicit function of s and   which may, or may not, cross 
the imaginary axis. Assume for simplicity that (s,0) 0   

has all its roots in the left half plane. That is, the delay-free 
system is stable. Observe that the characteristic equation 
of (4) has an exponential transcendentality feature 

because of the term se  . This results in infinitely many 

finite roots, which makes the determination of the roots 
and delay margin a difficult task. However, this problem 
could be easily overcome by using an exact substitution 
for the transcendental term suggested by Rekasius [14]. 
This substitution is given as; 

1
   ,   

1

s Ts
e T

Ts

  
  


            (7) 

and is defined only for s=jωc. It should be pointed out that 
(7) is an exact substitution, not an approximation, when 
the characteristic equation of (4) has roots on the 
imaginary axis. Further, (7) gives the following mapping 
condition relating ωc and T [14, 16]: 

12
* ( )    0,1,2,...c

c

Tan T  


   
 

             (8) 

This equation describes an asymmetric mapping in which 
one T  is mapped into infinitely many * ’s for a given ωc. 

Inversely, for the same ωc, one particular *  corresponds 

to one T  only. The substitution of (7) into (4) results in a 
new characteristic equation as; 

7 6 5 4
7 6 5 4

3 2
3 2 1 0

( , )

            0

s T a s a s a s a s

a s a s a s a

     
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           (9) 

where  

7 6 5 5 4 3 3 2 2

1 1 1 0 6 6 5 4 4 3

2 2 2 1 1 0 0

, ,  ( - )

- ,  ,  

( - ) ,  

a p T a p p T a p p q T

a p q q T a p p T a p p T

a p q p q T a q

    
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              (10) 

This method reduces the stability problem effectively to 
one free of delay, which in turns requires calculating only 
roots of a single-variable polynomial. It is obvious from (9) 
that after Rekasius substitution the system characteristic 
equation of (4) has become an ordinary polynomial whose 

coefficients are parameterized in T only. Note that T  , 

thus it can also be negative. It must be noted that the 6th 
order characteristic equation with delay given in (4) is 
now converted into a 7th order polynomial given in (9) 
without transcendentality. It is clear that these two 
equations ( , )s   and ( , )s T  possess exactly the same 

imaginary roots and there is no correspondence between 
the remaining roots. Since these two equations have a 
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perfect coincidence with respect to the imaginary roots, 

we prefer solving the simpler  ( , )  for ( , ) 0k ckT s T    

instead of   *( , )  for  ( , ) 0k ck s    . The question is to 

determine all T   values, which causes imaginary roots 

of cs j  of the augmented characteristic equation 

( , ) 0s T  . For this purpose, Routh-Hurwitz criterion 

could be utilized. To determine  the values of substitution 
parameter T , we need to form the Routh array based on 

(9) and set the only term 11( )R T in the 1s  row to zero [16, 

17, 23]. The Routh’s array is obtained as; 

7
7 5 3 1

6
6 4 2 0

5
51 52 53

4
41 42 43

3
31 32

2
21 22

1
11

0

0

0 0

0 0

0 0 0

s a a a a

s a a a a

s R R R

s R R R

s R R

s R R

s R

           (11) 

where  

6 5 7 4 21 32 31 22
51 11

6 21

- -R
= ,..., =

a a a a R R R
R R

a R
         

(12) 

By setting the term 11( )R T  in the 1s  row to zero we obtain 

the following 14th order polynomial of T  as; 

14 13
14 13 1 0... 0t T t T t T t               (13) 

The roots of this polynomial may easily be determined by 
standard methods. Depending on the roots of (13), the 
following situation may occur: 
 

i) The polynomial of (13) does not have any real 
roots, which implies that the characteristic equation of (4) 
does not have any roots on the j -axis. In that case, the 

system is stable for all 0  , indicating that the system is 

delay-independent stable. 

ii) The polynomial of (13) has at least one real root, 
which implies that the characteristic equation of (4) has at 
least a pair complex eigenvalues on the j -axis. In that 

case, the system is delay-dependent stable. 
 

The polynomial given by (13) may have at most fourteen 

real roots,  1 2 14, ,....,cT T T T . Once this set of real roots is 

determined, the corresponding crossing frequencies 

cs j   can be found using the auxiliary equation, which 

is formed by the 2s  row of the Routh’s array. For a real 

i cT T  1,2,...,14i  , the auxiliary equation is given as 

follows; 

2
21 22( ) ( ) 0c cR T s R T             (14) 

It must be mentioned here that in order for (14) to yield 
imaginary roots cs j  , the following additional 

condition has to be satisfied also [23]; 

21 22 0R R               (15) 

Observe that the coefficient 21R  is a function of cT  and 

22R  is a positive constant coefficient since 

22 0 G R A E IR a K K K K K  . For this reason, the auxiliary 

equation will yield imaginary roots, for positive 21R  only. 

For those cT  values, the crossing frequencies are obtained 

from (14) as; 

22

21

( )

( )

c
c

c

R T

R T
              (16) 

Observe that we can determine at most fourteen different 

crossing frequencies  1 2 14, ,...,c c c    corresponding to 

 1 2 14, ,....,cT T T T . Substituting ci  and iT  for 

1,2,...,14i   into (8), we can further get the corresponding 

time delays  1 2 14, ,...,     . According to the definition of 

delay margin, the minimum of those time delays will be 
the system delay margin. 
 

4. THEORETICAL AND SIMULATION RESULTS 
 
4.1 THEORETICAL RESULTS 
 
In this section, the delay margin *  for stability for a wide 

range of PI controller gains is computed using the 
analytical procedure described in previous section. 
Theoretical delay margin results are verified by using 
Matlab/Simulink. The gains and time constants of the 
exciter control system used in the analysis are as follows 
[1]. 5,AK   1.0,E G RK K K    2.0FK   0.1 ,AT s  

0.4 , 1.0 , 0.05 ,E G RT s T s T s    0.04 sFT  . 

 
First, we choose a typical PI controller gains 

10.7; 0.8 P IK K s   to demonstrate the delay margin 

computation. The process of the delay margin 
computation consists of the following four steps: 
 
Step 1: Determine the characteristic equation of time 
delayed excitation control system using Eqs. (4) and (5). 
This equation is found to be: 

5 6 5 4 3

2 2

( , ) (8x10 0.00468 0.4416 8.427

              16.99 9.0 ) + (0.14 3.66 4) 0s

s s s s s

s s s s e 

 



     

   
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Step 2: Apply Rekasius substitution given by (7) into (4) 
so as to obtain the new characteristic equation given by 
(9). The coefficients of this equation are found to be 

7 6

5 4

3 2

1 0

0.00008 ;   0.00008 0.00468 ;   

0.00468 0.4416 ;   0.4416 8.427 ;

8.427 16.85 ;  17.13+5.34

12.66 4 ;   4

a T a T

a T a T

a T a T

a T a

  

   

  

  

 

Step 3: Compute elements of Routh table given by (12) 
and determine the values of cT  using (13). Only ten of the 

fourteen roots of (13) are found to be real. These real 
roots are given below. 

1 2 3

4 5 6

7 8 9

10

1.61122;    = 0.05242;  0.05240; 

1.07826;   0.05320; 0.04569; 

= 0.05006;  0.01709; 1.51469;   

0.01698

T T T

T T T

T T T

T

   

     

    

 

 

Step 4: Compute 21R  for all T  and check their sign. Note 

that for only 1=1.61122T , 21R  is positive and its value is 

21 23.331R  . For this reason, the remaining real roots T  

are not taken into account since they will not result in 
imaginary roots for the characteristic equation of the AVR 
system defined by (4) or equivalently the auxiliary 
equation given in (14). 

Step 5: Compute the crossing frequency c  using (16) 

and the corresponding delay margin using (8). They are 

found to be 0.414 rad/sc   and * 2.8417 s  . This result 

indicates that the delay margin is about * 2.8417 s   for 

0.7,PK 
10.8 IK s . When time delay exceeds this 

value, the generator excitation control system will become 
unstable. 
 
Table -1: Delay Margins * for different values of KI and 

KP of the AVR system with a stabilizing transformer 
 

K I (S-1) 
*  (s) 

K P  = 

0.3 
K P  = 

0.5 
K P  = 

0.7 
K P  = 

0.9 
0.1 5.3902 4.4619 3.8120 3.4569 
0.2 4.0139 3.8831 3.6424 3.4205 
0.3 3.4744 3.4786 3.4050 3.2994 
0.4 3.1986 3.2308 3.2159 3.1710 
0.5 3.0347 3.0710 3.0775 3.0619 
0.6 2.9275 2.9617 2.9760 2.9745 
0.7 2.8527 2.8833 2.9000 2.9052 
0.8 2.7978 2.8248 2.8417 2.8501 
0.9 2.7561 2.7799 2.7960 2.8056 
1.0 2.7234 2.7444 2.7594 2.7694 
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Fig -4: Voltage response of the AVR system with a 

stabilizing transformer for 0 7PK . , 10 8 IK . s and 

three different time delays 2.74 ,  2.876 ,  and  3.0 s s s    

 
For the theoretical analysis, the effect of PI controller 
gains on the delay margin is also investigated. For this 
reason, different values of PI controller gains are selected, 
and the delay margin *  is computed using the proposed 

method. Table 1 shows the complete theoretical results on 
the delay margins of the AVR system with a stabilizing 

transformer for the range of 0.3 0.9PK    and 

10.1 1.0 IK s  .  

 
It is clear from the table that the delay margin decreases 
as the integral gain increases when PK  is fixed. Moreover, 

the comparison of delay margin results presented in Table 
1 with those of the AVR system without a stabilizing 
transformer (see Table 2 in [19]) indicates that 
compensation of the AVR system by a stabilizing 
transformer significantly increases the delay margins for 
all values of PI controller gains, which makes the AVR 
system more stable. For example using the Rekasius 

substitution, for 0.7PK   and 10.8 ,IK s  the delay 

margin when a stabilizing transformer not included is 

found to be 0.1563 s    while it is * 2.8417 s   when a 

stabilizing transformer is included. This is obviously a 
significant improvement in the stability performance of 
the AVR system. It also should mentioned here that the 
delay margin results obtained by Rekasius substitution 
when the stabilizing transformer not included are almost 
the same as ones computed by direct method reported in 
[19]. For example, for the same PI gains the direct method 

of [19] gives 0.1554 s   . This indicates that the 

proposed method also provides good results for AVR 
system not including a stabilizing transformer.  
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4.2 VERIFICATION THEORETICAL RESULTS WITH 
MATLAB/SIMULINK 
 
Matlab/Simulink is used to verify the theoretical results 
on the delay margin. For the illustrative purpose, PI 
controller gains are chosen as KP = 0.7, KI = 0.8 s-1. From 
Table 1, for these gains, the delay margin is found to be 

2.8417 s   . However, the delay margin is found to be 

2.876 s    by using simulation. The error between the 

theoretical and simulation results for the delay margin is 
evidently negligible. It must be stated here that for 
theoretical computation of roots and delay margin, 
Mathcad program [24] is used, because this program is 
commonly used for cases in which extensive symbolic 
computations such as those presented in this paper are 
involved. On the other hand, time-domain simulation 
capabilities of Matlab/Simulink are utilized to verify 
theoretical delay margin results. It is possible that the 
usage of two different software packages, Mathcad and 
Matlab may result in such an error. 
 

Simulation results for 2.876 s    as well as two other 

delay values ( 2.74 s   and 3.0 s  ) are shown in 

Figure 4. From the figure, it is clear that at 2.876 s    the 

sustained oscillations are occurred indicating a marginally 
stable operation. When the time delay is less than the 

delay margin ( 2.74 s    ), it is expected that the 

exciter system will be stable. On the other hand, when the 
time delay is larger than the delay margin, the system will 
have growing oscillations indicating an unstable 
operation, as illustrated in Figure 4 for 3.0 s  . These 

simulation results show that the Rekasius method 
correctly estimates the delay margin of the system. 
 

5. CONCLUSIONS 
 
This paper has proposed an exact method to compute the 
delay margin for stability of the AVR system including 
stabilizing transformer. The method first eliminates the 
transcendental term in the characteristic equation by 
using Rekasius substitution. With the help of this 
substitution, the characteristic equation has become a 
regular polynomial whose purely imaginary roots are the 
same as those of the transcendental equation. Routh 
stability criterion has been applied to determine the 
imaginary roots at which stability feature of the AVR 
system change and the corresponding delay margin. 
 
The effect of PI controller gains on the delay margin has 
been investigated. The theoretical results indicate that the 
delay margin decreases as the integral gain increases for a 
given proportional gain. Such a decrease in delay margin 
implies a less AVR system. Moreover, it has been observed 
that the compensation of the AVR system with a stabilizing 

transformer increases the delay margin of the system, 
which indicates a more stable AVR system. 
 
Theoretical delay margin results have been verified using 
time domain simulations of MATLAB/Simulink. It has been 
observed that percentage error between the theoretical 
delay margin results and ones determined by simulation 
are negligible, which indicates the validity and 
effectiveness of the proposed method. 
 
The following studies have been put in perspective as 
future work: i) the extension of the proposed method into 
multi-machine power systems with commensurate time 
delays; ii) the influence of power system stabilizer on the 
delay margin.  
 

APPENDIX 
 
The coefficients of polynomials ( )P s  and ( )Q s  given in 

(5) in terms of gains and time constants of the AVR 
system: 
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