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Abstract – The objective of the present study is to 

visualize and analyze the performance of binary search 

in worst case on a personal computer. We have 

collected the searching time of binary search in worst 

case for data size one thousand (1000) to fifty thousand 

(50000) with an interval of one thousand (1000) and 

for each data size one hundred thousand (100000) 

observations have been recorded. This data have been 

analyzed employing ‘Two – Step’ clustering algorithm 

using both Euclidean and Log–likelihood distance 

measure.  The biggest cluster for each data size has 

been identified and the mean of those clusters have 

been calculated which gave us the mean searching time 

for each data size. Mann – Whitney U Test has been used 

to test the distribution of mean searching time for both 

the cases and curve estimation technique has been used 

to find the best fitted curves for the dataset (mean 

searching time versus data size).     
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1. INTRODUCTION 
 
A binary search or half-interval search algorithm which 
can be classified as a dichotomic divide-and-conquer 
search algorithm finds the position of a target value within 
a sorted array [16]. In case of the worst case in binary 
search, the searched value is not present in the set 
[17][18][19].    
 
By clustering we mean it is the task of grouping a set of 
objects in such a way that objects in the same group are 
more similar to each other than to those in other groups 
[20]. The cluster analysis or segmentation analysis or 
taxonomy analysis is an explorative analysis that tries to 

identify structures within the data [21]. Two-step cluster 
analysis identifies the groupings by running pre-clustering 
first and then by hierarchical methods [21]. In the Two-
step cluster analysis the ‘distance measure’ determines 
how the similarity between two clusters is computed [22]. 
There are two types of distance measure (i) Log-likelihood 
and (ii) Euclidean. The likelihood measure places a 
probability distribution on the variables. The Euclidean 
measure is the "straight line" distance between two 
clusters [22].  
 

2. RELATED WORK 
 
For binomial inputs, a statistical comparison between 
linear search and binary search had been done by Kumari, 
Tripathi, Pal & Chakraborty (2012) [1]. 
 
Sapinder, Ritu, Singh & Singh (2012) in their work had 
compared and contrasted various sorting and searching 
algorithms in terms of various Halstead metrices and had 
shown binary search gave more optimized result as 
compared to linear search [2]. 
 
A randomized searching algorithm had been proposed by 
Das & Khilar (2013) in their research work, the 
performance of which lies between binary search and 
linear search [3]. 
 
A comparative analysis of linear search, binary search and 
interpolation search had been done by Roy & Kundu 
(2014).  The advantages of binary search with respect to 
linear search and interpolation search for a given problem 
had been shown by the researchers in their research 
article [4].  
 
A modified binary search algorithm had been proposed by 
Chadha, Misal & Mokashi (2014) in their work [5].   
 
A comparison between linear search and binary search 
had been done by Parmar & Kumbharana (2015) for 
searching an element from static array, dynamic array and 
linked list [6].  
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The linear search and binary search had been analyzed 
and compared on the basis of time complexity for a given 
set of data by Pathak (2015) [7]. 
 
Das, Kole, Mukhopadhyay & Chakrabarti (2015) had done 
a comparative analysis of the performance of binary 
search in the worst case on two personal computers. For 
doing the analysis, the researchers have collected the 
searching time from data size one thousand (1000) to fifty 
thousand (50000) with an interval of one thousand and 
for each data size they have noted the execution time ten 
thousand times for each of these personal computers. To 
avoid any variations in the execution time they have 
calculated the average searching time for each data size 
and had conducted their research using these average 
searching times. In their study, the researchers have 
observed that the behavior of both the computers are 
different but both of the datasets can be best explained by 
three (3) different types of curves namely compound, 
growth and exponential [8]. 
 

3. OBJECTIVES OF THE STUDY 
 
1. To find out the mean searching time of binary search in 
the worst case for each data size using Two-Step 
Clustering algorithm using the distance measure as (a) 
Euclidean and (b) Log – Likelihood (for the personal 
computer under study). 
 
2. To visualize both the mean searching times (i.e. 
Euclidean distance measure and Log – Likelihood distance 
measure) using interpolation lines (for the personal 
computer under study). 
 
3. To find out whether the distribution of mean searching 
time for both the cases (i.e. Euclidean distance measure 
and Log – Likelihood distance measure) is same or not 
across the categories of distance measure i.e. Euclidean 
and Log – Likelihood (for the personal computer under 
study). 
 
4. To identify a threshold value from where the 
distribution of the mean searching time is same across 
categories of distance measure (for the personal computer 
under study). 
 
5. To find out the best curve(s) that can be fitted to the 
data points i.e. mean searching time (using both the 
Euclidean distance measure and Log – Likelihood distance 
measure) versus data size for (i) all the data sizes and (ii) 
from the threshold value if it can be identified as set in 
objective number four (for the personal computer under 
study). 
 

6. To identify the mathematical equations of the best fitted 
curves and to give visualizations of these curves (for the 
personal computer under study). 
 

4. RESEARCH METHODOLOGY 
 

4.1 Steps 
 
Step 1: Step 1 is sample dataset generation. Windows 
operating system and Java have been used for generating 
the dataset. For doing this study, we have noted the 
execution time (in Nano – seconds) of binary search in 
worst case from data size one thousand (1000) to fifty 
thousand (50000) with an interval of one thousand (1000) 
on a particular personal computer. For each data size (i.e. 
from 1000 to 50000 with an interval of 1000) we have 
noted the execution time one hundred thousand (100000) 
times.  
 
Step 2: In this step we have used the Two-Step Clustering 
algorithm [9]. We have calculated the mean searching time 
for each data size (i.e. from 1000 to 50000 with an interval 
of 1000) using Two-Step Clustering algorithm. We have 
used the distance measure as (a) Euclidean and (b) Log – 
Likelihood. The clustering criterion is chosen as Schwarz's 
Bayesian Criterion (BIC). At first, we have identified the 
largest cluster for each data size using Euclidean distance 
measure and noted the mean value of that cluster. After 
that we have identified the largest cluster for each data 
size using Log – Likelihood distance measure and noted 
the mean value of that cluster. 
 
Step 3: Using the interpolation line [10][15] we have 
graphically represented the mean searching times for both 
the cases (i.e. Euclidean distance measure and Log – 
Likelihood distance measure) considering data size as x – 
axis and mean searching time as y – axis. 
 
Step 4: We have tested the distribution of mean searching 
time for both the cases (i.e. Euclidean distance measure 
and Log – Likelihood distance measure) using Mann-
Whitney U Test. The decision rule has been considered as 
follows - if the ‘Asymptotic’ significance is less than .05 
then the two groups are significantly different [11].       
 
Step 5: In this step, by employing trial and error technique 
we have identified the threshold value from where the 
distribution of the mean searching time is same across 
categories of distance measure. In this step also, we have 
used  Mann-Whitney U Test for testing the distribution of 
mean searching times keeping the decision rule same as 
step 4. 
 
Step 6: We have used curve estimation techniques to 
identify the best curve(s) that can be fitted to the data 
points i.e. mean searching time (using both the Euclidean 
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distance measure and Log – Likelihood distance measure) 
versus data size based on the goodness of fit statistics e.g. 
R square (decision rule: high value of R square i.e. close to 
1), Adjusted R square (decision rule: high value of 
Adjusted R square i.e. close to 1), Root Mean Square Error 
(decision rule: low value of RMSE i.e. close to 0) [12]. The 
normal distribution of the residuals of the best identified 
models are tested using Shapiro – Wilk (SW) test [13][14]. 
If the significance of SW statistic is higher than .05 then it 
suggests that the assumption of normality of error 
distribution has been met [13][14]. In this study, we have 
used the following eleven (11) types of models for curve 
estimation – linear, quadratic, compound, growth, 
logarithmic, cubic, s, exponential, inverse, power and 
logistics.      
 
In this study, to avoid any inconsistencies / variations (e.g. 
outliers) the researchers have used Two-Step Clustering 
algorithm to identify the largest cluster for each data size 
and calculated the mean value of that cluster for each data 
size.  
 

4.2 Hardware used 
 
Intel(R) Core(TM)2 Duo CPU, 2.93 GHz; 2 GB of RAM. 
 

4.3 Software used 
 
Windows XP Operating System (Windows XP Professional, 
Version 2002, and Service Pack 3), Java (NetBeans IDE 7.0; 
Java: 1.6.0_17) and SPSS 20. 
 

5. DATA ANALYSIS & FINDINGS 
 
5.1 Mean searching time using Two-Step 
clustering algorithm 
 
The mean searching time of binary search in worst case 
obtained using Two – Step Clustering algorithm for each 
data size (i.e. from 1000 to 50000 with an interval of 
1000) is tabulated below (Table -1). 
 
The Data size is denoted by N. The Mean Searching Time 
Using Distance Measure – Euclidean is denoted by TE and 
Mean Searching Time Using Distance Measure – Log 
Likelihood is denoted by TLL. The unit of time is ‘Nano 
seconds’. 
 
Table -1: Data Size versus Mean Searching Time 
 

N TE TLL 

1000 463.64 298.40 

2000 335.14 280.69 

3000 419.99 313.32 

4000 332.02 289.70 

5000 322.54 301.66 

6000 307.47 297.61 

7000 312.81 295.65 

8000 316.93 298.21 

9000 321.80 307.73 

10000 320.49 308.94 

11000 324.40 307.30 

12000 325.16 308.72 

13000 316.54 307.89 

14000 306.97 306.97 

15000 311.85 307.12 

16000 309.56 307.20 

17000 316.79 316.63 

18000 318.33 317.13 

19000 321.20 317.10 

20000 320.26 318.94 

21000 332.69 330.04 

22000 348.75 335.63 

23000 337.40 337.11 

24000 346.46 341.17 

25000 357.65 346.03 

26000 344.70 341.91 

27000 355.97 349.34 

28000 354.73 334.01 

29000 367.58 362.11 

30000 360.70 360.70 

31000 369.77 367.21 

32000 357.31 355.02 

33000 359.65 358.39 

34000 361.73 360.24 

35000 359.46 357.35 

36000 358.82 355.44 

37000 358.69 357.43 

38000 363.65 359.24 

39000 355.85 355.64 

40000 362.06 358.76 

41000 358.33 357.87 

42000 358.95 357.32 

43000 358.28 356.98 

44000 362.02 358.20 

45000 361.34 359.53 

46000 367.21 364.93 

47000 359.35 354.74 
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48000 358.26 354.00 

49000 360.29 356.20 

50000 365.46 364.63 
 

5.2 Visualization of the mean searching times 
using interpolation lines 
 

 
Chart -1: TE versus N 
 

 
Chart -2: TLL versus N 
 
Findings: From the above table (Table -1) and the charts 
(Chart -1 & Chart -2) we observe that the minimum values 
of TE and TLL are 306.97 and 280.69 respectively, the 
maximum values of TE and TLL are 463.64 and 367.21 
respectively and the range of TE and TLL are 156.67 and 
86.52 respectively. From the charts (Chart -1 & Chart -2) 
we observe that both the interpolation lines appear to be 
different. 
 

5.3 Testing the distribution of mean searching 
times using Mann-Whitney U Test 
 
The output of Mann – Whitney U test is given below (Fig - 
1, 2 & 3). 
 

 
Fig -1: Mean Rank of Mann – Whitney U Test for data size 
1000 to 50000 
 

 
Fig -2: Asymptotic Sig. (2 sided test) of Mann – Whitney U 
Test for data size 1000 to 50000 
 

 
Fig -3: Result of Mann – Whitney U Test for data size 1000 
to 50000 
 
Findings: It has been observed from the above test that the 
distribution of mean searching time is not same across the 
categories of distance measure i.e. Euclidean and Log - 
Likelihood. 
 

5.4 Identification of a threshold value from where 
the distribution of the mean searching time is 
same across categories of distance measure  
 
We have used trial and error methods and found that from 
data size four thousand (4000) the distribution of the 
mean searching time is same across categories of distance 
measure. The output of Mann – Whitney U test is given 
below (Fig - 4, 5 & 6). 
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Fig -4: Mean Rank of Mann – Whitney U Test for data size 
4000 to 50000 
 

 
Fig -5: Asymptotic Sig. (2 sided test) of Mann – Whitney U 
Test for data size 4000 to 50000 
 

 
Fig -6: Result of Mann – Whitney U Test for data size 4000 
to 50000 
 
Findings: It has been observed from the above test that the 
distribution of mean searching time is same across the 
categories of distance measure i.e. Euclidean and Log - 
Likelihood. Therefore, we may select the data size 4000 as 
the threshold value from where the distribution of the 
mean searching time is same across categories of distance 
measure (for the personal computer under study). 
 

5.5 Identification of the best curves that can be 
fitted to the data points (mean searching time 
versus data size) 
 
Case 1: TE versus N (data size 1000 to 50000) 
 
 
 
 
 
 

Table -2: Goodness of fit statistics of TE versus N (data 
size 1000 to 50000) 
 

Model 
Name 

R 
Square 

Adjusted 
R 

Square 

RMSE 

Linear .111 .092 27.004 

Logarithmic .001 -.020 28.623 

Inverse .185 .168 25.855 

Quadratic .195 .161 25.964 

Cubic .534 .503 19.978 

Compound .150 .132 .073 

Power .008 -.013 .079 

S .138 .120 .073 

Growth .150 .132 .073 

Exponential .150 .132 .073 

Logistic .033 .013 .329 

 
Findings: From the above table (Table -2) we observe that 
none of the models are having high R square, high 
Adjusted R square values. The highest R square is .534 for 
Cubic model whose corresponding RMSE is 19.978. At the 
same time four models namely Compound, S, Growth and 
Exponential have low RMSE (.073) but their R square and 
Adjusted R square values are very low. Therefore in this 
case, amongst the eleven tried models, we do not find any 
curve which can be best fitted to the given dataset. 
 
Case 2: TLL versus N (data size 1000 to 50000) 
 
Table -3: Goodness of fit statistics of TLL versus N (data 
size 1000 to 50000) 
 

Model 
Name 

R 
Square 

Adjusted 
R 

Square 

RMSE 

Linear .854 .851 9.942 

Logarithmic .765 .760 12.605 

Inverse .300 .286 21.754 

Quadratic .896 .892 8.467 

Cubic .932 .927 6.939 

Compound .851 .848 .031 

Power .774 .770 .038 

S .310 .295 .066 

Growth .851 .848 .031 

Exponential .851 .848 .031 

Logistic .855 .852 .089 
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Findings: From the above table (Table -3) we observe that 
Cubic model is having highest R square (.932) and highest 
Adjusted R square (.927) and the RMSE of Cubic model is 
6.939. Therefore we are selecting this model as candidate 
model (candidate to be the best curve) in our study. 
 
The test of normality of residuals of the candidate model is 
tabulated below (Table -4). 
 
Table -4: Shapiro – Wilk (SW) test statistics of the 
candidate model for TLL versus N (data size 1000 to 
50000) 
 

Model 
Name 

Shapiro-Wilk 

Statistic df Sig. 
Cubic .966 50 .160 

 
Findings: The significance of SW statistics for the 
candidate model is higher than .05. Therefore, it suggests 
that the assumption of normality of error distribution has 
been met for the model. 
 
From the findings of Table -3 and Table -4 we conclude 
that the Cubic curve may be best fitted to the data points 
i.e. TLL versus N (data size 1000 to 50000). 
 
Case 3: TE versus N (data size 4000 to 50000) 
 
Table -5: Goodness of fit statistics of TE versus N (data 
size 4000 to 50000) 
 

Model 
Name 

R 
Square 

Adjusted 
R 

Square 

RMSE 

Linear .744 .739 10.552 

Logarithmic .686 .679 11.691 

Inverse .430 .418 15.747 

Quadratic .770 .759 10.123 

Cubic .851 .841 8.238 

Compound .740 .734 .031 

Power .683 .676 .035 

S .428 .415 .047 

Growth .740 .734 .031 

Exponential .740 .734 .031 

Logistic .748 .742 .096 

 
Findings: From the above table (Table -5) we observe that 
Cubic model is having highest R square (.851) and highest 
Adjusted R square (.841) and the RMSE of Cubic model is 
8.238. Therefore we are selecting this model as candidate 
model (candidate to be the best curve) in our study. 

 
The test of normality of residuals of the candidate model is 
tabulated below (Table -6). 
 
Table -6: Shapiro – Wilk (SW) test statistics of the 
candidate model for TE versus N (data size 4000 to 50000) 
 

Model 
Name 

Shapiro-Wilk 

Statistic df Sig. 
Cubic .967 47 .206 

 
Findings: The significance of SW statistics for the 
candidate model is higher than .05. Therefore, it suggests 
that the assumption of normality of error distribution has 
been met for the model. 
 
From the findings of Table -5 and Table -6 we conclude 
that the Cubic curve may be best fitted to the data points 
i.e. TE versus N (data size 4000 to 50000). 
 
Case 4: TLL versus N (data size 4000 to 50000) 
 
Table -7: Goodness of fit statistics of TLL versus N (data 
size 4000 to 50000) 
 

Model 
Name 

R 
Square 

Adjusted 
R 

Square 

RMSE 

Linear .846 .843 9.713 

Logarithmic .871 .869 8.882 

Inverse .669 .662 14.244 

Quadratic .918 .914 7.163 

Cubic .940 .936 6.204 

Compound .845 .841 .030 

Power .880 .877 .026 

S .685 .678 .042 

Growth .845 .841 .030 

Exponential .845 .841 .030 

Logistic .846 .843 .087 

 
Findings: From the above table (Table -7) we observe that 
Cubic model is having highest R square (.940) and highest 
Adjusted R square (.936) and the RMSE of Cubic model is 
6.204. Therefore we are selecting this model as candidate 
model (candidate to be the best curve) in our study. 
 
The test of normality of residuals of the candidate model is 
tabulated below (Table -8). 
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Table -8: Shapiro – Wilk (SW) test statistics of the 
candidate model for TLL versus N (data size 4000 to 
50000) 
 

Model 
Name 

Shapiro-Wilk 

Statistic df Sig. 
Cubic .970 47 .271 

 
Findings: The significance of SW statistics for the 
candidate model is higher than .05. Therefore, it suggests 
that the assumption of normality of error distribution has 
been met for the model. 
 
From the findings of Table -7 and Table -8 we conclude 
that the Cubic curve may be best fitted to the data points 
i.e. TLL versus N (data size 4000 to 50000). 
 

5.6 Identification of the mathematical equations 
of the best curves and visualization of these 
curves 
 
For case 2 i.e. TLL versus N (data size 1000 to 50000) 
Cubic curve has been identified as the best curve. The 
mathematical equation of the cubic curve is given below: 
 
TLL = (-0.000146)*N + 1.279E-007*N^2 + (-2.040E-
012)*N^3 + 294.559 
 
The plot of the above model is given below (Chart -3). 
 

 
Chart -3: Cubic curve of TLL versus N (data size 1000 to 
50000) 
 
For case 3 i.e. TE versus N (data size 4000 to 50000) Cubic 
curve has been identified as the best curve. The 
mathematical equation of the cubic curve is given below: 
 
TE = (-0.003)*N + 2.211E-007*N^2 + (-2.974E-012)*N^3 + 
329.228 
 

The plot of the above model is given below (Chart -4). 
 

 
Chart -4: Cubic curve of TE versus N (data size 4000 to 
50000) 
 
For case 4 i.e. TLL versus N (data size 4000 to 50000) 
Cubic curve has been identified as the best curve. The 
mathematical equation of the cubic curve is given below: 
 
TLL = (0.000382)*N + 1.087E-007*N^2 + (-1.830E-
012)*N^3 + 290.372 
 
The plot of the above model is given below (Chart -5). 
 

 
Chart -5: Cubic curve of TLL versus N (data size 4000 to 
50000) 
 

6. LIMITATIONS & FUTURE SCOPE 

 
The researchers have performed this study on a particular 
personal computer. Hence, the findings of this empirical 
research work are limited to the aforementioned personal 
computer only. In this study, the data size is taken from 
1000 to 50000 with an interval of 1000. Therefore we 
cannot show the behavior of binary search in worst case 
beyond this range. In this study, we have used Two – Step 
clustering algorithm with Schwarz's Bayesian Criterion 
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(BIC). Using this clustering algorithm with other criterion 
may give us either same or different results, uncovering 
that will certainly be our future scope. Only eleven (11) 
models have been tried for curve fitting in this paper by 
the researchers. Using other models may unearth better fit 
for the datasets. At careful observation of Chart -1 and 
Chart -2 we notice that from data size 1000 to 4000 the 
interpolation lines show a ‘High – Low – High – Low’ 
shapes in both the cases. Therefore, taking more number 
of data points within this range i.e. 1000 to 4000 by 
decreasing the interval may help us to explain this 
behavior in future.  
 

7. CONCLUSIONS 
 
From this paper, we can conclude that for the personal 
computer under study, the distribution of mean searching 
time is not same across the categories of distance measure 
i.e. Euclidean and Log – Likelihood for the data size one 
thousand (1000) to fifty thousand (50000). The study 
identifies the data size four thousand (4000) as the 
threshold value from where the distribution of mean 
searching time is same across the categories of distance 
measure. In the present work, we cannot identify any 
curve which can be best fitted to the dataset of TE versus N 
for data size 1000 to 50000. The present study also shows 
that the cubic curve is the best fit for (i) TLL versus N (data 
size 1000 to 50000), (ii) TE versus N (data size 4000 to 
50000) and (iii) TLL versus N (data size 4000 to 50000). In 
this paper, we have tried to analyze the performance of 
the binary search in worst case on a particular personal 
computer in a subtle way. However, overcoming the 
limitations as given in the section 6 will certainly give us 
more insights into the performance of binary search on 
personal computers which will undoubtedly be our future 
venture.     
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