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Abstract - Modal analysis is a process to determine 
the vibration characteristics (natural frequencies and 
mode shapes) of a structure or a machine component 
while it is being designed. It has become a major 
alternative to provide a helpful contribution in 
understanding control of many vibration phenomena 
which encountered in practice. In this work we 
compared the natural frequency for different material 
having same I and T cross- sectional beam. The 
cantilever beam is designed and analyzed in ANSYS. The 
cantilever beam which is fixed at one end is vibrated to 
obtain the natural frequency, mode shapes and 
deflection with different loads. 
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1. INTRODUCTION 
 
In engineering field vibration behavior of an element plays 
a key role without which it is incomplete. Resonance is a 
key aspect in dynamic analysis, which is the frequency of 
any system matches with the natural frequency of the 
system which may lead to catastrophes or system failure. 
Modal analysis has become a major alternative to provide 
a helpful contribution in understanding control of many 
vibration phenomena which encountered in practice [1].  
A new finite element model for laminated composite 
beams. The model includes sufficient degrees of freedom 
to allow the cross-sections of each lamina to deform into a 
shape which includes up through cubic terms in thickness 
co-ordinate. The element consequently admits shear 
deformation up through quadratic terms for each lamina 
but not interfacial slip or delamination [2]. Higher order 
shear deformation theory is used for the analysis of 
composite beams. Nine nodes are parametric elements are 
used in the analysis. Natural frequencies of composite 
beam are compared for different stacking sequences, 
different (l/h) ratios and different boundary conditions. 
They had shown that natural frequency decreases with an 
increase in ply angle and a decrease in (l/h) ratio [3].The 
symbolic computation technique to analyze the free 
vibration of generally layered composite beam on the 
basis of a first-order shear deformation theory. The model 

used considering the effect of poisson effect, coupled 
extensional, bending and torsional deformations as well as 
rotary inertia [4]. It has investigated the free vibration of 
axially laminated composite Timoshenko beams using 
dynamic stiffness matrix method. This is accomplished by 
developing an exact dynamic stiffness matrix of a 
composite beam with the effects of axial force, shear 
deformation and rotatory inertia taken into account. The 
effects of axial force, shear deformation and rotator inertia 
on the natural frequencies are demonstrated. The theory 
developed has applications to composite wings and 
helicopter blades [5]. 
A finite element model to investigate the natural 
frequencies and mode shapes of the laminated composite 
beams. The FE model needed all lamina had the same 
lateral displacement at a typical cross-section, but allowed 
each lamina to rotate to a different amount from the other. 
The transverse shear deformations were included [6]. The 
effects of the location and depth of the cracks, and the 
volume fraction and orientation of the fibers on the 
natural frequencies and mode shapes of the beam with 
transverse non-propagating open cracks, were explored. 
The results of the study leaded to conclusions that, 
presented method was adequate for the vibration analysis 
of cracked cantilever composite beams, and by using the 
drop in the natural frequencies and the change in the 
mode shapes, the presence and nature of cracks in a 
structure can be detected [7]. They had done free 
vibration analysis of a cross-ply laminated composite 
beam on Pasternak Foundation. The model is designed in 
such a way that it can be used for single-stepped cross 
section. For the first time to-date, the same analysis was 
conducted for a single-stepped LCB on Pasternak 
foundation. Stiffness and mass matrices of a cross-ply LCB 
on Pasternak foundation using the energy method are 
computed [9]. The cracks can be present in structures due 
to their limited fatigue strengths or due to the 
manufacturing processes. These cracks open for a part of 
the cycle and close when the vibration reverses its 
direction. These cracks will grow over time, as the load 
reversals continue, and may reach a point where they pose 
a threat to the integrity of the structure. As a result, all 
such structures must be carefully maintained and more 
generally, SHM denotes a reliable system with the ability 
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to detect and interpret adverse “change” in a structure due 
to damage or normal operation. [10]. The finite beam 
element was formulated using the composite element 
method with a one-member–one-element configuration 
with cracks where the interaction effect between cracks in 
the same element was automatically included. The 
accuracy and convergence speed of the proposed model in 
computation were compared with existing models and 
experimental results. [11].The effects of crack depth and 
location, fiber orientation, and fiber volume fraction on the 
flexibility and consequently on natural frequency and 
mode shapes for cracked fiber-reinforced composite 
beams are investigated [12]. 
Vibration is a mechanical oscillation about a reference 
position. Any system has certain characteristics to be 
fulfilled before it will vibrate. To put in simple words, 
every system has a stable position in which all forces are 
equivalent and when this equilibrium is disturbed, the 
system will try to regain its stable position To remain 
stable, structure exhibits vibration at different magnitude 
when excited, the degree of vibration varies from point to 
point (node to node), due to the variation of dynamic 
responses of the structure and the external forces applied 
Therefore, vibration may also be described as the physical 
manifestation of the interchange between kinetic and 
potential energy [13]. 
The mechanical properties of aluminum and fiber (Nylon 
and Glass fiber reinforcement plastic) are measured a 
universal testing machine. The three-dimensional finite 
element models of composite beam with and without 
cracks are constructed and then computational modal 
analysis on ANSYS-14 is then performed to generate 
natural frequencies and mode shapes [14] 
They considered geometric non-linearity and have solved 
the expression using Variation Iteration Method (VIM). 
Also the different nonlinear frequencies have been 
considered for different shapes of modes [15]. 

2. MATHEMATICAL MODEL 

In the present case I and T section length of 1500 mm long 

and having the cross-sectional area of as shown in figure 1 

is considered. One end of the beam is fixed and the system 

is subjected to vibration. The material which is assumed is 

structural steel, cast iron and stainless steel. 

 

       

 

(a) 

 
(b) 

Figure 1:- Mathematical Model of (a) I-Section, (b) T- 

Section 

   

 

 

 

 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 06 | Sep-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                          Page 1015 
 
 

 Beam Specifications:  

Table 1:- Dimesion and Properties of a Cantilever beam 

  
The dimension and properties of a cantilever beam with I 

and T cross section has one end fixed and other end free as 

shown in table-1, and load applied to free end. 

 

3. GOVERNING EQUATION [14]  

3.1 Modal Analysis  

3.1.1 Damping Matrices 

Damping may be introduced into a transient, harmonic, or 
damped modal analysis as well as a response spectrum. 
The type of damping allowed depends on the analysis as 
described in the subsequent sections. 

3.1.2 Transient Analysis and Damped Modal Analysis 

The damping matrix, [C], may be used in transient and 
damped modal analyses as well as substructure 
generation. 
In its most general form, the damping matrix is composed 
of the following components. 
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             (1) 
where: [C] = structure damping matrix, α = mass matrix 
multiplier, [M] = structure mass matrix, β = stiffness 
matrix multiplier, [K] = structure stiffness matrix, Nma = 
number of materials, αi

m = mass matrix multiplier for 
material i, [Mi] = portion of structure mass matrix based 
on material i, Nmb = number of materials, [Kj] = portion of 
structure stiffness matrix based on material j, Ne = number 
of elements with specified damping, [Ck] = element 
damping matrix, Ng = number of elements with Coriolis or 
gyroscopic damping, [Gl] = element Coriolis or gyroscopic 
damping matrix, βj

m = stiffness matrix multiplier for 
material. 
 

3.1.3 Harmonic Analysis 

The damping matrix ([C]) used in harmonic analyses is 
composed of the following components. 

E

i j

1 1

1 1 1

2 2 1
[M] ( g)[K] [M ] [( g g )[K ]]

1

[C

[C ] [C ] [G ]

]
ma m

ge v

N N
m m

i j j j

i j

NN N

k m l

k m l

   
 

  

      
  

 


  

  

                                               (2) 

  

 
The input exciting frequency, Ω, is defined in the range 
between ΩB and ΩE via 

ΩB = 2πfB , ΩE = 2πfE, fB = beginning frequency, fE = 
end frequency 

Substituting equation (2) into the harmonic response 
equation of motion and rearranging terms yields  
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           (3) 
 

The complex stiffness matrix in the first row of the 
equation consists of the normal stiffness matrix 
augmented by the structural damping terms given by g, gi, 
gi

E, and [Cm] which produce an imaginary contribution. 
Structural damping is independent of the forcing 
frequency, Ω, and produces a damping force proportional 
to displacement (or strain). The terms g, gi, and gi

E are 
damping ratios (i.e., the ratio between actual damping and 
critical damping, not to be confused with modal damping).  
The second row consists of the usual viscous damping 
terms and is linearly dependent on the forcing frequency, 
Ω, and produces forces proportional to velocity. 

3.1.4 Mode-Superposition Analysis 

The damping matrix is not explicitly computed, but rather 
the damping is defined directly in terms of a damping ratio 
ξd. The damping ratio is the ratio between actual damping 

and critical damping. The damping ratio 
d

i for mode i is 
the combination of 

2 2

d m

i i i

i

 
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
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    (4)

             

 

ξ = constant modal damping ratio, 
m

i   = modal damping 

ratio for mode shape i (see below), ωi = circular natural 
frequency associated with mode shape i = 2πfi , fi = natural 
frequency associated with mode shape i, α = mass matrix 
multiplier 

The modal damping ratio 
m

i   can be defined for each 

mode directly (undamped modal analyses only).  
Alternatively, for the case where multiple materials are 
present whose damping ratios are different, an effective 

Dimension/ 
Properties 

Structural 
Steel 

Grey Cast 
Iron 

Stainless 
Steel 

Length (mm) 1500 1500 1500 

Width  (mm) 100 100 100 

Thickness (mm) 10 10 10 

Height (mm) 200 200 200 

Young Modulus (MPa) 2x105 1.1x105 1.93x105 

Density( Kg/m3) 7850 7200 7750 

../../../../../../../syedfahadanwer/Downloads/thy_tool3.html#thyeq1dampnov2101
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mode-dependent damping ratio 
m

i   can be defined in the 

modal analysis if material-dependent damping is defined 
and the element results are calculated. This effective 
damping ratio is computed from the ratio of the strain 
energy in each material in each mode using, 
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4. Result and Analysis 
 

4.1 Natural frequency and deflection on various loads 
 
In order to analyze the natural frequency and deflection of I 

and T cross sectional cantilever beam, first we calculate the 

mechanical properties of structural steel, cast iron and 

stainless steel. These mechanical properties are fed into 

ANSYS-14 to calculate the deflection and natural frequency 

for cantilever beam. 
 

 

Table 2:- Deflection and Natural frequency of Structural 

Steel for T- Section 

T-Section Steel 

Load (KN) Deflection(mm) Natural frequency 

10 4.73 19.028 

20 9.46 54.141 

30 14.19 79.988 

40 18.92 97.096 

50 23.65 171.64 

60 28.38 222.82 
 

Table 3:- Deflection and Natural frequency of Cast Iron for 

T-Section 

T-Section Cast Iron 

Load (KN) Deflection(mm) Natural frequency 

10 8.6 14.377 

20 17.2 43.979 

30 25.8 61.935 

40 34.4 77.247 

50 43 138.98 

60 51.6 173.61 
 

Table 4:- Deflection and Natural frequency of Stainless steel 

for T-section 

T-Section Stainless Steel 

Load (KN) Deflection(mm) Natural frequency 

10 4.9 18.78 

20 9.8 53.52 

30 14.7 79.082 

40 19.6 95.923 

50 24.5 169.76 

60 29.4 219.98 
 
 

Table 5:- Deflection and Natural frequency of Structural 

Steel for I- Section 

I-Section Structural Steel 

Load(KN) Deflection(mm) Natural frequency 

10 2.59 26.341 

20 5.18 56.716 

30 7.77 94.068 

40 10.36 161.14 

50 12.95 230.46 

60 15.54 415.08 
 
Table 6:- Deflection and Natural frequency of Cast Iron for I-

Section 

I-Section Cast Iron 

Load (KN) Deflection(mm) Natural frequency 

10 4.751 20.372 

20 9.5 44.045 

30 14.25 72.857 

40 19 124.75 

50 23.75 178.88 

60 28.5 321.16 
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Table 7:- Deflection and Natural frequency of Stainless steel 

for I-section 

I-Section Stainless Steel 

Load (KN) Deflection(mm) Natural frequency 

10 2.687 26.043 

20 5.374 55.939 

30 8.061 92.994 

40 10.74 159.32 

50 13.43 227.59 

60 16.12 410.54 
 
As the load on the cantilever beam increases, the deflection 

also increases. The deflection is minimum at 10N of I-section 

for structural steel whereas deflection is maximum at 50 KN 

of T-section for Cast iron as shown in table 2-7. 

 
(a)  
 

 
(b)  
 

 
(c) 

Figure 2:- Comparison between deflection for T and I 

section (a) Structural Steel (b) cast Iron, (c) Stainless 

Steel 

 
(a) 

 

 
(b) 
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(c) 

Figure 3:- Comparison between natural frequency for T 

and I section (a) Structural Steel (b) cast Iron, (c) 

Stainless Steel 

4.2 Natural frequency for different mode shapes for T-
section 

 
Figure 4:- 1

st
 mode of vibration for T-section 

 

 

 
Figure 5:- 2

nd
 mode of vibration for T-section 

 

 

 
Figure 6:- 3

rd
 mode of vibration for T-section 

 

 

Figure 7:- 4
th

 mode of vibration for T-section 

 

 

 
Figure 8:- 5

th
 mode of vibration for T-section 
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Figure 9:- 6
th

 mode of vibration for T-section 

 

The first mode of vibration for T- section is a bending mode 

in horizontal direction. In this mode shape, the frequency is 

18.78 Hz. The beam is tending to bend about the root 

section’s minimum moment of inertia. The second modes of 

vibration is also bending mode having natural frequency 53.52 

Hz. The third mode of vibration is also bending mode in 

vertical direction. The frequency of the third mode shape is 

79.08 Hz. The fourth mode of vibration is twisting about the 

root, t he frequency is affected by tip rotational moment of 

inertia. The frequency of the fifth mode is 95.92 Hz. The fifth 

mode of vibration is bending and twisting mode in horizontal 

with frequency 169.76 Hz. The sixth mode shape is twisting 

with natural frequency 219.98 Hz 

 

4.3 Natural frequency for different mode shapes for I-

section 

 
Figure 10:- 1

st
 mode of vibration for I-section 

 

 
Figure 11:- 2

nd
 mode of vibration for I-section 

 
Figure 12:- 3

rd
 mode of vibration for I-section 

 

 

 

Figure 13:- 4
th

  mode of vibration for I-section 

 

Figure 14:- 5
th

  mode of vibration for I-section 

 

Figure 15:- 6
th

 mode of vibration for I-section 
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The first mode of vibration for I- section is a bending mode in 

horizontal direction. In this mode shape, the frequency is 

26.34 Hz. The beam is tending to bend about the root 

section’s minimum moment of inertia. The second modes of 

vibration is also bending mode having natural frequency 56.71 

Hz. The third mode of vibration is also bending mode in 

vertical direction. The frequency of the third mode shape is 

94.06 Hz. The fourth mode of vibration is twisting about the 

root, t he frequency is affected by tip rotational moment of 

inertia. The frequency of the fifth mode is 161.14 Hz. The 

fifth mode of vibration is bending and twisting mode in 

horizontal with frequency 230.46 Hz. The sixth mode shape is 

twisting with natural frequency 415.08. 

 
5. Conclusion: 
 
The following conclusions are as given below. 
 

 The deflection of I section is  less than the T- 
section 

 Maximum deflection is seen in T-section for cast 
iron i.e. 51.6 mm for 50 KN load. 

 The Minimum deflection is seen in I-section 
structural steel i.e. 2.59 mm for 10 KN load. 

 The minimum natural frequency is obtained in T-
section for cast iron i.e. 14.3 Hz, whereas the 
maximum natural frequency is obtained in I 
section for structural steel i.e. 415.08 Hz 
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