
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 850

Integrating Domain Familiarity and Reinforcement Learning For

Artificial Neural Network

*1Ms. Nisha S., *2 Mrs. Sangeetha Lakshmi G.., *3 Ms. Raja Lakshmi N.S.,

*1 M.Phil Research Scholar, Department of Computer Science DKM College for Women (Autonomous), Vellore,

TamilNadu, India.

*2Assisant Professor, Department of Computer Science DKM College for Women (Autonomous), Vellore,

 TamilNadu, India.

*3Assisant Professor, Department of Computer Science DKM College for women (Autonomous),

Vellore TamilNadu, India.

---***---
Abstract - Knowledge integration and learning are

two key issues in designing knowledge-based intelligent

systems. This talk will present a family of self-

organizing neural networks, collectively known as

fusion Adaptive Resonance Theory (fusion ART), for

building knowledge-based intelligent systems with

real-time learning capabilities. By extending the

original Adaptive Resonance Theory (ART) models

consisting of a single pattern field into a multi-channel

architecture, fusion ART unifies a number of important

neural network designs developed over the past

decades. Based on a universal set of neural encoding

and adaptation principles, fusion AT supports a myriad

of learning paradigms, notably unsupervised learning,

supervised learning, and reinforcement learning. TD-

FALCON is a self-organizing neural network that

incorporates Temporal Difference (TD) methods for

reinforcement learning. Despite the advantages of fast

and stable learning, TD-FALCON still relies on an

iterative process to evaluate each available action in a

decision cycle. To remove this deficiency, this paper

presents a direct code access procedure whereby TD-

FALCON conducts instantaneous searches for cognitive

nodes that match with the current states and at the

same time provide maximal reward values. Our

comparative experiments show that TD-FALCON with

direct code access produces comparable performance

with the original TD-FALCON while improving

significantly in computation efficiency and network

complexity.

Key Words: Adaptive Resonance Theory,

Temporal Difference, FALCON, ANN, intelligent

system

I. INTRODUCTION

Reinforcement learning [Sutton and Barto, 1998]
is an interaction based paradigm wherein an autonomous
agent learns to adjust its behavior according to feedback
from the environment. Classical solutions to the
reinforcement learning problem generally involve learning
one or more of the following mappings, the first linking a
given state to a desired action (action policy), and the
second associating a pair of state and action to a utility
value (value function), using temporal difference methods,
such as SARSA [Rummery and Niran-jan, 1994] and Q-
learning [Watkins and Dayan, 1992].The problem of the
original formulation is that mappings must be learned for
each and every possible state or each and every possible
pair of state and action. This causes a scalability issue for
continuous and/or very large state and action spaces.

Neural networks and reinforcement learning have
had an intertwining relationship [Kaelbling et al., 1996]. In
particular, multi-layer feed-forward neural networks, also
known as multi-layer perceptron (MLP), have been used
extensively in many reinforcement learning system and
applications [Ack-ley and Littman, 1990; Sutton, 1984].
Under the recent thread of research in Approximate
Dynamic Programming (ADP) [Si et al., 2004], MLP and
gradient descent back propagation (BP) learning
algorithms are commonly used to learn an approximation
of the value function from the state and action spaces
(value policy) and/or an approximation of the action
function from the state space (action policy). MLP and BP
however are not designed for online incremental learning
as they typically require an iterative learning process. In
addition, there is an issue of instability in the sense that
learning of new patterns may erode the previously learned
knowledge. Consequently, the resultant reinforcement
learning systems may not be able to learn and operate in
real time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 851

Instead of learning value functions and action
policies, self-organizing neural networks, such as Self-
Organizing Map (SOM), are typically used for the
representation and generalization of continuous state and
action spaces [Smith, 2002]. The state and action clusters
are then used as the entries in a Q-value table
implemented separately. Using a localized representation,
SOM has the advantage of more stable learning, compared
with back propagation networks. However, SOM remains
an iterative learning system, requiring many rounds to
learn the compressed representation of the state and
action patterns. In addition, as presents a neural
architecture called FALCON (Fusion Architecture for
Learning, Cognition, and Navigation), that learns multi-
channel mappings simultaneously across multi-modal
input patterns, involving states, actions, and rewards, in an
online and incremental manner. For handling problems
with delayed evaluative feedback (reward signal), a
variant of FALCON, known as TD-FALCON [Tan and Xiao,
2005], learns the value functions of the state-action space
estimated through Temporal Difference (TD) algorithms.
Compared with other ART-based systems described by
Ueda et. al and Ninomiya, TD-FALCON presents a truly
integrated solution in the sense that there is no
implementation of a separate reinforcement learning
module or Q-value table.

Fig1 : FALCON Architecture

Although TD-FALCON provides a promising
approach, its action selection procedure contains an
inherent limitation. Specifically, TD-FALCON selects an
action by weighting the consequence of performing each
and every possible action in a given state. Besides that the
action selection process is inefficient with a large number
of actions, the numerating step also assumes a finite set of
actions, rendering it inapplicable to continuous action
space. In view of this deficiency, this paper presents a
direct code access procedure by which TD-FALCON can
perform instantaneous searches for cognitive nodes that
match with the current states and at the same time
provide the highest reward values. Besides that the
algorithm is much more natural and efficient, TD-FALCON
can now operate with both continuous state and action

spaces. Our comparative experiments based on a minefield
navigation task show that TD-FALCON with direct code
access produces comparable performance with the
original TD-FALCON system while improving vastly in
terms of computation efficiency as well as network
complexity.

The rest of the paper is organized as follows. For
completeness, section 2 presents a summary of the
FALCON architecture and the associated learning and
prediction algorithms. Section 3 presents the new TD-
FALCON algorithm with the direct code access procedure.
Section 4 introduces the minefield navigation simulation
task and presents the experimental results. The final
section concludes and provides a brief discussion of future
work.

II. RELATED WORK

FALCON employs a 3-channel architecture
comprising a cognitive field F2c and three input fields,
namely a sensory field Ff1 for representing current states,
an action field Ff2 for representing actions, and a reward
field Ff3 for representing reinforcement values. The
generic network dynamics of FALCON, based on fuzzy ART
operations [Carpenter et al., 1991], is described below.
(a1,a2,...,am) denote the action vector, where a% G [0,1]
indicates a possible action i.Let R = (r, f) denote the
reward vector, where r G [0,1] is the reward signal value
and f (the complement of r)is given by f =1 — r.
Complement coding serves to normalize the magnitude of
the input vectors and has been found effective in ART
systems in preventing the code proliferation problem. As
all input values of FALCON are assumed to be bounded
between 0 and 1, normalization is necessary if the original
values are not in the range of [0, 1].

Activity vectors: Let xck denote the Ff* activity
vector for k = 1,..., 3.Let yc denote the F2

c activity vector.
Weight vectors: Let wck denote the weight vector
associated with the jth node in F2

c for learning the input
patterns in Fffc for k = 1,..., 3. Initially, F2

c contains only
one uncommitted node and its weight vectors contain all
1's. When an uncommitted node is selected to learn an
association, it becomes committed.

2.1 Parameters: The FALCON's dynamics is determined
by choice parameters ack > 0 for k = 1,..., 3; learning rate
parameters /3ck G [0,1] for k = 1,..., 3; contribution
parameters Yck G [0,1] for k = 1,..., 3 where k=1 Yck = 1;
and vigilance parameters pck G [0,1] for k = 1,..., 3. Code
activation: A bottom-up propagation process first takes
place in which the activities (known as choice function
values) of the cognitive nodes in the F2

c field are
computed. Specifically, given the activity vectors xc1, xc2
and xc3 (in the input fields Ff1, Ffs and Ff3 respectively), for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 852

each F2c node j, the choice function Tj is computed as
follows:

Where the fuzzy AND operation A is defined by (p A q)% =
min(pj,qj), and the norm |.| is defined by |p|= J2% P% for
vectors p and q. In essence, the choice function Tj
computes the similarity of the activity vectors with their
respective weight vectors of the F2c node j with respect to
the norm of individual weight vectors.

2.2 Code competition: A code competition process
follows under which the F2c node with the highest choice
function value is identified. The winner is indexed at J
where

TJ = max{Tj
c : for all F2

c node j }.

(3) When a category choice is made at node J, yJ = 1;and yc
= 0 for all j = J. This indicates a winner-take-all strategy.
Template matching: Before code J can be used for learning,
a template matching process checks that the weight
templates of code J are sufficiently close to their respective
activity patterns. Specifically, resonance occurs if for each
channel k,the match function mJk of the chosen code J
meets its vigilance criterion:

2.3 Input vectors: Let S = (s1,s2,...,sn) denote the state
vector, where s% G [0,1] indicates the sensory input i.Let A
= The match function computes the similarity of the
activity and weight vectors with respect to the norm of the
activity vectors. Together, the choice and match functions
work cooperatively to achieve stable coding and maximize
code compression.

III. PREVIOUS METHOD

The research described in several of the elements
proposed as part of this thesis: use of RL, learning plans on
BDI systems, and extraction of BDI plans from MDPs and
POMDPs. A more detailed overview of previous research
whose elements come closest to the work done as part of
this paper

3.1 Research on BDI and Learning

An extensive review of the existing literature in
RL and BDI did not uncover any research that made use of
RL to learn BDI plans without relying on a-priori
knowledge. As discussed in the Introduction on Chapter 1,
the lack of learning capabilities for BDI systems was
recognized as far back as Researchers tackled this by
augmenting the BDI framework with various learning
frameworks including decision trees, self-organizing
neural networks, hybrid-architectures using low level
learners, and met plans for plan hypothesis abduction and
plan medications. Other relevant research tackled the use
of a-priori knowledge, previously learned knowledge and
the learning of plans without apriority knowledge on

planning systems, and the integration of learning, planning
and execution. These studies were, however, not
investigated in relation to BDI systems.

Target: plan learning and plan improvement

Model: hybrid, inductive

Learning Element: self-organizing neural network
(FALCON), hypothesis abduction

Goal: plan learning via plan extraction using PGS and plan
improvement using hypothesis abduction

The goal of this thesis is to use reinforcement learning to
generate plans without a-priori knowledge on BDI agent
systems. The key idea is that the result of reinforcement
learning is a policy or policies in the general case. Since
policies map states to actions, the policies can then be
used as input to generate plans in BDI agents systems. The
approach can then be summarized as a two step process:

1. Use reinforcement learning as the learning module.

2. Use policies learned as input to generate BDI plans.

None of the previous work combines the elements of RL
for plan generation on BDI agent systems. The problem
selected for study in this thesis is justice by this lack of
research exploring the generation of plans in BDI systems
using reinforcement learning that does not rely on a priori
knowledge.

IV. PROPOSED METHOD

4.1 3TD-FALCON

TD-FALCON incorporates Temporal Difference
(TD) methods to estimate and learn value functions of
action-state pairs Q(s,a) that indicates the goodness for a
learning system to take a certain action a in a given state s.
Such value functions are then used in the action selection
mechanism, also known as the policy, to select an action
with the maximal payoff. The original TD-FALCON
algorithm proposed by Tan and Xiao (2005) selects an
action with the maximal Q-value in a state s by
enumerating and evaluating each available action a by
presenting the corresponding state and action vectors S
and A to FALCON. The TD-FALCON presented in this paper
re-places the action enumeration step with a direct code
access procedure, Given the current state s, TD-FALCON
first decides between exploration and exploitation by
following an action selection policy. For exploration, a
random action is picked. For exploitation, TD-FALCON
searches for optimal action through a direct code access
procedure. Upon receiving a feedback from the
environment after performing the action, a TD formula is
used to compute a new estimate of the Q value of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 853

performing the chosen action in the current state. The new
Q value is then used as the teaching signal for TD-FALCON
to learn the association of the current state and the chosen
action to the estimated Q value. The details of the action
selection policy, the direct code access procedure, and the
Temporal Difference equation are elaborated below.

4.2 RL Training

A detailed survey of RL and automated planning system is
presented by Partalas. Partalas argues that \there is a
close relationship between those two areas as they both
deal with the process of guiding an agent, situated in a
dynamic environment, in order to achieve a set of
predeened goals." Because RL combines planning and
learning the distinctions above blur in practice if not in
theory. Since a relevant part of the research for this study
will be the selection of feasible RL approaches to generate
plans for BDI systems, only a quick summary of the
research detailed by Partalas will be given here except in
cases where research is directly related to the problem for
this study. Partalas describes the possible approaches to
combining planning with RL as:

Fig2 : Proposed Method

Our approach to understanding trained networks
uses the three-link chain illustrated by the first link inserts
domain knowledge, which need be neither complete nor
correct, into a neural network using KBANN. The second
link trains the KNN using a set of classified training
examples and standard neural learning methods. The final
link extracts rules from trained KNNs. Rule extraction is an
extremely difficult task for arbitrarily-configured
Networks, but is somewhat less daunting for KNNs due to
their initial comprehensibility. Our method takes
advantage of this property to efficiently extract rules from
trained KNNs.

Significantly, when evaluated in terms of the
ability to correctly classify examples not seen during
training, our method produces rules that are equal or
superior to the networks from which they came Moreover,

the extracted rules are superior to the rules resulting from
methods that act directly on the rules (rather than their
re-representation as a neural network). Also, our method
is superior to the most widely-published algorithm for the
extraction of rules from general neural networks.

V. SYSTEM IMPLEMENTATION

5.1 Rule Extraction

This section presents a set of experiments
designed to determine the relative strengths and
weaknesses of the two rule-extraction methods described
above. Rule-extraction techniques are compared using two
measures: quality, which is measured both by the accuracy
of the rules; and comprehensibility which is approximated
by analysis of extracted rule sets.

5.2 Testing Methodology

We use repeated 10-fold cross-validation for
testing learning on two tasks from molecular biology:
promoter recognition and splice-junction determination.
Networks are trained using the cross-entropy. Following
Hinton’s suggestion for improved network
interpretability, all weights "decay" gently during training.

5.3 Accuracy of Extracted Rules

It plots percentage of errors on the testing and
training sets, averaged over eleven repetitions of 10-fold
cross-validation, for both the promoter and splice-junction
tasks. For comparison, Figure 4 includes the accuracy of
the trained KNNs prior to rule extraction (the bars labeled
Network"). Also included in is the accuracy of the EITHER
system, an "all symbolic" method for the empirical
adaptation of rules

5.4 Incorporating TD Method

For learning from delayed evaluative feedback
signals, the value function Q(s, a) of state-action pairs is
estimated using TD method outlined in Algorithm2. At
time t, lines 1–9 of Algorithm 2 show FALCON operating in
PERFORM mode to select action choice a either by
exploration or by exploitation. At time t + 1, lines 10–13 of
Algorithm 2 show that FALCON operating in LEARN mode
uses reward r from the environment on action choice a to
estimate the value function Q(s, a).

: A TD method known as bounde1) Iterative Value
Estimationd Q-learning is iteratively used to estimate the
value of applying action choice a to state s. The Q-value
update function is given by

Qnew(s, a) = Q(s, a) + αTDerr(1 − Q(s, a))

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 854

where α ∈ [0, 1] is the learning parameter and the TDerr is
the temporal error term, which is derived using

TDerr = r + γ max a Q(s’,a’) − Q(s, a)

Where γ ∈ [0, 1] is the discount parameter and the maxa
Q(s’, a‘) is the maximum estimated value of the next state
s’. The estimated Q-value Qnew(s, a) is used as a teaching
signal to learn the association of state s and action choice
a. It is notable that in TD-FALCON, the values of

Q(s, a) and maxa Q(s’, a’)

 are in turn estimated using the same FALCON network.

5.5 ALGORITHM IMPLEMENTATION

Algorithm 1

 TD-FALCON Algorithm

1: Initialize the FALCON network.

2: Sense the environment and formulate a state vector S
based on the current state s.

3: Following an action selection policy, first make a choice
between exploration and exploitation.

4: if Exploration then

5: Choose action choice a using an exploration strategy.

6: else if Exploitation then

7: Identify action choice a with the maximal Q(s, a) value
by presenting the state vector S, the action vector A = {1, . .
. , 1}, and the reward vector R = {1, 0} to FALCON.

8: end if

9: Perform the action choice a, observe the next state s’,
and receive a reward

r (if any) from the environment.

10: Estimate the revised value function Q(s, a) following a
TD formula, such

as _Q(s, a) = α(r + γ maxa Q(s’, a’) − Q(s, a)).

11: Formulate action vector A based on action choice a and
reward vector R based on Q(s, a).

12: Present the corresponding state S, action A, and
reward R vectors to FALCON for learning.

13: Update the current state by s = s’.

14: Repeat from Step 2 until s is a terminal state.

5.2 Algorithm 2

Translation of Propositional Rules

Ensure: Initialize FALCON with an uncommitted cognitive
node.

1: for each propositional rule rj do

2: for each attribute ap ∈ Xr
j do

3: for each attribute-value binding bpq ∈ V(ap) do

4: Translate bpq into vector vpq using (5).

5: end for

6: Translate ap into attribute vector Sp using (6).

7: end for

8: Translate antecedent Xr
j into state vector Sr

j using (7).

9: Repeat steps 3–7 for translation of each attribute ap ∈ Yr
j

.

10:Translate consequent Yr
j into action vector Ar

j using (8).

11: Set reward prj into reward vector Rr
j using (9).

12: Operate FALCON in INSERT mode to insert translated
propositional rule rj as {Sr

j,Ar
j,Rr

j}.

13: end for

14: return FALCON with inserted domain knowledge.

VI. EVALUATION RESULT

The objective of the experiments is to evaluate the
suitability of TD-FALCON as an inference engine for the
entity agent operating in a complex decision-making
domain. It is required to provide accurate response to
scenarios using a priori knowledge as well as learned
knowledge. The experiments compare the prediction
accuracy of TD-FALCON trained using two learning
paradigms - RL and supervised learning (SL), each with or
without a priori knowledge and also against another rule
inference engine known as DROOLS. SL and DROOLS are
included for baseline comparison against the RL approach.

TD-FALCON operates in the PERFORM mode to
derive a response from its knowledge base while it gets
into the LEARN mode to update this knowledge base. TD-
FALCON operates with baseline vigilance ρck = {0.2, 0.8,
0.5} for the state, action and reward fields respectively in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 855

the LEARN mode while it has ρck = {0.0} in the PERFORM
mode. Both modes use a common set of values for the
following sets of parameter: choice parameters αck = {0.1,
0.001, 0.001}, learning rate βck = 1.0 for fast learning and
contribution parameter γck = 1 3 for k = 1, 2, 3.

DROOLS yield a consistent prediction accuracy of
97.15% while TD-FALCONs trained using SL achieve 100%
prediction accuracy earlier than those trained using RL.
This is expected as SL teaches the expected responses to
TD-FALCON while RL requires more iteration to explore
the solution space for suitable responses.

Fig 3: Comparison of action choice prediction accuracy

The profile of the prediction accuracy plots of the
TDFALCON trained with and without rules in is quite
closely matched. The inherent inadequacy of the inserted
rules is also highlighted by the lower initial prediction
accuracy of the configurations with rule insertion over
those without rule insertion. This indicates the reduced
role of the a priori knowledge after the acquisition of more
sophisticated knowledge. The learning mechanism of
TDFALCON is able to supersede the less adequate rules
with those that are able to provide more accurate
responses.

Fig 4: Comparison of the number of cognitive nodes
created

Plots the creation of the cognitive nodes from
each of the experiment configurations. The production of
cognitive nodes plateaus as the prediction accuracy
approaches 100% accuracy. This indicates that TD-
FALCON has acquired sufficient knowledge to provide the
appropriate responses to all the situations. Generalization
is observed as the number of positive nodes created is
significantly lesser than the situations that it has to
respond to.

VII. CONCLUSION

This paper has shown how domain knowledge can
be integrated with RL using a self-organizing neural
network known as TD-FALCON. We have analytically
shown how the inserted domain knowledge is utilized for
action selection and learning. In addition, we proposed the
greedy exploitation and reward vigilance adaptation
strategies to make better use of domain Knowledge to
improve learning efficiency. Using such an approach,
exploration is triggered only when no effective cognitive
node can be exploited for the states. It is shown that the
appropriate cognitive nodes can be selected as the reward
vigilance is adapted during RL.

To illustrate the efficacy of the proposed
strategies for integrating domain knowledge with RL,
experiments were conducted using the PE and MNT
problem domains. Comparing with the selected models,
the experiment results show that inserting domain
knowledge directly into TD-FALCON using the proposed
strategies improves success rates and reduces code
population in these two distinct problem domains.
Comparison of timing information from these two
problem domains also shows the proposed strategies to be
more efficient than the compared models.

This work of integrating domain knowledge and
RL using a self-organizing neural network sets the
framework for developing more efficient autonomous
knowledge-based systems capable of continuously
expanding its knowledge through real time interaction
with the environment. In our future work, we shall
embark on the application of the proposed strategies in
more challenging and complex real-world problem
domains. Beyond the type of logical structure, domain
knowledge in these problem domains is likely to be more
complex and heterogeneous. By drawing inspirations from
the fields of cognitive psychology and neuroscience, we
aim to build self organizing knowledge systems for
addressing the issues of acquiring, managing, and
retrieving such rich and diverse knowledge, possibly
through the use of different types of memory
representations and models

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 856

REFERENCES

[1] A. M. Shapiro, “How including prior knowledge as a
subject variable may change outcomes of learning
research,” Amer. Educ. Res. J., vol. 40, no. 1, pp. 159–189,
2004.

[2] A.-H. Tan, “Cascade ARTMAP: Integrating neural
computation and symbolic knowledge processing,” IEEE
Trans. Neural Netw., vol. 8, no. 2, pp. 237–250, Mar. 1997.

[3] Y. S. Abu-Mostafa, “Learning from hints in neural
networks,” J. Complex., vol. 6, no. 2, pp. 192–198, 1990.

[4] M. Pazzani and D. Kibler, “The utility of knowledge in
inductive learning,” Mach. Learn., vol. 9, no. 1, pp. 57–94,
1992.

[5] T. M. Mitchell and S. Thrun, “Explanation-based neural
network learning for robot control,” in Advances in Neural
Information Processing Systems 5. San Mateo, CA, USA:
Morgan Kaufmann, 1993, pp. 287–294.

[6] G. G. Towell and J. W. Shavlik, “Interpretation of
artificial neural networks: Mapping knowledge-based
neural networks into rules,” in Advances in Neural
Information Processing Systems 4. San Mateo, CA, USA:
Morgan Kaufmann, 1992, pp. 977–984.

[7] L.-M. Fu, “Knowledge-based connectionism for revising
domain theories,” IEEE Trans. Syst., Man, Cybern., vol. 23,
no. 1, pp. 173–182, Jan./Feb. 1993.

[8] C. H. C. Ribeiro, “Embedding a priori knowledge in
reinforcement learning,” J. Intell. Robot. Syst., vol. 21, no. 1,
pp. 51–71, 1998.

[9] R. Schoknecht, M. Spott, and M. Riedmiller, “Fynesse:
An architecture for integrating prior knowledge in
autonomously learning agents,” Soft Comput., vol. 8, no. 6,
pp. 397–408, 2004.

[10] G. Hailu and G. Sommer, “Integrating symbolic
knowledge in reinforcement learning,” in Proc. Int. Conf.
Syst., Man, Cybern., vol. 2. Oct. 1998, pp. 1491–1496.

[11] D. Shapiro, P. Langley, and R. Shachter, “Using
background knowledge to speed reinforcement learning in
physical agents,” in Proc. Int. Conf. Auto. Agents, May 2001,
pp. 254–261.

[12] A.-H. Tan, “FALCON: A fusion architecture for
learning, cognition, and navigation,” in Proc. IJCNN,
Budapest, Hungary, Jul. 2004, pp. 3297–3302.

[13] A.-H. Tan, N. Lu, and X. Dan, “Integrating temporal
difference methods and self-organizing neural networks
for reinforcement learning with delayed evaluative

feedback,” IEEE Trans. Neural Netw., vol. 19, no. 2, pp.
230–244, Feb. 2008.

[14] G. A. Carpenter and S. Grossberg, “A massively parallel
architecture for a self-organizing neural pattern
recognition machine,” Comput. Vis., Graph., Image
Process., vol. 37, no. 1, pp. 54–115, 1987.

[15] T.-H. Teng, Z.-M. Tan, and A.-H. Tan, “Self-organizing
neural models integrating rules and reinforcement
learning,” in Proc. IEEE IJCNN, Jun. 2008, pp. 3770–3777.

BIOGRAPHIES

1. Ms. Nisha S., MCA., M.Phil

Research Scholar, Department of

Computer Science DKM College

for Women (Autonomous),

Vellore, TamilNadu, India.

2. Mrs. Sangeetha Lakshmi G., Asst. Prof

Department of Computer Science DKM College for

Women (Autonomous), Vellore, TamilNadu, India.

3. Ms. Raja Lakshmi N.S., Asst. Prof Department

of Computer Science DKM College for Women

(Autonomous), Vellore, TamilNadu, India.

