

Sample Based Visualization and Analysis of Binary Search in Worst **Case Using Two-Step Clustering and Curve Estimation Techniques on Personal Computer**

Dipankar Das^{1,*}, Arnab Kole², Parichay Chakrabarti³

¹ Assistant Professor, BCA(H), The Heritage Academy, Kolkata, West Bengal, India ² Assistant Professor, BCA(H), The Heritage Academy, Kolkata, West Bengal, India ³ Assistant Professor, BCA(H), The Heritage Academy, Kolkata, West Bengal, India

Abstract – The objective of the present study is to visualize and analyze the performance of binary search in worst case on a personal computer. We have collected the searching time of binary search in worst case for data size one thousand (1000) to fifty thousand (50000) with an interval of one thousand (1000) and for each data size one hundred thousand (100000) observations have been recorded. This data have been analyzed employing 'Two - Step' clustering algorithm using both Euclidean and Log-likelihood distance measure. The biggest cluster for each data size has been identified and the mean of those clusters have been calculated which gave us the mean searching time for each data size. Mann – Whitney U Test has been used to test the distribution of mean searching time for both the cases and curve estimation technique has been used to find the best fitted curves for the dataset (mean searching time versus data size).

Kev Words: Binary Search, Two – Step Clustering, *Euclidean distance measure, Log – likelihood distance* measure, Curve Estimation

1. INTRODUCTION

A binary search or half-interval search algorithm which can be classified as a dichotomic divide-and-conquer search algorithm finds the position of a target value within a sorted array [16]. In case of the worst case in binary search, the searched value is not present in the set [17][18][19].

By clustering we mean it is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups [20]. The cluster analysis or segmentation analysis or taxonomy analysis is an explorative analysis that tries to

identify structures within the data [21]. Two-step cluster analysis identifies the groupings by running pre-clustering first and then by hierarchical methods [21]. In the Twostep cluster analysis the 'distance measure' determines how the similarity between two clusters is computed [22]. There are two types of distance measure (i) Log-likelihood and (ii) Euclidean. The likelihood measure places a probability distribution on the variables. The Euclidean measure is the "straight line" distance between two clusters [22].

2. RELATED WORK

For binomial inputs, a statistical comparison between linear search and binary search had been done by Kumari, Tripathi, Pal & Chakraborty (2012) [1].

Sapinder, Ritu, Singh & Singh (2012) in their work had compared and contrasted various sorting and searching algorithms in terms of various Halstead metrices and had shown binary search gave more optimized result as compared to linear search [2].

A randomized searching algorithm had been proposed by Das & Khilar (2013) in their research work, the performance of which lies between binary search and linear search [3].

A comparative analysis of linear search, binary search and interpolation search had been done by Roy & Kundu (2014). The advantages of binary search with respect to linear search and interpolation search for a given problem had been shown by the researchers in their research article [4].

A modified binary search algorithm had been proposed by Chadha, Misal & Mokashi (2014) in their work [5].

A comparison between linear search and binary search had been done by Parmar & Kumbharana (2015) for searching an element from static array, dynamic array and linked list [6].

The linear search and binary search had been analyzed and compared on the basis of time complexity for a given set of data by Pathak (2015) [7].

Das, Kole, Mukhopadhyay & Chakrabarti (2015) had done a comparative analysis of the performance of binary search in the worst case on two personal computers. For doing the analysis, the researchers have collected the searching time from data size one thousand (1000) to fifty thousand (50000) with an interval of one thousand and for each data size they have noted the execution time ten thousand times for each of these personal computers. To avoid any variations in the execution time they have calculated the average searching time for each data size and had conducted their research using these average searching times. In their study, the researchers have observed that the behavior of both the computers are different but both of the datasets can be best explained by three (3) different types of curves namely compound, growth and exponential [8].

3. OBJECTIVES OF THE STUDY

1. To find out the mean searching time of binary search in the worst case for each data size using Two-Step Clustering algorithm using the distance measure as (a) Euclidean and (b) Log – Likelihood (for the personal computer under study).

2. To visualize both the mean searching times (*i.e.* Euclidean distance measure and Log – Likelihood distance measure) using interpolation lines (for the personal computer under study).

3. To find out whether the distribution of mean searching time for both the cases (i.e. Euclidean distance measure and Log – Likelihood distance measure) is same or not across the categories of distance measure i.*e.* Euclidean and Log – Likelihood (for the personal computer under study).

4. To identify a threshold value from where the distribution of the mean searching time is same across categories of distance measure (for the personal computer under study).

5. To find out the best curve(s) that can be fitted to the data points *i.e.* mean searching time (using both the Euclidean distance measure and Log – Likelihood distance measure) *versus* data size for (i) all the data sizes and (ii) from the threshold value if it can be identified as set in objective number four (for the personal computer under study).

6. To identify the mathematical equations of the best fitted curves and to give visualizations of these curves (for the personal computer under study).

4. RESEARCH METHODOLOGY

4.1 Steps

Step 1: Step 1 is sample dataset generation. Windows operating system and Java have been used for generating the dataset. For doing this study, we have noted the execution time (in Nano – seconds) of binary search in worst case from data size one thousand (1000) to fifty thousand (50000) with an interval of one thousand (1000) on a particular personal computer. For each data size (*i.e.* from 1000 to 50000 with an interval of 1000) we have noted the execution time one hundred thousand (10000) times.

Step 2: In this step we have used the Two-Step Clustering algorithm [9]. We have calculated the mean searching time for each data size (i.e. from 1000 to 50000 with an interval of 1000) using Two-Step Clustering algorithm. We have used the distance measure as (a) Euclidean and (b) Log – Likelihood. The clustering criterion is chosen as Schwarz's Bayesian Criterion (BIC). At first, we have identified the largest cluster for each data size using Euclidean distance measure and noted the mean value of that cluster. After that we have identified the largest cluster for each data size using Log – Likelihood distance measure and noted the mean value of that cluster.

Step 3: Using the interpolation line [10][15] we have graphically represented the mean searching times for both the cases (i.e. Euclidean distance measure and Log – Likelihood distance measure) considering data size as x – axis and mean searching time as y – axis.

Step 4: We have tested the distribution of mean searching time for both the cases (i.e. Euclidean distance measure and Log – Likelihood distance measure) using Mann-Whitney U Test. The decision rule has been considered as follows - if the 'Asymptotic' significance is less than .05 then the two groups are significantly different [11].

Step 5: In this step, by employing trial and error technique we have identified the threshold value from where the distribution of the mean searching time is same across categories of distance measure. In this step also, we have used Mann-Whitney U Test for testing the distribution of mean searching times keeping the decision rule same as step 4.

Step 6: We have used curve estimation techniques to identify the best curve(s) that can be fitted to the data points *i.e.* mean searching time (using both the Euclidean

www.irjet.net

p-ISSN: 2395-0072

distance measure and Log – Likelihood distance measure) versus data size based on the goodness of fit statistics e.g. R square (decision rule: high value of R square *i.e.* close to 1), Adjusted R square (decision rule: high value of Adjusted R square *i.e.* close to 1), Root Mean Square Error (decision rule: low value of RMSE *i.e.* close to 0) [12]. The normal distribution of the residuals of the best identified models are tested using Shapiro – Wilk (SW) test [13][14]. If the significance of SW statistic is higher than .05 then it suggests that the assumption of normality of error distribution has been met [13][14]. In this study, we have used the following eleven (11) types of models for curve estimation - linear, quadratic, compound, growth, logarithmic, cubic, s, exponential, inverse, power and logistics.

Volume: 02 Issue: 08 | Nov-2015

In this study, to avoid any inconsistencies / variations (e.g. outliers) the researchers have used Two-Step Clustering algorithm to identify the largest cluster for each data size and calculated the mean value of that cluster for each data size.

4.2 Hardware used

Intel(R) Core(TM)2 Duo CPU, 2.93 GHz; 2 GB of RAM.

4.3 Software used

Windows XP Operating System (Windows XP Professional, Version 2002, and Service Pack 3), Java (NetBeans IDE 7.0; Java: 1.6.0_17) and SPSS 20.

5. DATA ANALYSIS & FINDINGS

5.1 Mean searching time using Two-Step clustering algorithm

The mean searching time of binary search in worst case obtained using Two - Step Clustering algorithm for each data size (i.e. from 1000 to 50000 with an interval of 1000) is tabulated below (Table -1).

The Data size is denoted by N. The Mean Searching Time Using Distance Measure - Euclidean is denoted by TE and Mean Searching Time Using Distance Measure - Log Likelihood is denoted by TLL. The unit of time is 'Nano seconds'.

Ν	TE	TLL
1000	463.64	298.40
2000	335.14	280.69
3000	419.99	313.32

4000	332.02	289.70
5000	322.54	301.66
6000	307.47	297.61
7000	312.81	295.65
8000	316.93	298.21
9000	321.80	307.73
10000	320.49	308.94
11000	324.40	307.30
12000	325.16	308.72
13000	316.54	307.89
14000	306.97	306.97
15000	311.85	307.12
16000	309.56	307.20
17000	316.79	316.63
18000	318.33	317.13
19000	321.20	317.10
20000	320.26	318.94
21000	332.69	330.04
22000	348.75	335.63
23000	337.40	337.11
24000	346.46	341.17
25000	357.65	346.03
26000	344.70	341.91
27000	355.97	349.34
28000	354.73	334.01
29000	367.58	362.11
30000	360.70	360.70
31000	369.77	367.21
32000	357.31	355.02
33000	359.65	358.39
34000	361.73	360.24
35000	359.46	357.35
36000	358.82	355.44
37000	358.69	357.43
38000	363.65	359.24
39000	355.85	355.64
40000	362.06	358.76
41000	358.33	357.87
42000	358.95	357.32
43000	358.28	356.98
44000	362.02	358.20
45000	361.34	359.53
46000	367.21	364.93
47000	359.35	354.74

International Research Journal of Engineering and Technology (IRJET) e-ISSN:

ET Volume: 02 Issue: 08 | Nov-2015

48000	358.26	354.00
49000	360.29	356.20
50000	365.46	364.63

5.2 Visualization of the mean searching times using interpolation lines

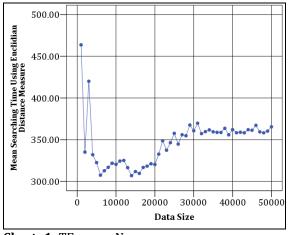


Chart -1: TE versus N

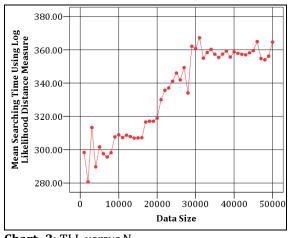


Chart -2: TLL versus N

Findings: From the above table (Table -1) and the charts (Chart -1 & Chart -2) we observe that the minimum values of TE and TLL are 306.97 and 280.69 respectively, the maximum values of TE and TLL are 463.64 and 367.21 respectively and the range of TE and TLL are 156.67 and 86.52 respectively. From the charts (Chart -1 & Chart -2) we observe that both the interpolation lines appear to be different.

5.3 Testing the distribution of mean searching times using Mann-Whitney U Test

The output of Mann – Whitney U test is given below (Fig - 1, 2 & 3).

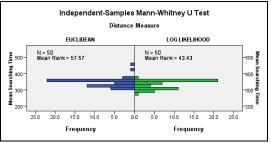
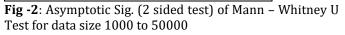


Fig -1: Mean Rank of Mann – Whitney U Test for data size 1000 to 50000

Total N	100
TOTAL N	100
Mann-Whitney U	1,603.500
Wilcoxon W	2,878.500
Test Statistic	1,603.500
Standard Error	145.056
Standardized Test Statistic	2.437
Asymptotic Sig. (2-sided test)	.015



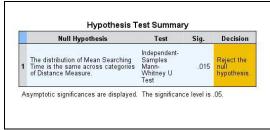


Fig -3: Result of Mann – Whitney U Test for data size 1000 to 50000

Findings: It has been observed from the above test that the distribution of mean searching time is not same across the categories of distance measure *i.e.* Euclidean and Log - Likelihood.

5.4 Identification of a threshold value from where the distribution of the mean searching time is same across categories of distance measure

We have used trial and error methods and found that from data size four thousand (4000) the distribution of the mean searching time is same across categories of distance measure. The output of Mann – Whitney U test is given below (Fig - 4, 5 & 6).

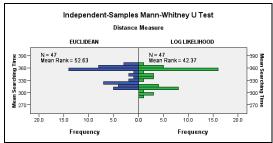


Fig -4: Mean Rank of Mann – Whitney U Test for data size 4000 to 50000

Total N	94
Mann-Whitney U	1,345.500
Wilcoxon W	2,473.500
Test Statistic	1,345.500
Standard Error	132.240
Standardized Test Statistic	1.822
Asymptotic Sig. (2-sided test)	.068

Fig -5: Asymptotic Sig. (2 sided test) of Mann – Whitney U Test for data size 4000 to 50000

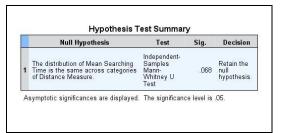


Fig -6: Result of Mann – Whitney U Test for data size 4000 to 50000

Findings: It has been observed from the above test that the distribution of mean searching time is same across the categories of distance measure *i.e.* Euclidean and Log - Likelihood. Therefore, we may select the data size 4000 as the threshold value from where the distribution of the mean searching time is same across categories of distance measure (for the personal computer under study).

5.5 Identification of the best curves that can be fitted to the data points (mean searching time *versus* data size)

Case 1: TE versus N (data size 1000 to 50000)

Table -2: Goodness of fit statistics of TE versus N (datasize 1000 to 50000)

Model	R	Adjusted	RMSE
Name	Square	R	RMSE
Name	Square		
		Square	
Linear	.111	.092	27.004
Logarithmic	.001	020	28.623
Inverse	.185	.168	25.855
Quadratic	.195	.161	25.964
Cubic	.534	.503	19.978
Compound	.150	.132	.073
Power	.008	013	.079
S	.138	.120	.073
Growth	.150	.132	.073
Exponential	.150	.132	.073
Logistic	.033	.013	.329

Findings: From the above table (Table -2) we observe that none of the models are having high R square, high Adjusted R square values. The highest R square is .534 for Cubic model whose corresponding RMSE is 19.978. At the same time four models namely Compound, S, Growth and Exponential have low RMSE (.073) but their R square and Adjusted R square values are very low. Therefore in this case, amongst the eleven tried models, we do not find any curve which can be best fitted to the given dataset.

Case 2: TLL versus N (data size 1000 to 50000)

Table -3: Goodness of fit statistics of TLL versus N (datasize 1000 to 50000)

Model	R	Adjusted	RMSE
Name	Square	R	
		Square	
Linear	.854	.851	9.942
Logarithmic	.765	.760	12.605
Inverse	.300	.286	21.754
Quadratic	.896	.892	8.467
Cubic	.932	.927	6.939
Compound	.851	.848	.031
Power	.774	.770	.038
S	.310	.295	.066
Growth	.851	.848	.031
Exponential	.851	.848	.031
Logistic	.855	.852	.089

Findings: From the above table (Table -3) we observe that Cubic model is having highest R square (.932) and highest Adjusted R square (.927) and the RMSE of Cubic model is 6.939. Therefore we are selecting this model as candidate model (candidate to be the best curve) in our study.

The test of normality of residuals of the candidate model is tabulated below (Table -4).

Table -4: Shapiro – Wilk (SW) test statistics of the candidate model for TLL *versus* N (data size 1000 to 50000)

Model	S	hapiro-Wil	k
Name	Statistic	df	Sig.
Cubic	.966	50	.160

Findings: The significance of SW statistics for the candidate model is higher than .05. Therefore, it suggests that the assumption of normality of error distribution has been met for the model.

From the findings of Table -3 and Table -4 we conclude that the Cubic curve may be best fitted to the data points *i.e.* TLL *versus* N (data size 1000 to 50000).

Case 3: TE versus N (data size 4000 to 50000)

Table -5: Goodness of fit statistics of TE versus N (datasize 4000 to 50000)

Model	R	Adjusted	RMSE
Name	Square	R	
		Square	
Linear	.744	.739	10.552
Logarithmic	.686	.679	11.691
Inverse	.430	.418	15.747
Quadratic	.770	.759	10.123
Cubic	.851	.841	8.238
Compound	.740	.734	.031
Power	.683	.676	.035
S	.428	.415	.047
Growth	.740	.734	.031
Exponential	.740	.734	.031
Logistic	.748	.742	.096

Findings: From the above table (Table -5) we observe that Cubic model is having highest R square (.851) and highest Adjusted R square (.841) and the RMSE of Cubic model is 8.238. Therefore we are selecting this model as candidate model (candidate to be the best curve) in our study. The test of normality of residuals of the candidate model is tabulated below (Table -6).

Table -6: Shapiro – Wilk (SW) test statistics of thecandidate model for TE versus N (data size 4000 to 50000)

Model	Shapiro-Wilk		
Name	Statistic	df	Sig.
Cubic	.967	47	.206

Findings: The significance of SW statistics for the candidate model is higher than .05. Therefore, it suggests that the assumption of normality of error distribution has been met for the model.

From the findings of Table -5 and Table -6 we conclude that the Cubic curve may be best fitted to the data points *i.e.* TE *versus* N (data size 4000 to 50000).

Case 4: TLL versus N (data size 4000 to 50000)

Table -7: Goodness of fit statistics of TLL versus N (datasize 4000 to 50000)

Model	R	Adjusted	RMSE
Name	Square	R	
		Square	
Linear	.846	.843	9.713
Logarithmic	.871	.869	8.882
Inverse	.669	.662	14.244
Quadratic	.918	.914	7.163
Cubic	.940	.936	6.204
Compound	.845	.841	.030
Power	.880	.877	.026
S	.685	.678	.042
Growth	.845	.841	.030
Exponential	.845	.841	.030
Logistic	.846	.843	.087

Findings: From the above table (Table -7) we observe that Cubic model is having highest R square (.940) and highest Adjusted R square (.936) and the RMSE of Cubic model is 6.204. Therefore we are selecting this model as candidate model (candidate to be the best curve) in our study.

The test of normality of residuals of the candidate model is tabulated below (Table -8).

Table -8: Shapiro – Wilk (SW) test statistics of the candidate model for TLL *versus* N (data size 4000 to 50000)

Model Name	Shapiro-Wilk		
	Statistic	df	Sig.
Cubic	.970	47	.271

Findings: The significance of SW statistics for the candidate model is higher than .05. Therefore, it suggests that the assumption of normality of error distribution has been met for the model.

From the findings of Table -7 and Table -8 we conclude that the Cubic curve may be best fitted to the data points *i.e.* TLL *versus* N (data size 4000 to 50000).

5.6 Identification of the mathematical equations of the best curves and visualization of these curves

For case 2 *i.e.* TLL *versus* N (data size 1000 to 50000) Cubic curve has been identified as the best curve. The mathematical equation of the cubic curve is given below:

TLL = (-0.000146)*N + 1.279E-007*N^2 + (-2.040E-012)*N^3 + 294.559

The plot of the above model is given below (Chart -3).

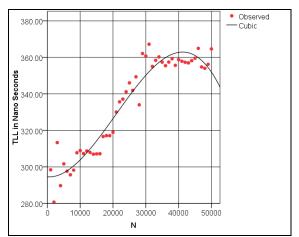


Chart -3: Cubic curve of TLL versus N (data size 1000 to 50000)

For case 3 *i.e.* TE *versus* N (data size 4000 to 50000) Cubic curve has been identified as the best curve. The mathematical equation of the cubic curve is given below:

$$\label{eq:temperature} \begin{split} \text{TE} &= (-0.003)^*\text{N} + 2.211\text{E} \text{-}007^*\text{N}^2 + (-2.974\text{E} \text{-}012)^*\text{N}^3 + \\ 329.228 \end{split}$$

The plot of the above model is given below (Chart -4).

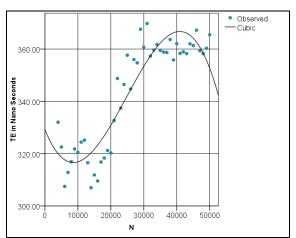


Chart -4: Cubic curve of TE versus N (data size 4000 to 50000)

For case 4 *i.e.* TLL *versus* N (data size 4000 to 50000) Cubic curve has been identified as the best curve. The mathematical equation of the cubic curve is given below:

TLL = (0.000382)*N + 1.087E-007*N^2 + (-1.830E-012)*N^3 + 290.372

The plot of the above model is given below (Chart -5).

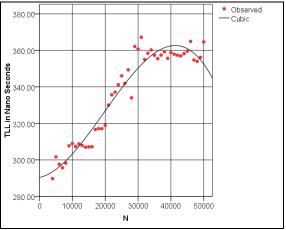


Chart -5: Cubic curve of TLL versus N (data size 4000 to 50000)

6. LIMITATIONS & FUTURE SCOPE

The researchers have performed this study on a particular personal computer. Hence, the findings of this empirical research work are limited to the aforementioned personal computer only. In this study, the data size is taken from 1000 to 50000 with an interval of 1000. Therefore we cannot show the behavior of binary search in worst case beyond this range. In this study, we have used Two – Step clustering algorithm with Schwarz's Bayesian Criterion (BIC). Using this clustering algorithm with other criterion may give us either same or different results, uncovering that will certainly be our future scope. Only eleven (11) models have been tried for curve fitting in this paper by the researchers. Using other models may unearth better fit for the datasets. At careful observation of Chart -1 and Chart -2 we notice that from data size 1000 to 4000 the interpolation lines show a 'High - Low - High - Low' shapes in both the cases. Therefore, taking more number of data points within this range *i.e.* 1000 to 4000 by decreasing the interval may help us to explain this behavior in future.

7. CONCLUSIONS

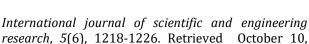
From this paper, we can conclude that for the personal computer under study, the distribution of mean searching time is not same across the categories of distance measure *i.e.* Euclidean and Log – Likelihood for the data size one thousand (1000) to fifty thousand (50000). The study identifies the data size four thousand (4000) as the threshold value from where the distribution of mean searching time is same across the categories of distance measure. In the present work, we cannot identify any curve which can be best fitted to the dataset of TE versus N for data size 1000 to 50000. The present study also shows that the cubic curve is the best fit for (i) TLL versus N (data size 1000 to 50000), (ii) TE versus N (data size 4000 to 50000) and (iii) TLL versus N (data size 4000 to 50000). In this paper, we have tried to analyze the performance of the binary search in worst case on a particular personal computer in a subtle way. However, overcoming the limitations as given in the section 6 will certainly give us more insights into the performance of binary search on personal computers which will undoubtedly be our future venture.

REFERENCES

- [1] Kumari, A., Tripathi, R., Pal, M., & Chakraborty, S. (2012). Linear Search Versus Binary Search: A Statistical Comparison For Binomial Inputs. International Iournal of Computer Science, Engineering and Applications (IJCSEA), 2(2). Retrieved 2015, October 10, from http://www.airccse.org/journal/ijcsea/papers/2212 ijcsea03
- [2] Sapinder, Ritu, Singh, A., & Singh, H.L. (2012). Analysis of Linear and Binary Search Algorithms. International Journal of Computers & Distributed Systems, 1(1).
- Das, P., & Khilar, P. M. (2013). A Randomized [3] Searching Algorithm and its Performance analysis with Binary Search and Linear Search Algorithms. International Journal of Computer Science & Applications (TIJCSA), 1(11). Retrieved October 10,

2015. from http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.300.7058&rep=rep1&type=pdf

- [4] Roy, D., & Kundu, A. (2014). A Comparative Analysis of Three Different Types of Searching Algorithms in Data Structure. International Journal of Advanced Research in Computer and Communication Engineering, 3(5). Retrieved October 10, 2015, from http://www.ijarcce.com/upload/2014/may/IJARCCE 6C%20a%20arnab%20A%20Comparative%20Analy sis%20of%20Three.pdf
- [5] Chadha, A. R., Misal, R., & Mokashi, T. (2014). Modified Binary Search Algorithm. arXiv preprint arXiv:1406.1677.
- [6] Parmar, V. P., & Kumbharana, C. (2015). Comparing Linear Search and Binary Search Algorithms to Search an Element from a Linear List Implemented through Static Array, Dynamic Array and Linked List. International Journal of Computer Applications, 121(3). Retrieved October 10, 2015, from http://search.proquest.com/openview/a9b016911b 033e1e8dd2ecd4e7398fdd/1?pq-origsite=gscholar
- [7] Pathak, A. (2015). Analysis and Comparative Study of Searching Techniques. International Journal of Engineering Sciences & Research Technology, 4(3), 235-237. Retrieved October 10, 2015, from http://www.ijesrt.com/issues pdf file/Archives-2015/March-2015/33_ANALYSIS AND **COMPARATIVE** STUDY OF SEARCHING TECHNIQUES.pdf
- [8] Das, D., Kole, A., Mukhopadhyay, S., & Chakrabarti, P. (2015). Empirical Analysis of Binary Search Worst Case on Two Personal Computers Using Curve Estimation Technique. International Journal of Engineering and Management Research, 5(5), 304 -311. Retrieved November 10, 2015, from http://www.ijemr.net/DOC/EmpiricalAnalysisOfBina rySearchWorstCaseOnTwoPersonalComputersUsing CurveEstimationTechnique%28304-311%29.pdf
- [9] Conduct and Interpret a Cluster Analysis Statistics Solutions. (n.d.). Retrieved November 10, 2015, from http://www.statisticssolutions.com/cluster-analysis-2/
- [10] Curve fitting. (n.d.). Retrieved November 12, 2015, from https://en.wikipedia.org/wiki/Curve_fitting
- [11] Cramming Sam's Tips for Chapter 6: Non parametric models. (n.d.). Retrieved October 10, 2015, from https://edge.sagepub.com/system/files/Chapter6.pd
- [12] Evaluating Goodness of Fit. (n.d.). Retrieved October 10, 2015, from http://in.mathworks.com/help/curvefit/evaluatinggoodness-of-fit.html
- [13] Das, D., & Chakraborti, P. (2014). Performance Measurement and Management Model of Data Generation and Writing Time in Personal Computer.



2015,

from

http://www.ijser.org/researchpaper%5CPerformanc e-Measurement-and-Management-Model-of-Data-Generation.pdf

- [14] Testing for Normality using SPSS Statistics. (n.d.). Laerd statistics. Retrieved October 10, 2015, from https://statistics.laerd.com/spss-tutorials/testingfor-normality-using-spss-statistics.php
- [15] Matlab Curve Fitting and Interpolation. (n.d.). Retrieved November 12, 2015, from http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-curve-fitting/
- [16] Binary search algorithm. (n.d.). Retrieved November 2015, 12. from https://en.wikipedia.org/wiki/Binary_search_algorit hm
- [17] 1 Time Complexity of Binary Search in the Worst Case. (n.d.). Lecture. Retrieved October 3, 2015, from http://www.csd.uwo.ca/Courses/CS2210a/slides/bi nsearch.pdf
- [18] Analysis of Binary Search. (n.d.). Retrieved October 1, 2015, from http://www2.hawaii.edu/~janst/demos/s97/yongsi /analysis.html
- [19] Rao, R. (n.d.). CSE 373 Lecture 4: Lists. Lecture. Retrieved October 2015, 1, from https://courses.cs.washington.edu/courses/cse373/ 01sp/Lect4.pdf
- [20] Cluster analysis. (n.d.). Retrieved October 1, 2015, from https://en.wikipedia.org/wiki/Cluster_analysis
- [21] Conduct and Interpret a Cluster Analysis Statistics Solutions. (n.d.). Retrieved November 12, 2015, from http://www.statisticssolutions.com/cluster-analysis-2/
- [22] IBM Knowledge Center. (n.d.). Retrieved November 7, 2015, from http://www-01.ibm.com/support/knowledgecenter/SSLVMB_21. 0.0/com.ibm.spss.statistics.help/idh_twostep_main.ht m

BIOGRAPHIES

Dipankar Das currently is working as an Assistant Professor in The Heritage Academy, Kolkata, India. His area of interest includes Data Analytics, Curve Experimental Fitting and Algorithmics etc.

Arnab Kole is currently working as an Assistant Professor in The Heritage Academy, Kolkata, India. His area of interest includes Artificial Intelligence. Computational Mathematics and Finite Automata etc.

Parichay Chakrabarti is currently working as an Assistant Professor Heritage in The Academy, Kolkata, India. His area of interest includes Green Computing, Web Development and Image Processing etc.