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Abstract - This paper is an attempt to study & analyze 
behavior of brain connectivity measures i.e. partial 
directed coherence (PDC),Generalized partial directed 
coherence (gPDC), Orthogonalized partial directed 
coherence (OPDC) &  Generalized orthogonalized 
partial directed coherence (GOPDC).The behavior of 
this approach studied using simulation a signal for 
time invariant & time variant model. .For simulation 
models optimal model order estimated by SBC method 
for entire data using the ARFIT toolbox. The results 
demonstrate gOPDC   connectivity measure   can 
remove the intermittent interactions between variables  
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1 INTRODUCTION 

Neuroscience has concept of brain connectivity 
which shows how cortical regions communicate & it is 
used to understand the organized behavior of different 
cortical regions. It represents the direction and strength of 
the information flow between cortical areas. During the 
recording of EEG, artifacts can be identified by 
technologist. Technologist should be skilled in 
identification & elimination of artifacts. The removal of 
artifact an important issue of EEG application in clinic..The 
problem of brain connectivity has been gaining more and 
more interest in the last years. There are different 
connectivity measures for an EEG signal. [15] 

In this paper, I develop generalized version of 
OPDC to handle the numerical problem produces with 
different variance of amplitudes of signals. GOPDC is 
compared with the classical PDC and gPDC. This 
comparison done using simulated time-invariant and 
time-varying models These testing shows with time–
frequency (T–F) connectivity maps  Orthogonalized 
version of the PDC is where combined idea of 
orthogonalization and imaginary part of coherence 
functions .Effect of this combination is reduces volume 
conduction effects. 

 

 

2 METHODS 

2.1 MVAR Model 

A time-varying N-variate AR process of order p 
can be represented as:[15] 

……………....[1] 

where w is a vector white noise, the matrices Ar are given 
by: 

 

for r = 1, …, p and A number of time-varying connectivity 
measures based on the following transformation of the 
MVAR parameter. In frequency domain (Ar(n))  

 

A(n,f)=I-  r(n)z-r │z=e
j2∏f    ……………………  [2] 

2.2 Dual Extended Kalman Filter (DEKF) 

For  nonlinear model kalman filter is extended so 
this filter is called extended Kalman filter (EKF) & For dual 
estimation Dual extended kalman filter(DEKF) is used. 
There is sequential & iterative methods are developed. 
There are two estimation state estimation & weight 
estimation. 

This filter is used to estimation of parameter i.e 
MVAR parameters (Ar(n)).[4] 

2.3 Time-invariant Simulated Model 

For testing integrity of connectivity analysis this  
model is designed by adding random interactions between 
channels  

x(n)=Vy(n) 
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This equation used for simulation purposes in 
which x(n) is the multichannel scalp EEG, v represents the 
lead field matrix and y(n) models the lagged source time 
traces in the form of an MVAR process.[15] 

 

y1(n)=0.95√2y1(n-1)-0.9025 y1(n-2)+10w1(n) 

y2(n)=0.5y1(n-2)+5w2(n) 

y3(n)= -0.4 y1(n-3)+w3(n) 

y4(n)=-0.5y1(n-2)+0.25√2y4(n-1)+0.25√2y5(n-1)+1.5w4(n) 

y5(n)= -0.25√2y4(n-1)+ 0.25√2 y5(n-1)+2w5(n)…………… [3]   

where w=[w1w2w3w4w5]T is a normally distributed white 

noise vector 

2.4 Time-varying Simulated Model 

 

 

y1(n)=0.59y1(n-1)-0.20y1(n-2)+b[n]y2[n-1]+c[n]y3[n-
1]+w[n] 

y2(n)=1.58y2(n-1)-0.96 y2[n-2]+w2(n) 

y3(n)= 0.60y3(n-1)-0.91 y3[n-2]+w3(n)……………………… [4] 

2.5 Schwarz’s Bayesian Criterion (SBC) for model 

order 

SBC(p)=ln(∑e(p))+ln(L).p.CH2 

 P:Order of model 

 CH: Number of channels 

 L: Length of the time series signal 

 

 

3. DISCUSSIONS AND INTERPRETATION OF THE 
RESULTS  

3.1 Time-invariant simulation 
In time-invariant simulation an effect of channel 1 

& effect of mutual sources are there in PDC. 

Non-zero values in fig shows there is no 

connectivity between channels & each channel relates 

with another expect itself 

(a) 
 

 
(b) 
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(c) 

 
(d) 

 

Fig-1: Diagrams of a)PDC,  b)gPDC, c)OPDC and d)gOPDC 
 

 
3.2 Time-varying Simulation 

 

(a) 
 
 

 

(b) 

 

(c) 

 

(d) 

 
Fig-2: Diagrams of a)PDC,  b)gPDC, c)OPDC and d)gOPDC 
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4. CONCLUSIONS 
 

Comparison of different connectivity measures by 
simulation of time varying model & time in-varying 
simulation. From this simulation we can understand 
gOPDC can effectively remove the intermittent 
interactions between variables  

 In this paper the model order estimated by 
SBC(Schwarz's Bayesian criteria).The order is  kept 
constant  in overall simulation. In time varying simulation 
the connectivity values for gOPDC have  smaller 
magnitude than the gPDC values (from color bar) i.e 
orthogonalization step attenuate the mutual sources &  
OPDC & gOPDC are superior methods than  PDC & GPDC 
for connectivity measures. 
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