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Abstract - Knowledge integration and learning are 

two key issues in designing knowledge-based intelligent 

systems. This talk will present a family of self-

organizing neural networks, collectively known as 

fusion Adaptive Resonance Theory (fusion ART), for 

building knowledge-based intelligent systems with 

real-time learning capabilities. By extending the 

original Adaptive Resonance Theory (ART) models 

consisting of a single pattern field into a multi-channel 

architecture, fusion ART unifies a number of important 

neural network designs developed over the past 

decades. Based on a universal set of neural encoding 

and adaptation principles, fusion AT supports a myriad 

of learning paradigms, notably unsupervised learning, 

supervised learning, and reinforcement learning. TD-

FALCON is a self-organizing neural network that 

incorporates Temporal Difference (TD) methods for 

reinforcement learning. Despite the advantages of fast 

and stable learning, TD-FALCON still relies on an 

iterative process to evaluate each available action in a 

decision cycle. To remove this deficiency, this paper 

presents a direct code access procedure whereby TD-

FALCON conducts instantaneous searches for cognitive 

nodes that match with the current states and at the 

same time provide maximal reward values. Our 

comparative experiments show that TD-FALCON with 

direct code access produces comparable performance 

with the original TD-FALCON while improving 

significantly in computation efficiency and network 

complexity. 

Key Words: Adaptive Resonance Theory, 

Temporal Difference, FALCON, ANN, intelligent 
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I. INTRODUCTION 

Reinforcement learning [Sutton and Barto, 1998] 
is an interaction based paradigm wherein an autonomous 
agent learns to adjust its behavior according to feedback 
from the environment. Classical solutions to the 
reinforcement learning problem generally involve learning 
one or more of the following mappings, the first linking a 
given state to a desired action (action policy), and the 
second associating a pair of state and action to a utility 
value (value function), using temporal difference methods, 
such as SARSA [Rummery and Niran-jan, 1994] and Q-
learning [Watkins and Dayan, 1992].The problem of the 
original formulation is that mappings must be learned for 
each and every possible state or each and every possible 
pair of state and action. This causes a scalability issue for 
continuous and/or very large state and action spaces. 
 

Neural networks and reinforcement learning have 
had an intertwining relationship [Kaelbling et al., 1996]. In 
particular, multi-layer feed-forward neural networks, also 
known as multi-layer perceptron (MLP), have been used 
extensively in many reinforcement learning system and 
applications [Ack-ley and Littman, 1990; Sutton, 1984]. 
Under the recent thread of research in Approximate 
Dynamic Programming (ADP) [Si et al., 2004], MLP and 
gradient descent back propagation (BP) learning 
algorithms are commonly used to learn an approximation 
of the value function from the state and action spaces 
(value policy) and/or an approximation of the action 
function from the state space (action policy). MLP and BP 
however are not designed for online incremental learning 
as they typically require an iterative learning process. In 
addition, there is an issue of instability in the sense that 
learning of new patterns may erode the previously learned 
knowledge. Consequently, the resultant reinforcement 
learning systems may not be able to learn and operate in 
real time. 
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Instead of learning value functions and action 
policies, self-organizing neural networks, such as Self-
Organizing Map (SOM), are typically used for the 
representation and generalization of continuous state and 
action spaces [Smith, 2002]. The state and action clusters 
are then used as the entries in a Q-value table 
implemented separately. Using a localized representation, 
SOM has the advantage of more stable learning, compared 
with back propagation networks. However, SOM remains 
an iterative learning system, requiring many rounds to 
learn the compressed representation of the state and 
action patterns. In addition, as presents a neural 
architecture called FALCON (Fusion Architecture for 
Learning, Cognition, and Navigation), that learns multi-
channel mappings simultaneously across multi-modal 
input patterns, involving states, actions, and rewards, in an 
online and incremental manner. For handling problems 
with delayed evaluative feedback (reward signal), a 
variant of FALCON, known as TD-FALCON [Tan and Xiao, 
2005], learns the value functions of the state-action space 
estimated through Temporal Difference (TD) algorithms. 
Compared with other ART-based systems described by 
Ueda et. al and Ninomiya, TD-FALCON presents a truly 
integrated solution in the sense that there is no 
implementation of a separate reinforcement learning 
module or Q-value table. 

 

Fig1 : FALCON Architecture 

Although TD-FALCON provides a promising 
approach, its action selection procedure contains an 
inherent limitation. Specifically, TD-FALCON selects an 
action by weighting the consequence of performing each 
and every possible action in a given state. Besides that the 
action selection process is inefficient with a large number 
of actions, the numerating step also assumes a finite set of 
actions, rendering it inapplicable to continuous action 
space. In view of this deficiency, this paper presents a 
direct code access procedure by which TD-FALCON can 
perform instantaneous searches for cognitive nodes that 
match with the current states and at the same time 
provide the highest reward values. Besides that the 
algorithm is much more natural and efficient, TD-FALCON 
can now operate with both continuous state and action 

spaces. Our comparative experiments based on a minefield 
navigation task show that TD-FALCON with direct code 
access produces comparable performance with the 
original TD-FALCON system while improving vastly in 
terms of computation efficiency as well as network 
complexity. 

The rest of the paper is organized as follows. For 
completeness, section 2 presents a summary of the 
FALCON architecture and the associated learning and 
prediction algorithms. Section 3 presents the new TD-
FALCON algorithm with the direct code access procedure. 
Section 4 introduces the minefield navigation simulation 
task and presents the experimental results. The final 
section concludes and provides a brief discussion of future 
work. 

II. RELATED WORK 

FALCON employs a 3-channel architecture 
comprising a cognitive field F2c and three input fields, 
namely a sensory field Ff1 for representing current states, 
an action field Ff2 for representing actions, and a reward 
field Ff3 for representing reinforcement values. The 
generic network dynamics of FALCON, based on fuzzy ART 
operations [Carpenter et al., 1991], is described below. 
(a1,a2,...,am) denote the action vector, where a% G [0,1] 
indicates a possible action i.Let R = (r, f) denote the 
reward vector, where r G [0,1] is the reward signal value 
and f (the complement of r)is given by f =1 — r. 
Complement coding serves to normalize the magnitude of 
the input vectors and has been found effective in ART 
systems in preventing the code proliferation problem. As 
all input values of FALCON are assumed to be bounded 
between 0 and 1, normalization is necessary if the original 
values are not in the range of [0, 1]. 

Activity vectors: Let xck denote the Ff* activity 
vector for k = 1,..., 3.Let yc denote the F2

c activity vector. 
Weight vectors: Let wck denote the weight vector 
associated with the jth node in F2

c for learning the input 
patterns in Fffc for k = 1,..., 3. Initially, F2

c contains only 
one uncommitted node and its weight vectors contain all 
1's. When an uncommitted node is selected to learn an 
association, it becomes committed. 

2.1 Parameters: The FALCON's dynamics is determined 
by choice parameters ack > 0 for k = 1,..., 3; learning rate 
parameters /3ck G [0,1] for k = 1,..., 3; contribution 
parameters Yck G [0,1] for k = 1,..., 3 where k=1 Yck = 1; 
and vigilance parameters pck G [0,1] for k = 1,..., 3. Code 
activation: A bottom-up propagation process first takes 
place in which the activities (known as choice function 
values) of the cognitive nodes in the F2

c field are 
computed. Specifically, given the activity vectors xc1, xc2 
and xc3 (in the input fields Ff1, Ffs and Ff3 respectively), for 
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each F2c node j, the choice function Tj is computed as 
follows: 

Where the fuzzy AND operation A is defined by (p A q)% = 
min(pj,qj), and the norm |.| is defined by |p|= J2% P% for 
vectors p and q. In essence, the choice function Tj 
computes the similarity of the activity vectors with their 
respective weight vectors of the F2c node j with respect to 
the norm of individual weight vectors. 

2.2 Code competition: A code competition process 
follows under which the F2c node with the highest choice 
function value is identified. The winner is indexed at J 
where 

TJ = max{Tj
c : for all F2

c node j }. 

(3) When a category choice is made at node J, yJ = 1;and yc 
= 0 for all j = J. This indicates a winner-take-all strategy. 
Template matching: Before code J can be used for learning, 
a template matching process checks that the weight 
templates of code J are sufficiently close to their respective 
activity patterns. Specifically, resonance occurs if for each 
channel k,the match function mJk of the chosen code J 
meets its vigilance criterion: 

2.3 Input vectors: Let S = (s1,s2,...,sn) denote the state 
vector, where s% G [0,1] indicates the sensory input i.Let A 
= The match function computes the similarity of the 
activity and weight vectors with respect to the norm of the 
activity vectors. Together, the choice and match functions 
work cooperatively to achieve stable coding and maximize 
code compression. 

III. PREVIOUS METHOD 

The research described in several of the elements 
proposed as part of this thesis: use of RL, learning plans on 
BDI systems, and extraction of BDI plans from MDPs and 
POMDPs. A more detailed overview of previous research 
whose elements come closest to the work done as part of 
this paper  

3.1 Research on BDI and Learning 

An extensive review of the existing literature in 
RL and BDI did not uncover any research that made use of 
RL to learn BDI plans without relying on a-priori 
knowledge. As discussed in the Introduction on Chapter 1, 
the lack of learning capabilities for BDI systems was 
recognized as far back as Researchers tackled this by 
augmenting the BDI framework with various learning 
frameworks including decision trees, self-organizing 
neural networks, hybrid-architectures using low level 
learners, and met plans for plan hypothesis abduction and 
plan medications. Other relevant research tackled the use 
of a-priori knowledge, previously learned knowledge and 
the learning of plans without apriority knowledge on 

planning systems, and the integration of learning, planning 
and execution. These studies were, however, not 
investigated in relation to BDI systems. 

Target: plan learning and plan improvement 

Model: hybrid, inductive 

Learning Element: self-organizing neural network 
(FALCON), hypothesis abduction 

Goal: plan learning via plan extraction using PGS and plan 
improvement using hypothesis abduction 

The goal of this thesis is to use reinforcement learning to 
generate plans without a-priori knowledge on BDI agent 
systems. The key idea is that the result of reinforcement 
learning is a policy or policies in the general case. Since 
policies map states to actions, the policies can then be 
used as input to generate plans in BDI agents systems. The 
approach can then be summarized as a two step process: 

1. Use reinforcement learning as the learning module. 

2. Use policies learned as input to generate BDI plans. 

None of the previous work combines the elements of RL 
for plan generation on BDI agent systems. The problem 
selected for study in this thesis is justice by this lack of 
research exploring the generation of plans in BDI systems 
using reinforcement learning that does not rely on a priori 
knowledge. 

IV. PROPOSED METHOD  

4.1 3TD-FALCON 

TD-FALCON incorporates Temporal Difference 
(TD) methods to estimate and learn value functions of 
action-state pairs Q(s,a) that indicates the goodness for a 
learning system to take a certain action a in a given state s. 
Such value functions are then used in the action selection 
mechanism, also known as the policy, to select an action 
with the maximal payoff. The original TD-FALCON 
algorithm proposed by Tan and Xiao (2005) selects an 
action with the maximal Q-value in a state s by 
enumerating and evaluating each available action a by 
presenting the corresponding state and action vectors S 
and A to FALCON. The TD-FALCON presented in this paper 
re-places the action enumeration step with a direct code 
access procedure, Given the current state s, TD-FALCON 
first decides between exploration and exploitation by 
following an action selection policy. For exploration, a 
random action is picked. For exploitation, TD-FALCON 
searches for optimal action through a direct code access 
procedure. Upon receiving a feedback from the 
environment after performing the action, a TD formula is 
used to compute a new estimate of the Q value of 
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performing the chosen action in the current state. The new 
Q value is then used as the teaching signal for TD-FALCON 
to learn the association of the current state and the chosen 
action to the estimated Q value. The details of the action 
selection policy, the direct code access procedure, and the 
Temporal Difference equation are elaborated below. 

4.2 RL Training 

A detailed survey of RL and automated planning system is 
presented by Partalas. Partalas argues that \there is a 
close relationship between those two areas as they both 
deal with the process of guiding an agent, situated in a 
dynamic environment, in order to achieve a set of 
predeened goals." Because RL combines planning and 
learning the distinctions above blur in practice if not in 
theory. Since a relevant part of the research for this study 
will be the selection of feasible RL approaches to generate 
plans for BDI systems, only a quick summary of the 
research detailed by Partalas will be given here except in 
cases where research is directly related to the problem for 
this study. Partalas describes the possible approaches to 
combining planning with RL as: 

 

Fig2 : Proposed Method 

Our approach to understanding trained networks 
uses the three-link chain illustrated by the first link inserts 
domain knowledge, which need be neither complete nor 
correct, into a neural network using KBANN. The second 
link trains the KNN using a set of classified training 
examples and standard neural learning methods. The final 
link extracts rules from trained KNNs. Rule extraction is an 
extremely difficult task for arbitrarily-configured 
Networks, but is somewhat less daunting for KNNs due to 
their initial comprehensibility. Our method takes 
advantage of this property to efficiently extract rules from 
trained KNNs. 

Significantly, when evaluated in terms of the 
ability to correctly classify examples not seen during 
training, our method produces rules that are equal or 
superior to the networks from which they came Moreover, 

the extracted rules are superior to the rules resulting from 
methods that act directly on the rules (rather than their 
re-representation as a neural network). Also, our method 
is superior to the most widely-published algorithm for the 
extraction of rules from general neural networks. 

V. SYSTEM IMPLEMENTATION  

5.1 Rule Extraction 

This section presents a set of experiments 
designed to determine the relative strengths and 
weaknesses of the two rule-extraction methods described 
above. Rule-extraction techniques are compared using two 
measures: quality, which is measured both by the accuracy 
of the rules; and comprehensibility which is approximated 
by analysis of extracted rule sets. 

5.2 Testing Methodology 

We use repeated 10-fold cross-validation for 
testing learning on two tasks from molecular biology: 
promoter recognition and splice-junction determination. 
Networks are trained using the cross-entropy. Following 
Hinton’s suggestion for improved network 
interpretability, all weights "decay" gently during training. 

5.3 Accuracy of Extracted Rules 

It plots percentage of errors on the testing and 
training sets, averaged over eleven repetitions of 10-fold 
cross-validation, for both the promoter and splice-junction 
tasks. For comparison, Figure 4 includes the accuracy of 
the trained KNNs prior to rule extraction (the bars labeled 
Network"). Also included in is the accuracy of the EITHER 
system, an "all symbolic" method for the empirical 
adaptation of rules 

5.4 Incorporating TD Method 

For learning from delayed evaluative feedback 
signals, the value function Q(s, a) of state-action pairs is 
estimated using TD method outlined in Algorithm2. At 
time t, lines 1–9 of Algorithm 2 show FALCON operating in 
PERFORM mode to select action choice a either by 
exploration or by exploitation. At time t + 1, lines 10–13 of 
Algorithm 2 show that FALCON operating in LEARN mode 
uses reward r from the environment on action choice a to 
estimate the value function Q(s, a). 

: A TD method known as bounde1) Iterative Value 
Estimationd Q-learning is iteratively used to estimate the 
value of applying action choice a to state s. The Q-value 
update function is given by 

Qnew(s, a) = Q(s, a) + αTDerr(1 − Q(s, a)) 
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where α ∈ [0, 1] is the learning parameter and the TDerr is 
the temporal error term, which is derived using 

TDerr = r + γ max a Q(s’,a’) − Q(s, a) 

Where γ ∈ [0, 1] is the discount parameter and the maxa 
Q(s’, a‘) is the maximum estimated value of the next state 
s’. The estimated Q-value Qnew(s, a) is used as a teaching 
signal to learn the association of state s and action choice 
a. It is notable that in TD-FALCON, the values of 

Q(s, a) and maxa Q(s’, a’) 

 are in turn estimated using the same FALCON network. 

 

5.5 ALGORITHM IMPLEMENTATION  

Algorithm 1 

 TD-FALCON Algorithm 

1: Initialize the FALCON network. 

2: Sense the environment and formulate a state vector S 
based on the current state s. 

3: Following an action selection policy, first make a choice 
between exploration and exploitation. 

4: if Exploration then 

5: Choose action choice a using an exploration strategy. 

6: else if Exploitation then 

7: Identify action choice a with the maximal Q(s, a) value 
by presenting the state vector S, the action vector A = {1, . . 
. , 1}, and the reward vector R = {1, 0} to FALCON. 

8: end if 

9: Perform the action choice a, observe the next state s’, 
and receive a reward 

r (if any) from the environment. 

10: Estimate the revised value function Q(s, a) following a 
TD formula, such 

as _Q(s, a) = α(r + γ maxa Q(s’, a’) − Q(s, a)). 

11: Formulate action vector A based on action choice a and 
reward vector R based on Q(s, a). 

12: Present the corresponding state S, action A, and 
reward R vectors to FALCON for learning. 

13: Update the current state by s = s’. 

14: Repeat from Step 2 until s is a terminal state. 

5.2 Algorithm 2 

Translation of Propositional Rules 

Ensure: Initialize FALCON with an uncommitted cognitive 
node. 

1: for each propositional rule rj do 

2: for each attribute ap ∈ Xr
j do 

3: for each attribute-value binding bpq ∈ V(ap) do 

4: Translate bpq into vector vpq using (5). 

5: end for 

6: Translate ap into attribute vector Sp using (6). 

7: end for 

8: Translate antecedent Xr
j into state vector Sr

j using (7). 

9: Repeat steps 3–7 for translation of each attribute ap ∈ Yr
j 

. 

10:Translate consequent Yr
j into action vector Ar

j using (8). 

11: Set reward prj into reward vector Rr
j using (9). 

12: Operate FALCON in INSERT mode to insert translated 
propositional rule rj as {Sr

j,Ar
j,Rr

j}. 

13: end for 

14: return FALCON with inserted domain knowledge. 

 

VI. EVALUATION RESULT  

The objective of the experiments is to evaluate the 
suitability of TD-FALCON as an inference engine for the 
entity agent operating in a complex decision-making 
domain. It is required to provide accurate response to 
scenarios using a priori knowledge as well as learned 
knowledge. The experiments compare the prediction 
accuracy of TD-FALCON trained using two learning 
paradigms - RL and supervised learning (SL), each with or 
without a priori knowledge and also against another rule 
inference engine known as DROOLS. SL and DROOLS are 
included for baseline comparison against the RL approach. 

TD-FALCON operates in the PERFORM mode to 
derive a response from its knowledge base while it gets 
into the LEARN mode to update this knowledge base. TD-
FALCON operates with baseline vigilance ρck = {0.2, 0.8, 
0.5} for the state, action and reward fields respectively in 
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the LEARN mode while it has ρck = {0.0} in the PERFORM 
mode. Both modes use a common set of values for the 
following sets of parameter: choice parameters αck = {0.1, 
0.001, 0.001}, learning rate βck = 1.0 for fast learning and 
contribution parameter γck = 1 3 for k = 1, 2, 3.  

DROOLS yield a consistent prediction accuracy of 
97.15% while TD-FALCONs trained using SL achieve 100% 
prediction accuracy earlier than those trained using RL. 
This is expected as SL teaches the expected responses to 
TD-FALCON while RL requires more iteration to explore 
the solution space for suitable responses.  

 

Fig 3: Comparison of action choice prediction accuracy 

The profile of the prediction accuracy plots of the 
TDFALCON trained with and without rules in is quite 
closely matched. The inherent inadequacy of the inserted 
rules is also highlighted by the lower initial prediction 
accuracy of the configurations with rule insertion over 
those without rule insertion. This indicates the reduced 
role of the a priori knowledge after the acquisition of more 
sophisticated knowledge. The learning mechanism of 
TDFALCON is able to supersede the less adequate rules 
with those that are able to provide more accurate 
responses. 

 

Fig 4: Comparison of the number of cognitive nodes 
created 

Plots the creation of the cognitive nodes from 
each of the experiment configurations. The production of 
cognitive nodes plateaus as the prediction accuracy 
approaches 100% accuracy. This indicates that TD-
FALCON has acquired sufficient knowledge to provide the 
appropriate responses to all the situations. Generalization 
is observed as the number of positive nodes created is 
significantly lesser than the situations that it has to 
respond to. 

VII. CONCLUSION  

This paper has shown how domain knowledge can 
be integrated with RL using a self-organizing neural 
network known as TD-FALCON. We have analytically 
shown how the inserted domain knowledge is utilized for 
action selection and learning. In addition, we proposed the 
greedy exploitation and reward vigilance adaptation 
strategies to make better use of domain Knowledge to 
improve learning efficiency. Using such an approach, 
exploration is triggered only when no effective cognitive 
node can be exploited for the states. It is shown that the 
appropriate cognitive nodes can be selected as the reward 
vigilance is adapted during RL. 

To illustrate the efficacy of the proposed 
strategies for integrating domain knowledge with RL, 
experiments were conducted using the PE and MNT 
problem domains. Comparing with the selected models, 
the experiment results show that inserting domain 
knowledge directly into TD-FALCON using the proposed 
strategies improves success rates and reduces code 
population in these two distinct problem domains. 
Comparison of timing information from these two 
problem domains also shows the proposed strategies to be 
more efficient than the compared models. 
 

This work of integrating domain knowledge and 
RL using a self-organizing neural network sets the 
framework for developing more efficient autonomous 
knowledge-based systems capable of continuously 
expanding its knowledge through real time interaction 
with the environment. In our future work, we shall 
embark on the application of the proposed strategies in 
more challenging and complex real-world problem 
domains. Beyond the type of logical structure, domain 
knowledge in these problem domains is likely to be more 
complex and heterogeneous. By drawing inspirations from 
the fields of cognitive psychology and neuroscience, we 
aim to build self organizing knowledge systems for 
addressing the issues of acquiring, managing, and 
retrieving such rich and diverse knowledge, possibly 
through the use of different types of memory 
representations and models 
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