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Abstract - Bewitch opens a new door towards 
the concepts of Infrastructure-as-a-Service 
(IaaS) Clouds. The cloud computing companies 
have processing frameworks designed for 
static nature of the cluster environment.  
Accordingly, the allocated compute resources 
may be insufficient for big parts of the 
submitted job and unnecessarily increase 
processing time and cost. Bewitch facilitates 
new ways of data processing in clouds. In this 
paper we discuss the novel approach for 
efficient parallel data processing in clouds 
and present this work. Bewitch is the first data 
processing framework to explicitly exploit the 
dynamic resource allocation offered by today’s 
IaaS clouds for both, task scheduling and 
execution. Particular tasks of a processing job 
can be assigned to different types of virtual 
machines which are automatically 
instantiated and terminated during the job 
execution. 
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1. INTRODUCTION  
 Now-a-days many of the companies have to 
process vast amount of data in a cost-effective approach. 
The internet companies store and analyze massive data 
sets. These data sets are handled by traditional database 
solutions prohibitively expensive [1]. So several 
companies have to developed distribute data storage and 
large clusters of commodity servers. The tasks are split 
into several subtasks, distributed among the available 
nodes and computed in parallel [2]. In this manner many 
of these companies have also built own data processing 
frameworks. The best examples are Microsoft Dryad [3], 
Google’s MapReduce [4] and Mapreduce-Merge [5]. They 
can be derived from the functionality in many task 
computing (MTC) and high throughput computing (HTC), 
depending on the amount of data and the number of task 
involved in the computation [6]. 
 Cloud computing has to change the current IT 
industry. For companies that only have to process large 
amount of data occasionally running their own data center 
is obviously not an option. Instead, cloud computing has 
emerged as a promising approach to rent a large IT 

infrastructure on a short-term pay-per usage basics. 
Operators of IaaS clouds like Amazon EC2 [7], let their 
customers allocate access and control a set of virtual 
machines (VMs) which run inside their data centers and 
only charge them for the period of time the machines are 
allocated, the VMs are different types, each type with its 
own characteristics (number of CPU cores, amount of main 
memory) and cost. 
 Since the VM abstraction of IaaS clouds fits the 
architectural paradigm assumed by the data processing 
frameworks, projects like Hadoop [8], a popular open 
source implementation of Google’s MapReduce framework 
already begun to promote using their framework in the 
cloud. Recently Amazon has integrated Hadoop as one of 
its core infrastructure services. This framework embracing 
its dynamic resource allocation and the cloud to imitate 
the static nature of the cluster environment, they were 
originally designed for, e.g., at the moment the types and 
number of  VMs allocated at the beginning of the compute 
job cannot be changed in the course of processing, 
although the job consists of completely different demands 
on the environment. As a result, rented resources may be 
inadequate for large parts of the processing job, which 
may lower the overall processing performance and 
increase the cost. 
 The paper focused on the framework is Bewitch. 
Bewitch is the first data processing framework to 
explicitly exploit the dynamic resource allocation for 
clouds both task scheduling and execution. Particular 
tasks of a processing job can be assigned to different types 
of virtual machines, which are automatically instantiated 
and terminated during the job execution. Bewitch does not 
consider resource overload or underutilization during the 
job execution automatically. 

 
2. LITERATURE REVIEW 
 
2.1 Parallel Data Processing with MapReduce: A 
Survey 

MapReduce is used to massive data analysis. 
MapReduce implementations are based on a master-slave 
model. A job is submitted by a user node to a master node 
that selects idle workers and assigns each one a map or a 
reduce task. When all map and reduce tasks have been 
completed, the master node returns the result to the user 
node. The failure of a worker is managed by re-executing 
its task on another worker, while master failures are not 
managed by current MapReduce implementations as 
designers consider failures unlikely in large clusters or in 
reliable Cloud environments. 
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2.2 Adapting MapReduce for Dynamic Environments 
Using a Peer-to-Peer Model 
 

To improve the master-slave architecture of 
current implementations to suitable for and P2P dynamic 
scenarios. P2P model to dynamically assign the master 
role and to manage master failures in a decentralized but 
simple way. In our P2P-MapReduce architecture, each 
node can act either as master or slave. The role assigned to 
a given node depends on the current characteristics of that 
node, and so it can change dynamically over time. Thus, at 
each time, a limited set of nodes is assigned the master 
role, while the others are assigned the slave role. 
Moreover, each master node can act as backup node for 
other master nodes. A user node can submit the job to one 
of the master nodes, which will manage it as usual in 
MapReduce. That master node check the status of the job 
on its backup nodes. In case those backup nodes detect the 
failure of the master, they will elect a new master among 
them and will restart the job from the latest available 
checkpoint. P2P-MapReduce architecture implemented by 
Sun’s JXTA P2P framework. 

 
2.3 P2P-MapReduce: Parallel data processing in 
dynamic Cloud environments 

 
The P2P-MapReduce framework exploits a peer-

to-peer model to manage node churn, master failures, and 
job recovery. It provides dynamic Cloud infrastructures. 
P2P-MapReduce framework does not suffer from job 
failures even in the presence of very high churn rates. P2P-
MapReduce adopts a peer-to-peer model in which a wide 
set of autonomous nodes (peers) can act either as a master 
or as a slave. At each time, a limited set of nodes is 
assigned the master role, while the others are assigned the 
slave role. The role assigned to a given node can change 
dynamically over time, so as to ensure the presence of the 
desired master/slave ratio for reliability and load 
balancing purposes. The data are moved across nodes 
using a file transfer protocol like FTP or HTTP. 

 
2.4 Apache Hadoop: 

Apache Hadoop is an open-source software 
framework that supports data-intensive distributed 
applications. It supports the running of applications on 
large clusters. The Hadoop framework transparently 
provides both reliability and data motion to applications. 
Hadoop implements a computational paradigm named 
map/reduce, where the application is divided into many 
small fragments of work, each of which may be executed 
or re-executed on any node in the cluster. In addition, it 
provides a distributed file system that stores data on the 
compute nodes, providing very high aggregate bandwidth 
across the cluster. Both map/reduce and the distributed 
file system are designed so that node failures are 
automatically handled by the framework. A small Hadoop 

cluster will include a single master and multiple worker 
nodes. The master node consists of a JobTracker, 
TaskTracker, NameNode, and DataNode. A slave or worker 
node acts as both a DataNode and TaskTracker, though it 
is possible to have data-only worker nodes, and compute-
only worker nodes.  

 
3. IMPLEMENTATION 
 
3.1 Bewitch Design 

Bewitch is a new data processing framework for 
cloud environments. Bewitch takes up many ideas of 
previous processing frameworks but refines them to 
better match the dynamic and opaque nature of a cloud. 

 
Architecture 

Bewitch’s architecture follows a classic master-
worker pattern as illustrated in Fig. 1. 
 

 
Fig.1. Structure overview of  Bewitch running in an 
Infrastructure-as-a-Service (IaaS) cloud. 
 

Before submitting a Bewitch compute job, a user 
must start a VM in the cloud which runs the so called Job 
Manager (JM). The Job Manager receives the client’s jobs, 
is responsible for scheduling them, and coordinates their 
execution. It is capable of communicating with the 
interface the cloud operator provides to control the 
instantiation of VMs. We call this interface the Cloud 
Controller. By means of the Cloud Controller the Job 
Manager can allocate or deallocate VMs according to the 
current job execution phase. The term instance type will 
be used to differentiate between VMs with different 
hardware characteristics. For example, the instance type 
“m1.small” could denote VMs with one CPU core, one GB of 
RAM, and a 128 GB disk while the instance type “c1.xlarge” 
could refer to machines with 8 CPU cores, 18 GB RAM, and 
a 512 GB disk. 

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
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 Bewitch job consists of is carried out by a set of 
instances. Each instance runs a so-called Task Manager 
(TM). A Task Manager receives one or more tasks from the 
Job Manager at a time, executes them, and after that 
informs the Job Manager about their completion or 
possible errors. Unless a job is submitted to the Job 
Manager, we expect the set of instances (and hence the set 
of Task Managers) to be empty.  The Job Manager then 
decides, depending on the job’s particular tasks, how 
many and what type of instances the job should be 
executed on, and when the respective instances must be 
allocated/deallocated to ensure a continuous but cost-
efficient processing. 
 
 The newly allocated instances boot up with a VM 
image. The image is configured to automatically start a 
Task Manager and register it with the Job Manager.  
Initially, the VM images used to boot up the Task Managers 
are blank and do not contain any of the data the Bewitch 
job is supposed to operate on. As a result, we expect the 
cloud to offer persistent storage (like, e.g., Amazon S3 [9]). 
This persistent storage is supposed to store the job’s input 
data and eventually receive its output data. It must be 
accessible for both the Job Manager as well as for the set of 
Task Managers, even if they are connected by a private or 
virtual network. 
 
3.2 Job Description 
 Job description to describe the Bewitch jobs that 
is similar to Microsoft’s Dryad [3]. Bewitch jobs are 
expressed as a directed acyclic graph (DAG). Each vertex 
in the graph represents a task of the overall processing 
job, the graph’s edges define the communication flow 
between these tasks. We also decided to use DAGs to 
describe processing jobs for two major reasons, the first 
reason is that DAGs allow tasks to have multiple input and 
multiple output edges. This tremendously simplifies the 
implementation of classic data combining functions like, 
e.g., join operations [5]. Second and important reason is 
DAG’s edges explicitly model the communication paths of 
the processing job. As long as the particular tasks only 
exchange data through these designated communication 
edges, Bewitch can always keep track of what instance 
might still require data from what other instances and 
which instance can potentially be shut down and 
reallocated [10].  

Defining a Bewitch job comprises three 
mandatory steps.  First, the user must write the program 
code for each task of his processing job or select it from an 
external library. Second, the task program must be 
assigned to a vertex. Finally, the vertices must be 
connected by edges to define the communication paths of 
the job. Tasks are expected to contain sequential code and 
process so-called records.  From a programmer’s 
perspective records enter and leave the task program 
through input or output gates. Those input and output 

gates can be considered endpoints of the DAG’s edges. 
Regular tasks (i.e., tasks which are later assigned to inner 
vertices of the DAG) must have at least one or more input 
and output gates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. An example of a Job Graph in Bewitch 
  

After having specified the code for the particular 
tasks of the job, the user must define the DAG to connect 
these tasks. We call this DAG the Job Graph. The Job Graph 
maps each task to a vertex and determines the 
communication paths between them. The number of a 
vertex’s incoming and outgoing edges must thereby 
comply with the number of input and output gates defined 
inside the tasks. 

 
Fig. 2 illustrates the simplest possible Job Graph. 

It only consists of one input, one task, and one output 
vertex. One major design goal of Job Graphs has been 
simplicity: Users should be able to describe tasks and their 
relationships on an abstract level. Therefore, the Job Graph 
does not explicitly model task parallelization and the 
mapping of tasks to instances. Once the Job Graph is 
specified, the user submits it to the Job Manager, together 
with the credentials he has obtained from his cloud 
operator. The credentials are required since the Job 
Manager must allocate/deallocate instances during the job 
execution on behalf of the user. 
 
3.3 Job Scheduling and Execution 

After having received a valid Job Graph from the 
user, Bewitch’s Job Manager transforms it into a so-called 
Execution Graph. An Execution Graph is Bewitch’s primary 
data structure for scheduling and monitoring the 
execution of a Bewitch job. 

Unlike the abstract Job Graph, the Execution 
Graph contains all the concrete information required to 
schedule and execute the received job on the cloud. It 

Output 1 
Task: LineWriterTask.program       
Output:s3://user:key@storag
e/output 

Task 1 
 

Task: MyTask.program 

Input 1 
 

Task:LineReaderTask.program 
Input: 
s3://user:key@storage/Input 
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explicitly models task parallelization and the mapping of 
tasks to instances.  The user has provided with his Job 
Graph, Bewitch may have different degrees of freedom in 
constructing the Execution Graph. Fig. 3 shows one 
possible Execution Graph constructed from the previously 
depicted Job Graph (Fig. 2). Task 1 is, e.g., split into two 
parallel subtasks which are both connected to the task 
Output 1 via file channels and are all scheduled to run on 
the same instance.  Instead, its structure resembles a 
graph with two different levels of details, an abstract and a 
concrete level. While the abstract graph describes the job 
execution on a task level (without parallelization) and the 
scheduling of instance allocation/deallocation. It defines 
the mapping of subtasks to instances and the 
communication channels between them. On the abstract 
level, the Execution Graph equals the user’s Job Graph. For 
every vertex of the original Job Graph there exists a so-
called Group Vertex in the Execution Graph. As a result, 
Group Vertices also represent distinct tasks of the overall 
job, however, they cannot be seen as executable units. The 
edges between Group Vertices are only modeled implicitly 
as they do not represent any physical communication 
paths during the job processing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
Fig. 3. An Execution Graph created from the original 
Job Graph. 
  

Bewitch separates the Execution Graph into one 
or more so-called Execution Stages. An Execution Stage 
must contain at least one Group Vertex. Its processing can 
only start when all the subtasks included in the preceding 
stages have been successfully processed. Based on this 
Bewitch’s scheduler ensures the following three 
properties for the entire job execution: First, when the 
processing of a stage begins, all instances required within 
the stage are allocated.  Second, all subtasks included in 
this stage are set up (i.e., sent to the corresponding Task 
Managers along with their required libraries) and ready to 
receive records. Third, before the processing of a new 
stage, all intermediate results of its preceding stages are 
stored in a persistent manner. The concrete level of the 
Execution Graph refines the job schedule to include 
subtasks and their communication channels. In Bewitch, 
every task is transformed into either exactly one, or, if the 
task is suitable for parallel execution, at least one subtask. 
For a task to complete successfully, each of its subtasks 
must be successfully processed by a Task Manager. 
Subtasks are represented by so-called Execution Vertices 
in the Execution Graph.  To simplify management, each 
Execution Vertex is always controlled by its corresponding 
Group Vertex. 
 Bewitch allows each task to be executed on its 
own instance type, so the characteristics of the requested 
VMs can be adapted to the demands of the current 
processing phase. To reflect this relation in the Execution 
Graph, each subtask must be mapped to a so-called 
Execution Instance. An Execution Instance is defined by an 
ID and an instance type representing the hardware 
characteristics of the corresponding VM. It is a scheduling 
stub that determines which subtasks have to run on what 
instance (type). We expect a list of available instance types 
together with their cost per time unit to be accessible for 
Bewitch’s scheduler and instance types to be referable by 
simple identifier strings like “m1.small”. Before processing 
a new Execution Stage, the scheduler collects all Execution 
Instances from that stage and tries to replace them with 
matching cloud instances. If all required instances could 
be allocated the subtasks are distributed among them and 
set up for execution. 
 
 On the concrete level, the Execution Graph 
inherits the edges from the abstract level, i.e., edges 
between Group Vertices are translated into edges between 
Execution Vertices. In case of task parallelization, when a 
Group Vertex contains more than one Execution Vertex, 
the developer of the consuming task can implement an 
interface which determines how to connect the two 
different groups of subtasks. The actual number of 
channels that are connected to a subtask at runtime is 
hidden behind the task’s respective input and output 
gates. However, the user code can determine the number if 
necessary. Bewitch requires all edges of an Execution 
Graph to be replaced by a channel before processing can 
begin. The type of the channel determines how records are 
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Task 1 
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Execution 

Stage 
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transported from one subtask to the other. Currently, 
Bewitch features three different types of channels, which 
all put different constrains on the Execution Graph. 
 
 Network channels: A network channel lets two 
subtasks exchange data via a TCP connection. Network 
channels allow pipelined processing, so the records 
emitted by the producing subtask are immediately 
transported to the consuming subtask. As a result, two 
subtasks connected via a network channel may be 
executed on different instances. However, since they must 
be executed at the same time, they are required to run in 
the same Execution Stage. In-Memory channels, Similar 
to a network channel, an in-memory channel also enables 
pipelined processing.  However, instead of using a TCP 
connection, the respective subtasks exchange data using 
the instance’s main memory. An in-memory channel 
typically represents the fastest way to transport records in 
Bewitch, however, it also implies most scheduling 
restrictions: The two connected subtasks must be 
scheduled to run on the same instance and run in the same 
Execution Stage. File channels: A file channel allows two 
subtasks to exchange records via the local file system. The 
records of the producing task are first entirely written to 
an intermediate file and afterward read into the 
consuming subtask. Bewitch requires two such subtasks to 
be assigned to the same instance.  In general, Bewitch only 
allows subtasks to exchange records across different 
stages via file channels because they are the only channel 
types which store the intermediate records in a persistent 
manner. 
 
4. PERFORMANCE COMPARISON 
 
 The results of performance comparison chart is 
taken three plots, that illustrate the average instance 
utilization over time ( the instance are broken down into 
the amount of time the CPU cores spent running the 
respective data processing framework (USR)), the kernel 
and its processes (SYS), and the time waiting for I/O to 
complete (WAIT). The network communication plots 
additionally show the average amount of IP traffic flowing 
between the instances over time.  
The above chart shows the system utilization for executing 
the same MapReduce programs on top of Bewitch. For the 
first execution stage, corresponding to the map phase and 
reduce phase tasks, the overall resource utilization is 
comparable to the one of this chat. 
Duringthe map phase and the reduce phase all six 
“c1.xlarge” instances show an average utilization of about 
80 percent. However, after approximately 42 minutes, 
Bewitch starts transmitting the sorted output stream of 
each of the 12 Reduce subtasks to the two instances which 
are scheduled to remain allocated for the upcoming 
Execution Stages. At the end of Stage 0, Bewitch is aware 
that four of the six “c1.xlarge” are no longer required for 
the upcoming computations and deallocates them. Since 

the four deallocated instances do no longer contribute to 
the number of available CPU cores in the second stage, the 
remaining instances again match the computational 
demands of the first step. During the execution of the 12 
subtasks and the four Reduce subtasks , the utilization of 
the allocated instances is about 80 percent. The same 
applies to the final aggregation in the third Execution 
Stagewhich is only executed on one allocated “c1.xlarge” 
instance. 

 
Fig.4. Comparison results of MapReduce and            
Bewitch 
 

 
Fig.5. Comparison results of DAG and Bewitch 
 
 The above chart shows the comparison results of 
DAG and Bewitch. The sort/ aggregation problem as a DAG 
and tried to exploit Bewitch. Bewitch has successfully 
allocated all instances required to start the first Execution 
Stage. Initially, the BigIntegerReader subtasks begin to 
read their splits of the input data set and emit the created 
records to the BigIntegerSorter subtasks. Until the end of 
the sort phase, Bewitch can fully exploit the power of the 
six allocated “c1.xlarge” instances. After that period the 
computational power is no longer needed for the merge 
phase. Again, since the six expensive “c1.xlarge” instances 
no longer contribute to the number of available CPU cores 
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in that period, the processing power allocated from the 
cloud again fits the task to be completed. After 33 minutes, 
Bewitch has finished the entire processing job. 
  
5. RESULT AND DISCUSSIONS 
 
 Bewitch has successfully allocated all instances 

required to start the first Execution Stage. Initially, the 

large tasks are splits into several subtasks. Then all the   

incoming records to sorting them. Here, the advantage of 

Bewitch’s ability to assign specific instance types to 

specific kinds of tasks. Until the end of the sort phase, 

Bewitch can fully exploit the power of the six allocated 

“c1.xlarge” instances. After that period the computational 

power is no longer needed for the merge phase. From a 

cost perspective it is now desirable to deallocate the 

expensive instances as soon as possible. In general, this 

transfer penalty must be carefully considered when 

switching between different instance types during job 

execution. For the future we plan to integrate compression 

for file and network channels as a means to trade CPU 

against I/O load. Thereby, we hope to mitigate this 

drawback. As a result, Bewitch automatically deallocates 

the six instances of type “c1.xlarge” and continues the next 

Execution Stage with only one instance of type “m1.small” 

left. Bewitch has finished the entire processing job and 

take the processing time is very short time period. So, 

Bewitch’s savings in time, cost and more complex 

processing jobs become feasible. 

 

6. CONCLUSIONS 
 Our aim to present new framework for efficient 
parallel data processing, like Bewitch. Previously we have 
used Hadoop and Map Reduce framework for parallel data 
processing. But one drawback is, once VM is allocated at 
the beginning of a compute job cannot be changed in the 
course of processing. As a result, rented resources may be 
inadequate for big parts of the processing job, which may 
lower the overall processing performance and increase the 
cost. This drawback will be overcome used new 
framework is Bewitch. Bewitch can automatically 
allocate/deallocate virtual machines in the course of a job 
execution, can help to improve the overall resource 
utilization and, consequently, reduce the processing cost. 
When task manager have failed, at that time job manager 
allocate that task to another task manager. So each and 
every task is completed successfully.  In general, we think 
our work represents an important contribution to the 
growing field of Cloud computing services. 
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