
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1302

Methodology for Crucial Data Processing in Cloud Computing

K. Siva Sankar 1

1 Assistant Professor, Noorul Islam University, Tamil Nadu, India.
---***---

Abstract - Bewitch opens a new door towards
the concepts of Infrastructure-as-a-Service
(IaaS) Clouds. The cloud computing companies
have processing frameworks designed for
static nature of the cluster environment.
Accordingly, the allocated compute resources
may be insufficient for big parts of the
submitted job and unnecessarily increase
processing time and cost. Bewitch facilitates
new ways of data processing in clouds. In this
paper we discuss the novel approach for
efficient parallel data processing in clouds
and present this work. Bewitch is the first data
processing framework to explicitly exploit the
dynamic resource allocation offered by today’s
IaaS clouds for both, task scheduling and
execution. Particular tasks of a processing job
can be assigned to different types of virtual
machines which are automatically
instantiated and terminated during the job
execution.

Key Words: Key word1, Key word2, Key word3, etc…

1. INTRODUCTION
 Now-a-days many of the companies have to
process vast amount of data in a cost-effective approach.
The internet companies store and analyze massive data
sets. These data sets are handled by traditional database
solutions prohibitively expensive [1]. So several
companies have to developed distribute data storage and
large clusters of commodity servers. The tasks are split
into several subtasks, distributed among the available
nodes and computed in parallel [2]. In this manner many
of these companies have also built own data processing
frameworks. The best examples are Microsoft Dryad [3],
Google’s MapReduce [4] and Mapreduce-Merge [5]. They
can be derived from the functionality in many task
computing (MTC) and high throughput computing (HTC),
depending on the amount of data and the number of task
involved in the computation [6].
 Cloud computing has to change the current IT
industry. For companies that only have to process large
amount of data occasionally running their own data center
is obviously not an option. Instead, cloud computing has
emerged as a promising approach to rent a large IT

infrastructure on a short-term pay-per usage basics.
Operators of IaaS clouds like Amazon EC2 [7], let their
customers allocate access and control a set of virtual
machines (VMs) which run inside their data centers and
only charge them for the period of time the machines are
allocated, the VMs are different types, each type with its
own characteristics (number of CPU cores, amount of main
memory) and cost.
 Since the VM abstraction of IaaS clouds fits the
architectural paradigm assumed by the data processing
frameworks, projects like Hadoop [8], a popular open
source implementation of Google’s MapReduce framework
already begun to promote using their framework in the
cloud. Recently Amazon has integrated Hadoop as one of
its core infrastructure services. This framework embracing
its dynamic resource allocation and the cloud to imitate
the static nature of the cluster environment, they were
originally designed for, e.g., at the moment the types and
number of VMs allocated at the beginning of the compute
job cannot be changed in the course of processing,
although the job consists of completely different demands
on the environment. As a result, rented resources may be
inadequate for large parts of the processing job, which
may lower the overall processing performance and
increase the cost.
 The paper focused on the framework is Bewitch.
Bewitch is the first data processing framework to
explicitly exploit the dynamic resource allocation for
clouds both task scheduling and execution. Particular
tasks of a processing job can be assigned to different types
of virtual machines, which are automatically instantiated
and terminated during the job execution. Bewitch does not
consider resource overload or underutilization during the
job execution automatically.

2. LITERATURE REVIEW

2.1 Parallel Data Processing with MapReduce: A
Survey

MapReduce is used to massive data analysis.
MapReduce implementations are based on a master-slave
model. A job is submitted by a user node to a master node
that selects idle workers and assigns each one a map or a
reduce task. When all map and reduce tasks have been
completed, the master node returns the result to the user
node. The failure of a worker is managed by re-executing
its task on another worker, while master failures are not
managed by current MapReduce implementations as
designers consider failures unlikely in large clusters or in
reliable Cloud environments.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1303

2.2 Adapting MapReduce for Dynamic Environments
Using a Peer-to-Peer Model

To improve the master-slave architecture of
current implementations to suitable for and P2P dynamic
scenarios. P2P model to dynamically assign the master
role and to manage master failures in a decentralized but
simple way. In our P2P-MapReduce architecture, each
node can act either as master or slave. The role assigned to
a given node depends on the current characteristics of that
node, and so it can change dynamically over time. Thus, at
each time, a limited set of nodes is assigned the master
role, while the others are assigned the slave role.
Moreover, each master node can act as backup node for
other master nodes. A user node can submit the job to one
of the master nodes, which will manage it as usual in
MapReduce. That master node check the status of the job
on its backup nodes. In case those backup nodes detect the
failure of the master, they will elect a new master among
them and will restart the job from the latest available
checkpoint. P2P-MapReduce architecture implemented by
Sun’s JXTA P2P framework.

2.3 P2P-MapReduce: Parallel data processing in
dynamic Cloud environments

The P2P-MapReduce framework exploits a peer-

to-peer model to manage node churn, master failures, and
job recovery. It provides dynamic Cloud infrastructures.
P2P-MapReduce framework does not suffer from job
failures even in the presence of very high churn rates. P2P-
MapReduce adopts a peer-to-peer model in which a wide
set of autonomous nodes (peers) can act either as a master
or as a slave. At each time, a limited set of nodes is
assigned the master role, while the others are assigned the
slave role. The role assigned to a given node can change
dynamically over time, so as to ensure the presence of the
desired master/slave ratio for reliability and load
balancing purposes. The data are moved across nodes
using a file transfer protocol like FTP or HTTP.

2.4 Apache Hadoop:

Apache Hadoop is an open-source software
framework that supports data-intensive distributed
applications. It supports the running of applications on
large clusters. The Hadoop framework transparently
provides both reliability and data motion to applications.
Hadoop implements a computational paradigm named
map/reduce, where the application is divided into many
small fragments of work, each of which may be executed
or re-executed on any node in the cluster. In addition, it
provides a distributed file system that stores data on the
compute nodes, providing very high aggregate bandwidth
across the cluster. Both map/reduce and the distributed
file system are designed so that node failures are
automatically handled by the framework. A small Hadoop

cluster will include a single master and multiple worker
nodes. The master node consists of a JobTracker,
TaskTracker, NameNode, and DataNode. A slave or worker
node acts as both a DataNode and TaskTracker, though it
is possible to have data-only worker nodes, and compute-
only worker nodes.

3. IMPLEMENTATION

3.1 Bewitch Design

Bewitch is a new data processing framework for
cloud environments. Bewitch takes up many ideas of
previous processing frameworks but refines them to
better match the dynamic and opaque nature of a cloud.

Architecture

Bewitch’s architecture follows a classic master-
worker pattern as illustrated in Fig. 1.

Fig.1. Structure overview of Bewitch running in an
Infrastructure-as-a-Service (IaaS) cloud.

Before submitting a Bewitch compute job, a user
must start a VM in the cloud which runs the so called Job
Manager (JM). The Job Manager receives the client’s jobs,
is responsible for scheduling them, and coordinates their
execution. It is capable of communicating with the
interface the cloud operator provides to control the
instantiation of VMs. We call this interface the Cloud
Controller. By means of the Cloud Controller the Job
Manager can allocate or deallocate VMs according to the
current job execution phase. The term instance type will
be used to differentiate between VMs with different
hardware characteristics. For example, the instance type
“m1.small” could denote VMs with one CPU core, one GB of
RAM, and a 128 GB disk while the instance type “c1.xlarge”
could refer to machines with 8 CPU cores, 18 GB RAM, and
a 512 GB disk.

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1304

 Bewitch job consists of is carried out by a set of
instances. Each instance runs a so-called Task Manager
(TM). A Task Manager receives one or more tasks from the
Job Manager at a time, executes them, and after that
informs the Job Manager about their completion or
possible errors. Unless a job is submitted to the Job
Manager, we expect the set of instances (and hence the set
of Task Managers) to be empty. The Job Manager then
decides, depending on the job’s particular tasks, how
many and what type of instances the job should be
executed on, and when the respective instances must be
allocated/deallocated to ensure a continuous but cost-
efficient processing.

 The newly allocated instances boot up with a VM
image. The image is configured to automatically start a
Task Manager and register it with the Job Manager.
Initially, the VM images used to boot up the Task Managers
are blank and do not contain any of the data the Bewitch
job is supposed to operate on. As a result, we expect the
cloud to offer persistent storage (like, e.g., Amazon S3 [9]).
This persistent storage is supposed to store the job’s input
data and eventually receive its output data. It must be
accessible for both the Job Manager as well as for the set of
Task Managers, even if they are connected by a private or
virtual network.

3.2 Job Description
 Job description to describe the Bewitch jobs that
is similar to Microsoft’s Dryad [3]. Bewitch jobs are
expressed as a directed acyclic graph (DAG). Each vertex
in the graph represents a task of the overall processing
job, the graph’s edges define the communication flow
between these tasks. We also decided to use DAGs to
describe processing jobs for two major reasons, the first
reason is that DAGs allow tasks to have multiple input and
multiple output edges. This tremendously simplifies the
implementation of classic data combining functions like,
e.g., join operations [5]. Second and important reason is
DAG’s edges explicitly model the communication paths of
the processing job. As long as the particular tasks only
exchange data through these designated communication
edges, Bewitch can always keep track of what instance
might still require data from what other instances and
which instance can potentially be shut down and
reallocated [10].

Defining a Bewitch job comprises three
mandatory steps. First, the user must write the program
code for each task of his processing job or select it from an
external library. Second, the task program must be
assigned to a vertex. Finally, the vertices must be
connected by edges to define the communication paths of
the job. Tasks are expected to contain sequential code and
process so-called records. From a programmer’s
perspective records enter and leave the task program
through input or output gates. Those input and output

gates can be considered endpoints of the DAG’s edges.
Regular tasks (i.e., tasks which are later assigned to inner
vertices of the DAG) must have at least one or more input
and output gates.

Fig. 2. An example of a Job Graph in Bewitch

After having specified the code for the particular
tasks of the job, the user must define the DAG to connect
these tasks. We call this DAG the Job Graph. The Job Graph
maps each task to a vertex and determines the
communication paths between them. The number of a
vertex’s incoming and outgoing edges must thereby
comply with the number of input and output gates defined
inside the tasks.

Fig. 2 illustrates the simplest possible Job Graph.

It only consists of one input, one task, and one output
vertex. One major design goal of Job Graphs has been
simplicity: Users should be able to describe tasks and their
relationships on an abstract level. Therefore, the Job Graph
does not explicitly model task parallelization and the
mapping of tasks to instances. Once the Job Graph is
specified, the user submits it to the Job Manager, together
with the credentials he has obtained from his cloud
operator. The credentials are required since the Job
Manager must allocate/deallocate instances during the job
execution on behalf of the user.

3.3 Job Scheduling and Execution

After having received a valid Job Graph from the
user, Bewitch’s Job Manager transforms it into a so-called
Execution Graph. An Execution Graph is Bewitch’s primary
data structure for scheduling and monitoring the
execution of a Bewitch job.

Unlike the abstract Job Graph, the Execution
Graph contains all the concrete information required to
schedule and execute the received job on the cloud. It

Output 1
Task: LineWriterTask.program
Output:s3://user:key@storag
e/output

Task 1

Task: MyTask.program

Input 1

Task:LineReaderTask.program
Input:
s3://user:key@storage/Input

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1305

explicitly models task parallelization and the mapping of
tasks to instances. The user has provided with his Job
Graph, Bewitch may have different degrees of freedom in
constructing the Execution Graph. Fig. 3 shows one
possible Execution Graph constructed from the previously
depicted Job Graph (Fig. 2). Task 1 is, e.g., split into two
parallel subtasks which are both connected to the task
Output 1 via file channels and are all scheduled to run on
the same instance. Instead, its structure resembles a
graph with two different levels of details, an abstract and a
concrete level. While the abstract graph describes the job
execution on a task level (without parallelization) and the
scheduling of instance allocation/deallocation. It defines
the mapping of subtasks to instances and the
communication channels between them. On the abstract
level, the Execution Graph equals the user’s Job Graph. For
every vertex of the original Job Graph there exists a so-
called Group Vertex in the Execution Graph. As a result,
Group Vertices also represent distinct tasks of the overall
job, however, they cannot be seen as executable units. The
edges between Group Vertices are only modeled implicitly
as they do not represent any physical communication
paths during the job processing.

Fig. 3. An Execution Graph created from the original
Job Graph.

Bewitch separates the Execution Graph into one
or more so-called Execution Stages. An Execution Stage
must contain at least one Group Vertex. Its processing can
only start when all the subtasks included in the preceding
stages have been successfully processed. Based on this
Bewitch’s scheduler ensures the following three
properties for the entire job execution: First, when the
processing of a stage begins, all instances required within
the stage are allocated. Second, all subtasks included in
this stage are set up (i.e., sent to the corresponding Task
Managers along with their required libraries) and ready to
receive records. Third, before the processing of a new
stage, all intermediate results of its preceding stages are
stored in a persistent manner. The concrete level of the
Execution Graph refines the job schedule to include
subtasks and their communication channels. In Bewitch,
every task is transformed into either exactly one, or, if the
task is suitable for parallel execution, at least one subtask.
For a task to complete successfully, each of its subtasks
must be successfully processed by a Task Manager.
Subtasks are represented by so-called Execution Vertices
in the Execution Graph. To simplify management, each
Execution Vertex is always controlled by its corresponding
Group Vertex.
 Bewitch allows each task to be executed on its
own instance type, so the characteristics of the requested
VMs can be adapted to the demands of the current
processing phase. To reflect this relation in the Execution
Graph, each subtask must be mapped to a so-called
Execution Instance. An Execution Instance is defined by an
ID and an instance type representing the hardware
characteristics of the corresponding VM. It is a scheduling
stub that determines which subtasks have to run on what
instance (type). We expect a list of available instance types
together with their cost per time unit to be accessible for
Bewitch’s scheduler and instance types to be referable by
simple identifier strings like “m1.small”. Before processing
a new Execution Stage, the scheduler collects all Execution
Instances from that stage and tries to replace them with
matching cloud instances. If all required instances could
be allocated the subtasks are distributed among them and
set up for execution.

 On the concrete level, the Execution Graph
inherits the edges from the abstract level, i.e., edges
between Group Vertices are translated into edges between
Execution Vertices. In case of task parallelization, when a
Group Vertex contains more than one Execution Vertex,
the developer of the consuming task can implement an
interface which determines how to connect the two
different groups of subtasks. The actual number of
channels that are connected to a subtask at runtime is
hidden behind the task’s respective input and output
gates. However, the user code can determine the number if
necessary. Bewitch requires all edges of an Execution
Graph to be replaced by a channel before processing can
begin. The type of the channel determines how records are

Input 1

(1)

Stage 0

Stage 1

Output

1 (1)

Task 1

(2)

Execution

Stage

Group

Vertex

Execution

Instance

Execution

Vertex

Network

Channel

File Channel

ID: i-
40A608A
3
Type:
m1.large

ID: i-
59BC001
3
Type:
m1.small

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1306

transported from one subtask to the other. Currently,
Bewitch features three different types of channels, which
all put different constrains on the Execution Graph.

 Network channels: A network channel lets two
subtasks exchange data via a TCP connection. Network
channels allow pipelined processing, so the records
emitted by the producing subtask are immediately
transported to the consuming subtask. As a result, two
subtasks connected via a network channel may be
executed on different instances. However, since they must
be executed at the same time, they are required to run in
the same Execution Stage. In-Memory channels, Similar
to a network channel, an in-memory channel also enables
pipelined processing. However, instead of using a TCP
connection, the respective subtasks exchange data using
the instance’s main memory. An in-memory channel
typically represents the fastest way to transport records in
Bewitch, however, it also implies most scheduling
restrictions: The two connected subtasks must be
scheduled to run on the same instance and run in the same
Execution Stage. File channels: A file channel allows two
subtasks to exchange records via the local file system. The
records of the producing task are first entirely written to
an intermediate file and afterward read into the
consuming subtask. Bewitch requires two such subtasks to
be assigned to the same instance. In general, Bewitch only
allows subtasks to exchange records across different
stages via file channels because they are the only channel
types which store the intermediate records in a persistent
manner.

4. PERFORMANCE COMPARISON

 The results of performance comparison chart is
taken three plots, that illustrate the average instance
utilization over time (the instance are broken down into
the amount of time the CPU cores spent running the
respective data processing framework (USR)), the kernel
and its processes (SYS), and the time waiting for I/O to
complete (WAIT). The network communication plots
additionally show the average amount of IP traffic flowing
between the instances over time.
The above chart shows the system utilization for executing
the same MapReduce programs on top of Bewitch. For the
first execution stage, corresponding to the map phase and
reduce phase tasks, the overall resource utilization is
comparable to the one of this chat.
Duringthe map phase and the reduce phase all six
“c1.xlarge” instances show an average utilization of about
80 percent. However, after approximately 42 minutes,
Bewitch starts transmitting the sorted output stream of
each of the 12 Reduce subtasks to the two instances which
are scheduled to remain allocated for the upcoming
Execution Stages. At the end of Stage 0, Bewitch is aware
that four of the six “c1.xlarge” are no longer required for
the upcoming computations and deallocates them. Since

the four deallocated instances do no longer contribute to
the number of available CPU cores in the second stage, the
remaining instances again match the computational
demands of the first step. During the execution of the 12
subtasks and the four Reduce subtasks , the utilization of
the allocated instances is about 80 percent. The same
applies to the final aggregation in the third Execution
Stagewhich is only executed on one allocated “c1.xlarge”
instance.

Fig.4. Comparison results of MapReduce and
Bewitch

Fig.5. Comparison results of DAG and Bewitch

 The above chart shows the comparison results of
DAG and Bewitch. The sort/ aggregation problem as a DAG
and tried to exploit Bewitch. Bewitch has successfully
allocated all instances required to start the first Execution
Stage. Initially, the BigIntegerReader subtasks begin to
read their splits of the input data set and emit the created
records to the BigIntegerSorter subtasks. Until the end of
the sort phase, Bewitch can fully exploit the power of the
six allocated “c1.xlarge” instances. After that period the
computational power is no longer needed for the merge
phase. Again, since the six expensive “c1.xlarge” instances
no longer contribute to the number of available CPU cores

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1307

in that period, the processing power allocated from the
cloud again fits the task to be completed. After 33 minutes,
Bewitch has finished the entire processing job.

5. RESULT AND DISCUSSIONS

 Bewitch has successfully allocated all instances

required to start the first Execution Stage. Initially, the

large tasks are splits into several subtasks. Then all the

incoming records to sorting them. Here, the advantage of

Bewitch’s ability to assign specific instance types to

specific kinds of tasks. Until the end of the sort phase,

Bewitch can fully exploit the power of the six allocated

“c1.xlarge” instances. After that period the computational

power is no longer needed for the merge phase. From a

cost perspective it is now desirable to deallocate the

expensive instances as soon as possible. In general, this

transfer penalty must be carefully considered when

switching between different instance types during job

execution. For the future we plan to integrate compression

for file and network channels as a means to trade CPU

against I/O load. Thereby, we hope to mitigate this

drawback. As a result, Bewitch automatically deallocates

the six instances of type “c1.xlarge” and continues the next

Execution Stage with only one instance of type “m1.small”

left. Bewitch has finished the entire processing job and

take the processing time is very short time period. So,

Bewitch’s savings in time, cost and more complex

processing jobs become feasible.

6. CONCLUSIONS
 Our aim to present new framework for efficient
parallel data processing, like Bewitch. Previously we have
used Hadoop and Map Reduce framework for parallel data
processing. But one drawback is, once VM is allocated at
the beginning of a compute job cannot be changed in the
course of processing. As a result, rented resources may be
inadequate for big parts of the processing job, which may
lower the overall processing performance and increase the
cost. This drawback will be overcome used new
framework is Bewitch. Bewitch can automatically
allocate/deallocate virtual machines in the course of a job
execution, can help to improve the overall resource
utilization and, consequently, reduce the processing cost.
When task manager have failed, at that time job manager
allocate that task to another task manager. So each and
every task is completed successfully. In general, we think
our work represents an important contribution to the
growing field of Cloud computing services.

REFERENCES

[1]. R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D.

Shakib, S. Weaver, and J. Zhou, “SCOPE: Easy and
Efficient Parallel Processing of Massive Data Sets,”
Proc. Very Large Database Endowment, vol. 1, no. 2,
pp. 1265-1276, 2008.

[2]. B. Tierney, W. Johnston, H. Herzog, G. Hoo, G. Jin, J. Lee,
L. Chen, D. Rotem, Distributed Parallel Data Storage
Systems: A Scalable Approach to High Speed Image
Servers, ACM Multimedia ‘94, San Francisco, Oct 1994.

[3]. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks,” Proc. Second ACM
SIGOPS/EuroSys European Conf. Computer Systems
(EuroSys ’07), pp. 59-72, 2007.

[4]. J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Proc. Sixth Conf. Symp.
Opearting Systems

[5]. Design and Implementation (OSDI ’04), p. 10, 2004.
[6]. H. chih Yang, A. Dasdan, R.-L. Hsiao, and D.S. Parker,

“Map- Reduce-Merge: Simplified Relational Data
Processing on Large Clusters,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, 2007.

[7]. Raicu, I. Foster, and Y. Zhao, “Many-Task Computing
for Grids and Supercomputers,” Proc. Workshop
Many-Task Computing on Grids and Supercomputers,
pp. 1-11, Nov. 2008.

[8]. Amazon Web Services LLC, “Amazon Elastic Compute
Cloud (Amazon EC2),” http://aws.amazon.com/ec2/,
2009.

[9]. The Apache Software Foundation “Welcome to
Hadoop!” http:// hadoop.apache.org/, 2009.

[10]. Amazon Web Services LLC, “Amazon Simple Storage
Service,” http://aws.amazon.com/s3/, 2009.

[11]. D. Warneke and O. Kao, “Bewitch: Efficient Parallel
Data Processing in the Cloud,” Proc. Second Workshop
Many-Task Computing on Grids and Supercomputers
(MTAGS ’09), pp. 1-10, 2009.

BIOGRAPHIES

Dr.K.Siva Sankar obtained his
doctorate from M S University. He is
presently working as an Assistant
Professor in Department of
Information Technology, Noorul
Islam University, Kumaracoil, India.
He is well known for his
contributions to the field in both

research and education contributing over 26
research articles in journal and conferences. He also
served in many committees as Convener, Chair, and
Advisory member for various external agencies. His
research is currently focused on System Software
and Embedded Systems.

