
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 960

A Survey of Contemporary Process Evolutionary Systems

Mr. PaaraanjiMohan Suresh1, Assistant Professor. Koteswarrao. kadiventi.2

1M. Tech Student, Department of Computer Science, Audisankara College of Engineering (Autonomous),
Andhra Pradesh, India.

2Assistant Professor, Department of Computer Science, Audisankara College of Engineering (Autonomous),
Andhra Pradesh, India.

Abstract: Traditional information systems struggle with the requirement to provide flexibility and process
support while still enforcing so medegree of control. Accordingly, adaptive process management systems(PMSs)have
emerged that provide some flexibility by enabling dynamic process changes during runtime. .Based on the
assumption that these process changes are recorded explicitly,we present two techniques for mining change logs in
adaptive PMSs; However the dynamic nature of the modern business environment means these processes are subject
to an increasingly wide range of variations and must demonstrate flexible approaches to dealing with these
variations if they are to remain viable .The change processes discovered through process mining provide an
aggregated overview of all changes that happened so far.Using process mining as an analysis tool wesho win this
paper how better support can be provided for truly flexible processes by understanding when and why process
changes become necessary.

Keywords:Process-awareinformationsystems;processmining,changemining, flexibility

1.INTRODUCTION
In order to retain their competitive advantage in today’s
dynamic marketplace, it is increasingly necessary for
enterprises to streamline their processes so as to reduce
costs and to improve performance. Moreover, it is clear
that the economic success of an organisation is highly
dependent on its ability to react to changes in its
operating environment. To this end, Process- Aware
Information Systems (PAISs) are a desirable technology
as these systems support the business operations of an
enterprise based on models of both the organisation and
its constituent processes. PAISs encompass a broad
range of technologies ranging from systems which rigidly
enforce adherence to the underlying process model, e.g.,
workflow systems or tracking systems, to systems which
are guided by an implied process model but do nothing
to ensure that it is actually enforced, e.g., groupware
systems[3]. Typically, these systems utilise an idealised
model of a process which may be overly simplistic or
even undesirable from an operational standpoint.
Further-more the models on which they are based tend
to be rigid in format and are not able to easily encompass
either foreseen or unforeseen changes in the context or
environment in which they operate. Up to now, there
have not been any broadly adopted proposals or
standards offering guidance for developing flexible
process models able to deal with these sorts of changes.
Instead most standards focus on a particular notation

(e.g., XPDL, BPEL, BPMN, etc.) and these notations
typically abstract from flexibility issues. Process
flexibility can be seen as the ability to deal with both
foreseen and unforeseen changes, by varying or adapting
those parts of the business process that are affected by
them, whilst retaining the essential format of those parts
that are not impacted by the variations. Or, in other
words, flexibility is as much about what should stay the
same in a process as what should be allowed to change
[5],[6]. Different kinds of flexibility are needed during
the BPM life cycle of a process. Based on an extensive
survey of literature and flexibility support offered by
existing tools1, a range of approaches to achieve process
flexibility have been identified. These approaches have
been described in the form of a taxonomy which
provides a comprehensive catalogue of process flexibility
approaches for the control-flow perspective

2. PROBLEM ANALYSIS
Recently, many efforts have been under taken to make
PAISs more flexible and several approaches for adaptive
process management, like ADEPT, have emerged in this
context. The basic idea behind the se approaches is to
enable users to dynamically evolve or adapt process
schemes such that they fit to changed real world
situations. More precisely, adaptive PMSs support
dynamic changes of different process aspects(e.g.,control
and dataflow)at different levels(e.g.,process instance and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 961

process type level).In particular, ad-hoc changes
conducted at the instance level(e.g.,to add, delete or move
process steps during runtime)allow to adapt single
process instances to exceptional or changing situations.
Usually, such ad-hoc deviations are recorded in change logs
,which results in more meaningful login formation when
compared to traditional PAISs.
Adaptive process management technology has not
addressed the fundamental question what we can learn
from the additional change log information (e.g., how to
derive potential process schema optimizations from a
collection of individually adapted process instances. In
principle, process mining techniques offer promising
perspectives for this. However, current mining
algorithms have not been de-signed with adaptive
processes in mind,

3. PROPOSED SYSTEM
We have focused on the analysis of pure execution logs
instead (i.e., taking obviously, mining adhoc changes in
adaptive PMSs offers promising perspectives as well. By
enhancing adaptive processes with advanced mining
techniques we aim at a PMS framework, which enables
full process life cycle support. However, the practical
implementation of such a framework in a coherent
architecture, let alone the integration of process mining
and adaptive processes is far from trivial.
In particular, we have to deal with the following three
challenges.
1. First, we have to determine which runtime
information about adhoc deviations has to be logged and
how this information should be represented to achieve
optimal mining results.
2. Second, we have to develop advanced mining
techniques that utilize change logs in addition to
execution logs.
 3. Third, we have to integrate the new mining
techniques with existing adaptive process management
technology.
This requires the provision of integrated tool support
allowing us to evaluate our framework and to compare
different mining variants.

4. CONTRIBUTION:
In our previous work, with ADEPT and ProM we have
developed two separate frameworks for adaptive
processes and for process mining respectively. While
ADEPT has focused on the support of dynamic process
changes at different levels, ProM has offered a variety of
process mining techniques, e.g., for discovering a Petri
Net model or an Event Process Chain (EPC) describing
the behaviour observed in an execution log. So far, no
specific ProM extension has been developed to mine for
process changes.
This paper contributes new techniques for mining adhoc

process changes in adaptive PMSs and discusses the
challenges arising in this context. We first describe what
constitutes a process change, how respective
information can be represented in change logs, and how
these change logs have to be mined to deliver insights
into the scope and context of changes. This enables us,
for example, to better understand how users deviate
from predefined processes. We import ADEPT change
logs in ProM, and introduce mining techniques for
discovering change knowledge from these logs. As
result, we obtain an abstract change process represented
as a Petri Net model. This abstract process reflects all
changes applied to the instances of a particular process
type. More precisely, a change process comprises change
operations (as Meta process steps) and the causal
relations between them. We introduce two different
mining approaches based on different assumptions and
techniques.
BACKGROUND INFORMATION
This paper is based on the integration of two existing
technologies: process mining and adaptive process
management. This section gives background information
needed to understand the implications and leverages of
their combination
4.1 Process Mining
Although the focus of this paper is on analyzing change
processes in the context of adaptive process
management systems, process mining is applicable to a
much wider range of information systems. There are
different kinds of Process-Aware Information Systems
(PAISs) that produce event logs recording events.
Examples are classical work-flow management systems
(e.g. Stafware), ERP systems (e.g. SAP), case handling
systems, PDM systems, CRM systems (e.g. Microsoft
Dynamics CRM), middleware (e.g. IBM’s Web Sphere),
hospital information systems, etc. These systems all
provide very detailed information about the activities
that have been executed. The goal of process mining is to
extract information (e.g., process models, or schemas)
from these logs.
Process mining addresses the problem that most “pro-
cess owners” have very limited information about what
is actually happening in their organization. In practice
there is often a significant gap between what is
predefined or supposed to happen, and what actually
happens. Only a concise assessment of the organizational
reality, which process mining strives to deliver, can help
in verifying pro-cess schemas, and ultimately be used in
a process redesign effort.
As indicated, process mining starts with the existence of
event logs. The events recorded in such a logs should be
ordered (e.g., based on timestamps) and each event
should refer to a particular case (i.e., a process instance)
and a particular activity. This is the minimal information
needed. However, in most event logs more information is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 962

present, e.g., the performer or originator of the event
(i.e., the person / resource executing or initiating the
activity), the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). In this
paper, we assume that event logs are stored in the MXML
format. MXML is an XML-based format for representing
and storing event log data, which is sup-ported by
process mining tools such as ProM. Using our ProM
import tool, it is easy to convert data originating from a
wide variety of systems to MXML

Fig : Overview showing three types of process mining:
(1) Discovery, (2) Conformance, and (3) Extension.
The idea of process mining is to discover, monitor and
improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs (e.g., in MXML for-
mat). Clearly process mining is relevant in a setting
where much flexibility is allowed and/or needed and
therefore this is an important topic in this paper. The
more ways in which people and organizations can
deviate, the more variability and the more interesting it
is to observe and analyse processes as they are executed.
We consider three basic types of process mining [5].
• Discovery: There is no a-priori process schema, i.e.,
based on an event log some schema is constructed. For
example, using the alpha algorithm a process schema can
be discovered based on low-level events [5].
• Conformance: There is a-priori process schema. This
schema is used to check if reality conforms to the
schema. For example, there may be a process schema
indicating that purchase orders of more than one million
Euro require two checks. Another example is the
checking of the four eyes principle. Conformance
checking may be used to detect deviations, to locate and
explain these deviations, and to measure the severity of
these deviations
• Extension: There is an a priori process schema. This
schema is extended with a new aspect or perspective, i.e.,
the goal is not to check conformance but to en-rich the
schema. An example is the extension of a pro-cess
schema with performance data, i.e., some a-priori
process schema is used to project the bottlenecks on.

Another example is the detection of data dependencies
that affect the routing of a case and adding this
information to the model in the form of decision rules
At this point in time there are mature tools such as the
ProM framework, featuring an extensive set of analysis
techniques which can be applied to real process
enactments while covering the whole spectrum depicted
in Figure 1. Any of the analysis techniques of ProM can
be applied to change logs (i.e., event logs in the context of
adaptive process management systems. Moreover, this
paper also presents two new process mining techniques
exploiting the particularities of change logs [5].
4.2. Adaptive Process Management
In recent years several approaches for realizing adaptive
processes have been proposed and powerful proof-of-
concept prototypes have emerged. Adaptive PMSs like
ADEPT, for example, provide comprehensive runtime
information about process changes not explicitly
captured in current execution logs. Basically, process
changescantake place at the type as well as the instance
level: Changes of single process instances may have to be
carried out in an ad-hoc manner to deal with an
unforeseen or exceptional situation. Process type
changes, in turn, refer to the change of a process schema
at the type level in order to adapt the PAIS to evolving
business processes. Especially for long-running
processes, such type changes often require the migration
of a collection of running process instances to the new
process schema.
PMS frameworks like ADEPT support both ad-hoc
changes of single process instances and the propagation
of process type changes to running instances. Examples
of ad-hoc changes are the insertion, deletion, movement,
or replacement of activities. In ADEPT, such ad-hoc
changes do not lead to an unstable system behaviour, i.e.,
none of the guarantees achieved by formal checks at
build-time are violated due to the dynamic change.
ADEPT offers a complete set of operations for defining
instance changes at a high semantic level and ensures
correctness by introducing pre-/post-conditions for
these operations. Finally, all complexity associated with
the adaptation of instance states, the remapping of
activity parameters, or the problem of missing data is
hidden from users. To deal with business process
changes ADEPT also enables schema adaptations at the
process type level. In particular, it is possible to
efficiently and correctly propagate type changes to
running instances.

4.3 A FRAMEWORK FOR INTEGRATION
Both process mining and adaptive processes address
fundamental issues prevalent in the current practice of
BPM implementations. These problems stem from the
fact that the design, enactment, and analysis of a
business processare commonly interpreted, and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 963

implemented, as detached phases.
Although both techniques are valuable on their own, we
argue that their full potential can only be harnessed by
tight integration. While process mining can deliver
reliable information about how process schemas need to
be changed, adaptive PMSs provide the tools to safely
and conveniently implement these changes. Thus, we
propose the development of process mining techniques,
integrated into adaptive PMSs as a feedback cycle. On the
other side, adaptive PMSs need to be equipped with
functionality to exploit this feedback information.
The framework depicted in Figure 2 illustrates how such
an integration could be realized. Adaptive PMSs,
visualized in the upper part of this model, operate on
pre-defined process schemas. The evolution of these
schemas over time spawns a set of process changes, i.e.,
results in multiple process variants. Like in every PAIS,
enactment logs are created, which record the sequence
of activities executed for each case. On top of that,
adaptive PMSs can additionally log the sequence of
change operations imposed on a process schema for
every executed case, producing a set of change logs.
Process mining techniques that integrate into such
system in form of a feedback cycle may be positioned in
one of three major categories:
• Change analysis: Process mining techniques from this
category make use of change log information, be-sides
the original process schemas and their variants. One goal
is to determine common and popular variants for each
process schema, which may be promoted to replace the
original schema. Possible ways to pursue this go alare
through statistical analysis of changes or their
abstraction to higher-level schemas. From the initially
used process schema and a sequence of changes, it is
possible to trace the evolution of a pro-cess schema for
each case. Based on this information, change analysis
techniques can derive abstract and aggregate
representations of changes in a system. These are
valuable input for analysis and monitoring, and they can
serve as starting point for more involved analysis (e.g.,
determining the circumstances in which particular
classes of change occur, and thus reasoning about the
driving forces for change).
• Integrated analysis: This analysis uses both change and
enactment logs in a combined fashion. Possible
applications in this category could perform a context-
aware categorization of changes as follows. Change
process instances, as found in the change logs, are first
clustered into coherent groups, e.g. based on the
similarity of changes performed, or their environment.
Subsequently, change analysis techniques may be used to
derive aggregate representations of each cluster. Each
choice in an aggregate change representation can then be
analysed by comparing it with the state of each clustered
case, i.e. the values of case data objects at the time of

change, as known from the original pro-cess schema and
the enactment logs. A decision-tree

Fig: Integration of Process Mining and Adaptive Process
Management

Analysis of these change clusters provides an excellent
basis for guiding users in future process adaptations,
based on the peculiarities of their specific case.
• Enactment analysis: Based solely on the inspection of
enactment logs, techniques in this category can pinpoint
parts of a process schema which need to be changed, e.g.
paths having become obsolete. Traditional process
mining techniques like control flow mining and
conformance checking can be adapted with relative ease
to provide valuable information in this context. For
example, conformance checking, i.e. determining the “fit”
of the originally defined process schema and the
recorded enactment log, can show when a specific
alternative of a process schema has never been executed.
Consequently, the original pro-cess schema may be
simplified by removing that part. Statistical analysis of
processenactment can also high-light process definitions,
or variants thereof, which have been rarely used in
practice. These often clutter the user interface, by
providing too many options, and they can become a
maintenance burden overtime. Removing (or hiding)
them after a human review can significantly improve the
efficiency of a process management system.

5.CHANGE MINING
In this section we describe novel approaches for
analyzing change log information, as found in adaptive
PMSs. First, we describe how change logs can be mapped
onto the MXML format used for process mining. This
makes it possible to evaluate the application of
traditional process mining algorithms to change logs.
Subsequently, we explore the nature of change logsin
more detail. This is followed by an introduction to the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 964

concept of commutativity

5.1. Mapping Change Logs to MXML
Change log information can be structured on a number of
different levels. Most of all, change events can be
grouped by the process definition they address. As we
are focusing on changes applied to cases, i.e. executed
instances of a process definition, the change events
referring to one pro-cess can be further subdivided with
respect to the specific case in which they were applied
(i.e. into change process instances). Finally, groups of
change events on a case level are naturally sorted by the
order of their occurrence.
The described structure of change logs fits well into the
common organization of enactment logs, with instance
traces then corresponding to consecutive changes of a
pro-cess schema, in contrast to its execution. Thus,
change logs can be mapped to the MXML format with
minor modifications. Listing 1 shows an MXML audit trail
entry de-scribing the insertion of a task “Lab Test” into a
process schema,

<AuditTrailEntry><Data>
<Attribute name="CHANGE.postset">Deliver_report
</Attribute>
<Attribute name="CHANGE.type">INSERT </Attribute>
<Attribute name="CHANGE.subject">Lab_test
</Attribute>
<Attribute name="CHANGE.rationale">Ensure that blood
values are within specs.
</Attribute>

<Attribute name="CHANGE.preset">Examine patient
</Attribute>
</Data><WorkflowModelElement>INSERT.Lab_test
</WorkflowModelElement><EventType>complete
</Event Type><Originator>N.E.Body </Originator>
</AuditTrailEntry>
Listing 1: Example of a change event in MXML.
As discussed in the previous subsection, mapping

process change logs to the existing MXML format for

execution logs enables the use of existing mining

algorithms (e.g., as implemented within the Prom

framework) for mining change logs as well. In the

following we discuss how “well” these algorithms

perform when being applied to change logs. The

underlying evaluation has been carried out using an

extension of the ADEPT demonstrator. For evaluation

purposes, the change processes generated by the

different mining algorithms are compared along selected

quality criteria. The most important criterion is how

“well” a change process reflects the actual dependencies

between the operations contained within the input

change log. As for process instance I2, for example,

change operation op4 depends on previous change

operation op3. This dependency should be reflected as a

sequence op3 −→ op4 within the resulting change

process

5.2 Evaluation of Existing Mining Techniques
As discussed in the previous subsection, mapping

process change logs to the existing MXML format for

execution logs enables the use of existing mining

algorithms (e.g., as implemented within the ProM

framework) for mining change logs as well. In the

following we discuss how “well” these algorithms

perform when being applied to change logs. The

underlying evaluation has been carried out using an

extension of the ADEPT demonstrator. For evaluation

purposes, the change processes generated by the

different mining algorithms are compared along selected

quality criteria. The most important criterion is

how”well” a change process reflects the actual

dependencies between the operations contained within

the input change log. As for process instance I2, for

example, change operation op4 depends on previous

change operation op3 (cf. Figure 4). This dependency

should be reflected as a sequence op3 −→ op4 within the

resulting change processing our evaluation we analyzed

the α Algorithm, the Multi-Phase Miner, and the

Heuristics Miner. All of these algorithms reflect the

actual dependencies

Between the change operations quite “well” for simple

processes and a restricted set of change operations. The

quality of the mined change processes decreases rapidly

(i.e., dependencies are generated by the mining

algorithms which are actually not existing and the

change processes become less and less meaningful) if

different change operations are applied and the

underlying processes become more complex. The

fundamental problem is that process changes tend to be

rather infrequent, i.e., compared to regular logs there are

relatively few cases to learn from. Therefore, the

completeness of change logs, i.e. their property to record

independent (i.e. parallel) activities in any possible

order, cannot be taken for granted due to their limited

availability. This has been simulated by using an

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 965

incomplete subset of change logs, as can be expected in a

real-life situation. Our experiments with applying

existing process mining algorithms to change logs have

shown that their suitability in this context is limited. In

the following section, we explore the nature of change in

an adaptive system and the associated logs in more

detail to find a more suitable means for detecting

whether an observed ordering relation is actually

necessary.

5.3 Motivation: Characterization of Change Logs

Change logs, in contrast to regular enactment logs, do not

describe the execution of a defined process. This is

obvious from the fact that, if the set of potential changes

would have been known in advance, then these changes

could have already been incorporated in the process

schema (making dynamic change obsolete). Thus, change

logs must be interpreted as emerging sequences of

activities which aretaken from a set of change

operations. In Section 5.1 it has been defined that each

change operation refers to the original process schema

through three associations, namely the subject, pre-set,

and post-set of the change. As all these three associations

can theoretically be bound to any subset from the

original process schema’s set of activities1, the set of

possible change operations grows exponentially with the

number of activities in the original process schema. This

situation is fairly different from mining a regular process

schema, where the number of activities is usually rather

limited (e.g., up to 50–100 activities). Hence, the mining

of change processes poses an interesting challenge.

Summarizing the above characteristics, we can describe

the meta-process of changing a process schema as a

highly unstructured process, potentially involving a large

number of distinct activities. These properties, when

faced by a process mining algorithm, typically lead to

overly precise and confusing “spaghetti-like” models. In

order to come to a more compact representation of

change processes, it is helpful to abstract from a certain

subset of ordering relations between change operations.

When performing process mining on enactment logs (i.e.,

the classical application domain of process mining), the

state of the mined process is treated like a “black box”.

This is necessary because enactment logs only indicate

transitions in the process, i.e. the execution of activities.

However, the information contained in change logs

allows to trace the state of the change process, which is

in fact defined by the process schema that is subject to

change. Moreover, one can compare the effects of

different (sequences of) change operations. From that, it

becomes possible to explicitly detect whether two

consecutive change operations can also be executed in

the reverse order without changing the resulting state.

The next section introduces the concept of

commutativity between change operations, which is used

to reduce the number of ordering relations by taking into

account the semantic implications of change events.

5.4Commutative and Dependent Change

Operations

When traditional process mining algorithms are applied

to change logs, they often return much unstructured,

“spaghetti-like” models of the change process. This

problem is due to a large number of ordering relations

which do not reflect actual dependencies between

change operations. The concept of commutativity is an

effective tool for determining, whether there indeed

exists a causal relation between two consecutive change

operations. As discussed in can be characterized as

transforming one process schema into another one.

Thus, in order to compare sequences of change

operations, and toderive ordering relations between

these changes, it is helpful to define an equivalence

relation for process schemas.

5.5 Approach 1: Enhancing Multi-phase Mining

with Commutativity

Mining change processes is to a large degree identical to

mining regular processes from enactment logs.

Therefore, we have chosen not to develop an entirely

new algorithm, but rather to base our first approach on

an existing process mining technique. Among the

available algorithms, the multi-phase algorithm has been

selected, which is very robust in handling ambiguous

branching situations (i.e., it can employ the “OR”

semantics to split and join nodes, in cases where neither

“AND” nor “XOR” are suitable). Although we illustrate

our approach using a particular algorithm, it is important

to note that any process mining algorithm based on

explicitly detecting causalities can be extended in this

way (e.g., also the different variants of the α-algorithm).

The multi-phase mining algorithm is able to construct

basic workflow graphs, Petri nets, and EPC models from

the causality relations derived from the log. For an in-

depth description of this algorithm, the reader is

referred. The basic idea of the multiphase mining

algorithm is to discover the process schema in two steps.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 966

First a model is generated for each individual process

instance. Since there are no choices in a single instance,

the model only needs to capture causal dependencies.

Using causality relations derived from observed

execution orders and the commutativity of specific

change operations, it is relatively easy to construct such

instance models. In the second step these instance

models are aggregated to obtain an overall model for the

entire set of change logs. The causal relations for the

multi-phase algorithm are derived from the change log

as follows. If a change operation A is followed by another

change B in at least one process instance, and no

instance contains B followed by A, the algorithm assumes

a possible causal relation from A to B. In the example log

introduced in instance a change operation deleting

“Inform Patient” followed by another change, inserting

the same activity again. As no other instance contains

these changes in reverse order, a causal relation is

established between them. a Petri net model of the

change process mined from the example change log

instances in The detected causal relation between

deleting and inserting “Inform patient” is shown as a

directed link between these activities. Note that in order

to give the change process explicit start and end points,

respective artificial activities have been added. Although

the model contains only seven activities, up to three of

them can be executed concurrently. Note further that the

process is very flexible, i.e. all activities can potentially

beskipped. From the very small data basis given in where

change log instances hardly have common sub

sequences, this model delivers a high degree of

abstraction. When two change operations are found to

appear in both orders in the log, it is assumed that they

can be executed in any order. An example for this is

inserting “x-ray” and inserting “Lab Test”, which appear

in this order in instance I8, and in reverse order in

instance I9. As a result, there is no causal relation, and

thus no direct link between these change operations in

the model shown i Apart from observed concurrency, as

described above, we can introduce the concept of

commutativity-induced concurrency, using the notion of

commutativity introduced in the previous subsection

From the set of observed causal relations, we can exclude

causal relations between change operations that are

commutative. For example, instance I2 features deleting

activity “xRay” directly followed by deleting “Inform

Patient”. As no other process instance contains these

change operations in reverse order, a regular process

mining algorithm would establish a causal relation

between them. However, it is obvious that it makes no

difference in which order two activities are removed

from a process schema. As the resulting process schemas

are identical, these two changes are commutative. Thus,

we can safely discard a causal relation between deleting

“xRay” and deleting “Inform Patient”, which is why there

is no link in the resulting change process shown in

Commutativity-induced concurrency removes

unnecessary causal relations, i.e. those causal relations

that do not reflect actual dependencies between change

operations. Extending the multi-phase mining algorithm

with this concept significantly improves the clarity and

quality of the mined change process. If it were not for

commutativityinduced concurrency, every two change

operations would need to be observed in both orders to

find them concurrent. This is especially significant in the

context of change logs, since one can expect changes to a

process schema to happen far less frequently than the

actual execution of the schema, resulting in less log data.

5.6 Approach 2: Mining Change Processes with

Regions

The second approach towards mining change logs uses

an approach based on the theory of regions and exploits

the fact that a sequence of changes defines a state, i.e.,

the application of a sequence of changes to some initial

process schema results in another process schema. The

observation that a sequence of changes uniquely defines

a state and the assumption that changes are “memory

less” (i.e., the process schema resulting after the change

is assumed to capture all relevant information) are used

to build a transition system. Using the theory or regions,

this transition system can be mapped onto a process

model (e.g., a Petri net) describing the change process. In

Definition 2 we already used the concept of a transition

system to describe the behavioural aspect of a process

schema. However, now we use it as an intermediate

format for representing change processes. As indicated

in we do not advocate transition systems as an end-user

language. Any modelling language having formal

semantics can be mapped onto a transition system. The

reverse is less obvious, but quite essential for our

approach. Therefore, we first explain the “theory of

regions” which allows us to translate a transition system

into a graphical process model.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 967

Fig1: Mined Example Process (Petri net notation)

5.7 Comparing Both Approaches

We have introduced two new process mining approaches
based on the characteristics of change logs. The first
approach is based on the multi-phase algorithm
However, the original algorithm has been enhanced to
exploit information about commutativity of change
operations. If there are independent changes (i.e.,
changes that operate on different parts of the schema), it
is not necessary to see all permutations to conclude that
they are in parallel. The second approach is based on the
observation that given an original schema and a
sequence of change operations, it is possible to
reconstruct the resulting process schema. This can be
used to derive a transition system where the states are
represented by possible (intermediate) process schemas.
Using regions such a transition model can be translated
into an equivalent Petri net describing the change
process. In this section, we applied the two approaches
to an example log. This allows us to compare both. The
Petri net in Figure 2 is very different from the one in
Figure 1. This illustrates that both approaches produce
different results, i.e., they provide two fundamentally
different ways of looking at change processes. It seems
that in this particular example, the first approach
performs better than the second. This seems to be a
direct consequence of the small amount of change log
instances (just nine) in comparison with the possible
number of change operations. When there is an
abundance of change log instances, the second approach
performs better because it more precisely captures the
observed sequences of changes. Moreover, the second
step could be enhanced by generalization operations at
the transition system level, e.g., using commutativity.

5.8 Towards Learning about the Context of

Change
Understanding how process change information can be

represented in logs and how these logs can be mined to

deliver valuable insights into the scope of change

delivers insights of how processes deviate from

predefined routines. This is a significant move towards

understanding why such changes occur, viz., the drivers

for change). These drivers can be found in the context of

a process. In general terms, the context of a business

process is made up by all the relevant information that is

available at some stage during the execution of a

business process, and that could potentially have

influenced decisions in this process. It can be seen as the

set of process data and information that is relevant to the

process execution but typically not defined in the

process definition itself, which, following existing

classification schemes would at least include the control

flow logic, involved informational data, and

organizational resources. Context information can be

retrieved from a wide range of potential data sources.

Enactment logs, for instance, often include information

about time and value of a data modprocess could be

investigated together with the reasons for the change

decisions taken along the execution of a process. This can

be achieved by looking at change process models and the

decision points contained within. However, while these

change process models themselves are already helpful in

developing an understanding of the drivers for change,

they cannot be used to actually learn from the change.

Learning can be interpreting as deriving information

from an adaptive PMS. The fundamental premise is that

cases in which a certain change has been applied will

exhibit distinct patterns in their context information. As

the set of potential context information can be very large,

identifying the pivotal data elements, or patterns thereof,

which are unique for a specific change, somehow

resembles looking for a needle in a haystack.

Fortunately, existing Machine Learning (ML) techniques

can solve this problem. Classification algorithms, for

instance, take for input a classified set of examples, the

so-called training set. Once this set has been analyzed,

the algorithm is capable of classifying previously

unknown examples. Training a decision tree algorithm

with such a classified set may then provide decision trees

that visualize how decisions about process change were

being made. Other classification algorithms from ML can

generate a set of classification rules.These classification

algorithms by definition focus on specific decisions, i.e.,

one branching point in the process, and are thus

dependent on the mining of a change process model in

the first place.An alternative to this approach is the

mining of association rules. Here, every case is regarded

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 968

as a set of facts, where a fact can both be the occurrence

of a change operation as well as a context attribute

having a specific value. After identifying frequent item

sets, the algorithm can derive association rules. These

rules describe, for instance, that for a large fraction of

cases where an additional x-ray was inserted, the patient

was older than 65 years and the doctor was female, an

additional blood screening was inserted.

Figure2: Transition system based on the change log

shown

Fig 3: Screenshot of ProM showing the Petri net obtained

for the change log depicted

Association rules are derived in a global manner, viz., the
order in which change operations occur is not taken into
account. This can be beneficial especially when there are
hardly any causal relations between change operations.
Association rules may discover tacit relationships
between change operations and context data that could
not be captured by classification. In summation, the
application of ML techniques appears promising for the
identification of the drivers for change from the context
of a process, and for relating them to one another. We
believe that this structured approach can deliver precise
results while still remaining feasible in practical settings,
and can thus a be foundation for the future design of self-
adapting PMSs.

6. RELATED WORK

Although process mining techniques have been
intensively studied in recent years Agrawal no
systematic research on analyzing process change logs
has been conducted so far. Existing approaches mainly
deal with the discovery of process schemas from
execution logs, conformance testing, and log-based
verification. The theory of regionshas also been exploited
to mine process schemas from execution logs, e.g. from
logs describing software development processes.
However, execution logs in traditional PMSs only reflect
what has been modeled before, but do not capture
information about process changes. While earlier work
on process mining has mainly focused on issues related
to control flow mining, recent work additionally uses
event-based data for mining model perspectives other
than control flow (e.g., social networks, actor
assignments, and decision mining. In recent years,
several approaches for adaptive process management
have emerged, most of them supporting changes of
certain process aspects and changes at different levels.
Examples of adaptive PMSs include. Though these PMSs
provide more meaningful process logs when compared
to traditional workflow systems, so far, only little work
has been done on fundamental
questionslike.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 969

Fig:Change Mining Plug-in within ProM

We can learn from this additional log information, how
we can utilize change logs, and how we can derive
optimized process schemas from them.

7. REFERENCES
1. M. Hammer, Beyond Reengineering: How the Process-
Centered Organization is Changing Our Work and Our
Lives. New York, NY, USA: Harper business, 1996
2. K. Ploesser, J. C. Recker, and M. Rosemann, “Towards a
classification and lifecycle of business process change,”
in Proc. BPMDS, vol. 8. 2008, pp. 1–9.
3. H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Proc.
9th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining. 2003, pp. 226–235.
4.I. Guyon and A. Elisseeff, “An introduction to variable
and feature selection,” J. Mach. Learn. Res., vol. 3, pp.
1157–1182, Mar. 2003.

5.W. M. P. van der Aalst, M. Rosemann, and M. Dumas,
“Deadline-based escalation in process-aware
information systems,” Decision Support Syst., vol. 43, no.
2, pp. 492–511, 2011

6.J. Z. Kolter and M. A. Maloof, “Dynamic weighted
majority: An ensemble method for drifting concepts,” J.
Mach. Learn. Res., vol. 8, pp. 2755–2790, Jan. 2007.

8. CONCLUSION&FUTURE WORK:

Thispapergave anoverview ofhowcomprehensive support
fortrueprocessflexibilitycanbeprovidedbycombiningadap
tivePMSswithadvancedprocessminingtechniques.
TheintegrationofprocessminingwithadaptivePMSenables
theexploitationofknowledge about process changes
from change logs. We have developed two mining
techniques and implemented them as plug-ins for
the ProM framework, taking ADEPT change logs in
the mapped MXML format as in-put. Based on this
we have sketched how to discover a (minimal)
change process which captures all modifications
applied to a particular process. This discovery is
based on the analysis of (temporal) dependencies
between change operations that have been applied
to a process instance. Meaningful, compact
representations of the change process.

BIOGRAPHY:

P.M. Suresh received Bachelor’s

degree in Computer Science from

PDCE, College, India. He is currently

working towards Master’s degree at

Audisankara College of Engineering.

His research interest’s includes

Datamining.

Mr Koteswarrao. Kadiventi, M. Tech

Assistant Professor, Department of

Computer Science, Audisankara College

of Engineering Gudur.Received B. Tech in

jntuAnantapur affiliated to 2010.

Received M. Tech degree in Audisankara

College of Engineering Gudur 2012

having 3years of teaching experience.

Interest in areas are Data mining.

