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Abstract - In a structure, the presence of a geometric 

discontinuity or a material discontinuity reduces in a 

significant rate its lifespan. In fact, it is at the level of 

these areas that the stress fields are strongly disturbed 

and can reach very critical levels which generate 

damage processes.  Not only does the analysis of these 

peculiar areas ensure the realization of an optimum 

conception of structures’ geometry but also it helps 

choosing the proper materials for the different 

assemblies. This analysis requires the determination of 

the asymptotic parameters of stress singularity which 

are the stress intensity factor, the normalized tensor 

and the singularity order.  The last parameter conveys 

the severity of this singularity.  The current study 

primarily focuses on the determination and the 

analysis of this parameter using two approaches.  The 

first one is theoretical, and the second one numerical 

which is based on an iterative method of the finite 

elements. These two methods were applied to various 

cases of singularity. The obtained results were analyzed 

and discussed compared with references. 

 

Key Words: Discontinuity, stress singularity, order of 

singularity, stress intensity factor, asymptotic method 

 

1. INTRODUCTION 

 
In industry, the development continues to increase by 

integrating new technologies. The peculiarity of these new 

technologies is the use of various structures characterized 

by their optimal design. This optimization includes not 

only the aspect of geometry, but also the choice of 

materials constituting the structure. Indeed, a geometric 

irregularity or a bad choice of materials creates stress 

concentrations that are usually the cause of damage 

process. The particular areas from which are initiated 

these damage phenomena are said singular. In these areas, 

the material behavior can be described by a displacement 

or a stress asymptotic. In this description of the singular 

field, three asymptotic quantities are essential [Bogy and 

Wang 1]; [Jones 2]: the stress intensity factor related to 

the materials nature and to the type of applied load, the 

normalized tensor which is a spatial function to illustrate 

the stress’s distribution, and finally the constant 

singularity order reflecting the severity of the 

discontinuity in presence. 

Many studies have treated the stress singularity at the 

point of sharp notches in the ended opening. In 1952 

Williams [3] studied the stress distribution in the bottom 

of a notch with a sharp corner infinitely. He revealed that 

this distribution was characterized by a stress intensity 

factor of notch, which describes the singularity of stresses. 

To describe the asymptotic behavior of stresses near the 

tip of the notch, Williams has considered in his 

development the Airy’s function of the elasticity problem. 

However, the majority of studies have only paid much 

attention to the specific combination of Material and they 

limited the form of the geometry. The difference between 

the elastic properties of bonded materials can lead to a 

singular distribution of normal stress or shear in the 

interface. In 1968, Bogy [4] developed an asymptotic 

analysis of perfectly bonded joints in plane elasticity 

subject to the traction. The same author expressed later 

[Bogy, 1971] this singularity from the parameters 

Dundurs α and β for arbitrary angles and near the apex in 

joint plan dissimilar for diverse combinations of material 

properties and a common geometry.  

In 1971, Hein with Erdogan [6] and Bogy with Wang [1] 

have used the Mellin transform to study the stress 

singularities in bi-material corners. In 1979, Dempsey and 

Sinclair [7] have proposed a new form of the Airy stress 

function to express the stress singularities in isotropic 

elastic plates in traction. 

Through the research mentioned above, the capitalization 

the above description of stress singular appear difficult in 

the domain of engineering where it favors the application 

of classical finite element method. Indeed, we can model 

the stress singular field by increasing the mesh density in 

the region of notch. Unfortunately, by this approach any 

improvement of the precision engenders a consequent 

calculation time. In 1975, a special finite element method 

was used to better describe the stress field for certain 
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Analysis of the stress field near a singularity (edge, hole ...) 

is made possible by asymptotic methods. In a plan linear 

elasticity (plan strain hypothesis or plan stress), the 

displacement field u can be broken down into a singular 

part and a regular part [Naman 10]. The singular part, also 

called singularity, contains some of the stress intensity 

factors KI and KII. The first asymptotic analysis have been 

developed by Williams [3] then by Bogy [5] and others 

subsequently [Dempsey and Sinclair 11], [Hills 12]. These 

authors have developed a formulation showing the 

singularity near edge. When the edge distance r is small 

compared to other geometric characteristic lengths, the 

stress field has the form Kr-λ. λ is one of the asymptotic 

quantities. It is called exponent and it expresses the 

singularity. Its value is in the range of [0, 1], depending on 

the opening angle. The intensity factor K cannot be 

determined by the asymptotic analysis, but by analyzing 

the numeric field of a geometry, a material and a specific 

loading. The geometry that we study consists of an 

opening 2π-2α (2α = α1 + α2 figure 1) in a homogeneous 

material (Fig -1). 

 

 
Fig -1: Homogeneous Area with a singularity Opening 2π-

2α 

 

Taking into account that the two equations of equilibrium 

for this figure case can be expressed in term of 

displacements functions of ur, uθ in polar coordinates, as 

follows: 
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 For the expression of stress: 
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In this area (Figure 1), the displacement field is singular. 

The components of this field can be expressed as follows 

[Dempsey and Sinclair, 11]; [Prton 13]: 

 

( ) ( ) ( ) ( )θθθ λ
θ

λ θ grrrru ufr == ,,  ,  (6) 

 

Replacing components of displacement in the equations of 

equilibrium by the proposed forms, we obtain a system of 

which the solution is: 
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geometric configurations comprising a V notch. This 

method relies on the hypotheses of asymptotic stress field 

near the extremities of V-notches. The principle and basis 

of this theoretical approach were developed by Henshell 

white Shaw and al. [8] firstly, and Barsoum [9] secondly. 

Through these two references we can find the principle 

and the basis of this theoretical approach. The originality 

of this approach is the use of classical finite element 

method an iterative process.  

In this approach, the precision of the solution based 

primarily on that of the exponent of the singularity who is 

the subject of the present study, through which we will 

develop a simple methodology for its determination in 

different structures consisting of homogeneous materials. 

In our development, we were able to highlight the part of 

the complex component compared to the real component 

of the singularity order. These two components will be 

discussed according to different configurations. Parallel 

with this theoretical approach, we also developed another 

approach of iterative numerical calculation based on the 

method of finite elements. For this approach, we 

elaborated a computer program that will allow us to 

calculate the exponent of the singularity. This analysis 

allows to evaluate the different asymptotic values used in 

the domain of fracture mechanics based on these finite 

element calculations. These two methods have been 

applied to diverse cases of singularities in the form of 

notches made on a three-point bending test-tube. The 

results were analyzed and compared with references.  

 

2. Theoretical Approach 
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From	 these	 expressions	 of	 f and g, the displacement 

solutions can be written in the following form: 
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For the expressions of the associated stress they are given 

by: 
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The search for nontrivial solutions of this equation system 

led to the establishment of so-called transcendental 

equations. These are the equations that will enable us to 

highlight the dependence of the order of singularity in 

function of the studied geometry via its opening angle. The 

main dependencies expressed by the characteristic 

equations were established for different types of boundary 

conditions [Prton 13] (Table 1) : 

Table 1 : Characteristic equations 

Case 
Boundary 

conditions 
Characteristic equation 

II-II 
For θ = ±α, 

0=
r

 = θτθσ
 

αλαλ 2sin 2sin ±=  

I-I 
For θ = ±α, 

0= =r θuu  
α

χ

λ
αλ 2sin 2sin ±=  

II-III 
For θ = ±α, 

0=
r

 = θτθσθ =u  
αλαλ 4sin 4sin −=  

I-III 
For θ = ±α, 

0= =r =θτθ r
uu  

α
χ

λ
αλ 4sin 4sin =  

 

For cases II and II-II, conditions to limits are the same on 

both lips of the opening. In contrast to the alternating case 

I-III and II-III limits conditions are of mixed type. 

We remind that in these equations ν is the Poisson’s ratio, 

νχ 43 −=  in the case of a plan strain and 
ν

ν
χ

+

−
=

1

3
 for 

the state of plan stress. 

λ is the order or the exponent of the stress singularity 

which can be real or complex, single or multiple. Different 

numerical methods have been developed to determine the 

various solutions. In these solutions, the problem occurs 

when determining the complex part. In the next section, 

we briefly develop our approach to determine λ in a 

general way. Then, we discuss values with respect to the 

classical fracture mechanics. 

 

2.1 Presentation and analysis of the real solution 

of    λλλλ   
 

Considering the very tedious analytical resolution of these 

characteristic equations, we considered a numerical 

approach. In this approach we have developed codes on 

MATLAB. So for each α, we seek λ corresponding solution 

of the considered equation. 

From the results we obtained, we represented the 

solutions in the form of curves (λ = f (α)) by considering 

the case of plan strain with a Poisson's ratio ν = 0.3. These 

solutions are illustrated by Chart -1 in the case of the most 

common conditions to limits. 
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Chart -2 :  Evolution of the exponent λ according to the 

angle α for different cases 

 

Through the results we have presented above, we can see 

that for cases II-III and I-III the critical severity associated 

to the case of the crack appears very quickly when the 

opening angle starts to become below π (or 2α>π). We can 

observe that this evolution toward a value 0,5 which 

corresponds to the behavior of a domain with a crack, is 

fast and is relatively more pronounced in the case II-III 

than for I-III. 

Generally, when the conditions to limits are of mixed type, 

the lifespan of the structures is considerably reduced since 

the mechanical behavior is similar to that of a structure 

having a crack 

In the case of the conditions of homogeneous type 

(identical on both lips), the behavior is regular as α 

remains below 1.5 rd (≈ 86 °). Beyond this value, it is in 

case II that we have seen the start of the singular behavior 

that gradually tends to the critical value of the crack. 

In contrast to the case II-II, this change in behavior occurs 

when the value of α reaches 2,5 rd (≈ 143°), after this 

value the advancement λ = 0,5 is slower than the above 

case. 

In conclusion, in comparison with these two last cases of 

charts, it is the case I-I that seems to be the most critical 

one. 

 

2.2 Presentation and analysis of the complex 

solution of αααα    
 

In this part of our study, we considered that the order of 

singularity λ is a complex variable, it follows : 

ηξλ i+=  (14) 

 

ξ and η are respectively the real and imaginary parts of 

the exponent λ. 
The geometry that we studied in this case consists of a 

homogeneous material having an opening 2π-α (α = α1 + 

α2 , Figure 1), of lips which are free of constraints. 

 

As noted previously, the characteristic equation 

corresponding to that situation is: 

 

0)sin(sin =± αλαλ  (15) 

 

From this characteristic equation, as previously we 

developed a code in Matlab to determine the real and 

imaginary part of λ. Among the results, we have shown the 

imaginary part in Chart -2. Through these results, we can 

see that when the characteristic equation is made of the 

sum of the two terms, the order of singularity is perfectly 

real. Its evolution is illustrated in (II.1). For this particular 

case, the imaginary component is always zero whatever 

angle α (Chart -2). 
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Chart -2 : Evolution of the exponent λ according to the 

angle α for a singularity with lips of cut free from stress. 
 

In contrast, when the terms are subtracted in the characteristic 

equation, we can calculate the values of the complex 

component. In fact, in the graph of figure 3b, we represented 

the evolution of this component contingent on the angle α. 

Through this evolution, we can see that it slowly increases and 

remains below a value of 0,05 to the corner 2α = 5,3 rad 

(303°). Beyond this value, the imaginary part rapidly reaches 

the value of 0,2 for a completely closed angle that corresponds 

to the case of the crack. Despite its relatively low value, it can 

have an influence on potential risks of structures damage .An 

analysis of the risks of damage has been developed for micro 

stress sensors at high stress [Chouaf and al., 15]. 

3. Numerical approach 
 

For the domain represented by the figure 1, we remind 

that the components of the stress field, in a point M of 

polar coordinates near the singular point, express 

themselves from the following relation [William 16]; 

[Slahle, 17]: 

 

  �����, �� = 
��������
  (16) 

 

with λ is made between  [0,1]  which means that the stress 

increases as the radius ρ decreases, the exponent depends 

on the geometry of field around the singular point. This 

parameter characterizes the severity of the singularity. 

K is the stress intensity factor, depending mainly on the 

type and intensity of loading, and elastic properties of the 

material near the singularity. 

fij (θ) is the normalized tensor reflecting variations in 

constraints with polar angle θ. 

 

To determine these asymptotic quantities, so we will 

consider a numerical approach based on an iterative finite 

elements method [Barsoum, 14, 18]; [Loppin, 19]. This 

method can be summarized through the following steps: 

As a first step we created a D0 domain around the singular 

point O (Fig. -2), with a limit and an interconnection 

inside Γ0 invariant in a homothetic of center O and ratio p 

(0 < p <1). Next, by successive applications of this 

homothetic transformation, the area D0 is reduced to 

smaller areas Di with bends Γi. At the first iteration, 

displacements, strains and stress are calculated in each 

element of the bend by applying the numerical values of 

displacements from internal procedure which is 

independent of calculation with finite elements on the 

overall structure in the knots of the bends Γ0 .At iteration i, 

the displacements applied as conditions to limits on the 

bend Γ0 are taken equal to the calculated values on the 

bend Γ1 at iteration i-1 by the following equation: 

 

����0� = 1

P
���1��1� (17) 

 

with M0 and M1 are two points belonging respectively to 

the limits Γ0 and Γ1. To sum it up, to determine the stress 

state at a point Mi  ∈ Γi close enough to the supposed 

singular point O, just in approaching the stress state at a 

point M0 ∈ Γ0 by the finite elements method imposing the 

following displacement field on limit Γ0 : 

�� = 1

Pi
�0 (18) 

We assume that the domain D0 defined above is reduced to 

n sub-domain obtained by homothetic transformation of 

ratio p. The iterative calculation of finite elements will 

determine successively the displacements and stress for 

these reduced areas. Expressing the relationship (16) for 

two successive iterations n and n-1 we can calculate the 

exponent λ by the following expression: 

� = − 1

ln	�p) ln �
����0, ��
���1��0, ��� (19) 
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Fig -2 : Diagram of a structure with a singular point 

a) Domain D of the structure with singular point O 

b) D0 local domain included in the domain D, with Γ0 and γ0 

as boundary 

 

In each iteration, we can calculate the value of the 

exponent λ. This value is regarded as final, when it does 

not vary any more between two successive iterations. 

For the step mentioned above, we worked out two 

principal data-processing programs in C++ allowing for 

each iteration to use the results in displacements and 

constraints obtained by the software of modeling of finite 

elements ANSYS. The first program: is used to recover the 

displacements obtained by the total calculation of the 

structure, the second program deals with displacements 

and allocates them on the borders of the local field. 

After carrying out the total calculation of all the structure 

on ANSYS, the first program will allow us to read and store 

the displacements obtained on all the knots of the Γ0 

border expected in the total networking. This program 

requires to enter the numbers of the knots of the Γ0 border 

defined in  the networking of the total structure, to adopt 

new classification according to the knots of the Γ0 border 

of the local field built around the singular point and to 

provide a textual file written  from the adaptive orders 

with software ANSYS. This will enable us to inject this file 

in ANSYS directly. Consequently, before launching the 

program, it is necessary to note the numbers of these 

knots of the Γ0 border and to respect their orientation with 

that of the local field.  

The second program carries out three great tasks to each 

iteration: 

− In first stage, line by line the program reads the 

result file in displacement of the D0 field on the level of 

local calculations by ANSYS, recorded in a directory, access 

to the fixed knots of the Γ1 border to change their 

classification according to the knots of the Γ0 border, i.e. a 

numbering should be adopted in this local field, in a way to 

have a relation between the two borders Γ0 and Γ1. This 

relation is introduced into the program. The values of 

displacements in these knots will be equal to the 

reports/ratios of displacements of the Γ1 border by the 

chosen homothetic p (see equation 19, this equation is 

introduced into the program). The program provides a left 

file that can be injected directly into ANSYS. It contains the 

numbers of the knots of the Γ0 border with change of 

displacements of the knots values of the Γ1 border. 

− Second task: the program allows the access to the 

result file in constraint and storage, in a left file, the value 

of a component of constraint to the knot chosen by the 

user.  

− Last task: reading the file created in second stage in 

order to provide a left file with the values of parameter λ. 

 

4. Application of both approaches to the case of 

the notch in a bending specimen 
 

For application of these two approaches (analytical and 

numerical), we considered the study of a sample with a 

notch opening (ω) and submitted to a three-point bending 

(Fig. -3). The material of this sample is a steel whose 

modulus E = 2,3 GPa and Poisson's ratio ν = 0,36. 

 

 
 

Fig -3: Sample with notch opening ω subject to the 3-point 

bending (L = 50 mm, h = 6 mm et e = 1.5 mm) 
 

To this sample, we performed for each opening case ω a first 

modeling considering the global structure (Fig. -4a). As a 

result, we developed the iterative calculations in a local area 

around the singularity (Fig. - 4b). 

 

 

Fig -4 : a) Mesh of the global structure for the case ω = 120°          

b) Homothetic Mesh of ratio 0.5 around our study point, with 

imposed displacements on its boundary. 
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In the graph below (Chart -3) we have grouped the results we 

obtained for the exponent λ by the numerical approach and the 

theoretical approach developed in the first part. In the same 

graph we also reproduce the literature values [

Chart – 3 : Comparison of theoretical, numerical values 

and literature (Leguillon, 20) of the singularity exponent λ

Through this figure, we see good agreement between the 

results of theoretical and numerical approaches. We also 

noted that these results are comforted by the literature.

5. CONCLUSIONS 
 

Through this study, we have elaborated two methods, 

analytical and finite element iterative, allowing us to 

identify and analyze the severity of the exponent of the 

stress singularity in the mechanical structure with an 

opening angle (2π-2α). 

From the analytical approach, we determined two 

solutions by MATLAB 6.0, the first is real and the second is 

complex. For the real solutions, we showed that the risk of 

damage is very dominating when the boundary conditions 

are a mixed type and particularly the case II

in stress and null displacements on the other). For the 

complex solutions the exhibitor shows slowly progressive 

with the opening of angle until an angle 2α
rd (303.66°). Beyond this value, it reaches very qui

value from approximately 0.2 for an angle near 2

the crack). 

For the second method, we developed an computer 

program adapted on visual C++ to determine the value of 

the exponent at each iteration of computing the stress by 

finite element. 

Both methods were applied to the case of a notched and 

subjected to a three-point bending. The comparison of our 

results with those of literature converges. This iterative 

technique specific of finite element used is a numerical 

technique able to approach exactly the value of the 

exponent without recourse to a very fine mesh and 

expensive as is the case for the classic calculations of 

stress concentrations. 
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2 for an angle near 2π (case of 

For the second method, we developed an computer 

to determine the value of 

the exponent at each iteration of computing the stress by 

Both methods were applied to the case of a notched and 

point bending. The comparison of our 

results with those of literature converges. This iterative 

technique specific of finite element used is a numerical 

exactly the value of the 

exponent without recourse to a very fine mesh and 

expensive as is the case for the classic calculations of 
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