
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 835

OPEN AUTHENTICATION PROTOCOL USING HYBRID NETWORK IN

CLOUD COMPUTING

*1Mrs. Kavitha S.K., *2 Ms. Siva Sankari A., *3 Mrs. Sangeetha Lakshmi G.,

*1M.Phil Research Scholar, Department of Computer Science, D.K.M. College for Women (Autonomous), Vellore,

TamilNadu, India.

*2Head of the Department, Department of Computer Science, D.K.M. College for Women (Autonomous), Vellore,

TamilNadu, India.

 *3Assistant Professor, Department of Computer Science, D.K.M. College for Women (Autonomous), Vellore,

 TamilNadu, India.

---***---
Abstract - Cloud computing offers the vision

of a virtually infinite pool of computing, storage and

networking resources where application can be

scalable and deployed. The security threats on cloud

increases rapidly. The threat starts from login module

to the core storage. In this project different levels of

threat is handled efficiently, which enables the secured

data communications between the server and client.

The login is authenticated using Open Authentication

Protocol (OAuth) 2.0 with enhanced security

mechanism. The data theft and other masquerading

attacks are prevented using channel API (Application

based Program Interface) which sends the data in a

secured channel establish among the sender and the

receiver using MD5 (Message-Digest) Hashing. This is

demonstrated by building a cloud based chat

application which transfers the data from server to

client and vice versa. It includes voice, non-voice and

video chat communication. The Video Chat is

demonstrated using WebRTC (Web Real-Time

Communication).WebRTC provides page to page

communication among HTML. Hence this project covers

the prevention mechanism for several threats in cloud

using different techniques.

Key Words: Video Chat application, OAuthentication,

WebRTC, Cloud computing, Web Engine, Security

Mechanism

I. INTRODUCTION

IT infrastructures, including SOA systems, have
traditionally been implemented on an actual hardware
owned by the company. Virtualization alone has not

shaken this tradition, because virtual servers still reside
on servers back at the office. However, virtualization was a
key ingredient in creating cloud computing, that is an
elastic computing resource provided on-demand over the
network. Cloud computing has set out to remove those
dusty servers from the offices while lowering the expenses
and increasing service quality. Growing interest in cloud
computing has raised interest in moving existing and
future IT-systems to the cloud, which means a single cloud
computing environment Like many other companies, NSN
has several projects with interest in reaching for the
clouds. One of these projects involved a SOA cluster
configuration, which is a multi node system that runs SOA
technologies to run services. The goal of this project
started to form around putting mat SOA cluster into
Elastic Compute Cloud (EC2) [1] by Amazon. While
explaining how this was done it will be necessary to unveil
some of the mysteries of cloud computing.

Cloud computing offers the vision of a virtually

infinite pool of computing, storage and networking
resources where application can be scalable and deployed.
In particular Google cloud service provides Google App
Engine for Java! With App Engine, you can build web
applications using standard Java technologies and run
them on Google's scalable infrastructure. The Java
environment provides a Java 7 JVM, a Java Servlets
interface, and support for standard interfaces to the App
Engine scalable data store and services, such as JDO, JPA,
Java Mail, and JCache. Standards support makes
developing

Your application easy and familiar, and also
makes porting your application to and from your own
servlet environment straightforward. The Google Plug-in
for Eclipse adds new project wizards and debug
configurations to your Eclipse IDE for App Engine projects.
App Engine for Java makes it especially easy to develop
and deploy world-class web applications using Google

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 836

Web Toolkit (GWT). The Eclipse plug-in comes bundled
with the App Engine and GWT SDKs. Third-party plug-in is
available for other Java IDEs as well.

The main uniqueness of this implies on its

learning structure. We are enhancing the features of this
application by adding more functionality. One of the
functionality we are adding is the calls through browsers
where browser to browser communication is achieved for
video chat. Text chatting based on individual and group is
also available. The goal of this thesis has two major parts.
The first is to map the possibilities of cloud computing.
This includes an explanation what cloud computing
actually means. Also different cloud types need some
clarification. After that there will be pondering on the
possible benefits and drawbacks of cloud computing. The
theoretical part will grasp the surface on most important
cloud computing aspects, but it will focus on the issues
surrounding the implementation. This knowledge is then
utilized in the implementation part. The goal of the
implementation part is to create a working Service
Oriented Architecture (SOA) application cluster prototype
and a Training environment in Amazon's EC2. The cluster
configuration uses SOA Suite 1 lg backed up by Oracle 1 lg
database. This cluster is configured m a way that it
benefits from the features of cloud computing. The cluster
configuration is a platform that allows the development
and use of other SOA based enterprise systems. The
training environment offers trainer an easy way to provide
a high performance environment to the trainees.

II. RELATED WORK

A systematic literature review (also known as a
systematic review) is a process of identifying (planning),
interpreting (processing) and evaluating (analyzing) of all
available research articles connected to a previously
defined research question. Individual studies contributing
to a systematic review are known as primary studies, what
makes a systematic review as a form of secondary study.
The need for a systematic review arises from the
requirement of researches to gather all existing
information about some topic in a thorough and unbiased
manner so it has a scientific value. The reason for choosing
systematic literature review as a research method for this
thesis is to get an overview of the existing research in the
field of Cloud Computing architecture and that there was
no previous research related to this topic done by
performing this research method. Our main goal was to
identify, classify, and systematically compare the existing
research articles focused on planning and providing cloud
architecture or design. As mentioned, in the process of
doing a systematic literature we aimed to answer the
following main research question:

2.1 Data Plane Considerations

In Figure 1, a typical single domain service
provider net- work is shown. In the figure, provider and
provider edge routers are labeled as P and PE respectively.
Similarly, customer edge routers are labeled in the figure
as CE. In general, provider routers are MPLS switch routers
and provider edge Routers are MPLS edge routers

Fig1: A TYPICAL SINGLE DOMAIN SERVICE PROVIDER
NETWORK.

Since MPLS is currently widely implemented in service
provider networks, we propose to only replace or update
the edge devices with OpenFlow-enabled network devices
while keeping the network core unchanged. The latest
versions of the OpenFlow protocol and their switch
specifications support key MPLS operations. Our legacy
network core involves proactive installation of full-mesh
static LSPs, in contrast to dynamic LSPs built through
signaling and routing protocols. As a result, the network
edge performs all complex network operations and
functions on the incoming network traffic and steers it
across the simple and static legacy network core by
Label switching.

In order to perform closed-loop network control
and management, we propose to use sFlow at the network
edge and SNMP at the network core. sFlow is chosen
because most of the commercially available OpenFlow-
enabled network devices, such as Open vSwitch, support
sFlow. Similarity, we use SNMP because of its widespread
adoption. The mentioned data plane considerations are
depicted in Figure 2. This approach results in an intelligent
and complex network edge that is decoupled from a simple
and static legacy network core.
2.2 Control Plane Considerations

Our control plane considerations primarily aim to
provision simple abstractions of the underlying network

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 837

resources, enabling network virtualization through SDN to
the north-bound NaaS based network service
orchestration platform as proposed in. For the complex
network edge, the control plane involves

(1) An OpenFlow based SDN controller for

applying dynamic and flow-level traffic control,

(2) An sFlow based network analyzer for flow-

level traffic monitoring

(3) A network configuration system that

configures the underlying resources. Furthermore, for
NaaS based network service orchestration and closed-loop
network control, the OpenFlow based SDN controller and
sFlow based network analyzer must expose their
northbound APIs. For the simple and static legacy network
core, one can reuse the current Our Proof of Concept (PoC)
design is depicted 3.

The PoC design does not involve any virtualized

network functions being implemented on the underlying
virtual servers. The NaaS based northbound service
provisioning platform is accessed through CLI. The
OpenDaylight Controller (Base Edition) is chosen as the
OpenFlow based SDN controller because of its full-stack
support for SDN and NFV, well documented northbound
APIs and large developer community.

Fig 2: Proof-of-Concept design of our architecture.

FLOW DIAGRAM

Fig 3: Data Flow Diagram

III .PROPOSED MODEL

3.1. Open Authentication

In general, this module deals with authenticating
the user inside the application, this is considered to be the
efficient and secured method in order to allow the user to
be authenticated inside the application. An open
authentication protocol is an open standard to
authorization. It specifies a process for resource owners to
authorize third-party access to their server resources
without sharing their credentials. Designed specifically to
work with Hypertext Transfer Protocol (HTTP), OAuth
essentially allows access tokens to be issued to third-party
clients by an authorization server, with the approval of the
resource owner, or end-user. The client then uses the
access token to access the protected resources hosted by
the resource server.

Steps involved in OAuth:

(i). Obtain OAuth 2.0 credentials

Both Service Provider (SP) like Google and the
application know OAuth 2.0 credentials such as a client ID
and client secret. The set of values varies based on what
type of application you are building. For example, a
JavaScript application does not require a secret, but a web
server application does.

(ii). Obtain an access token from the Google
Authorization Server.

Before your application can access private data
using a Google API, it must obtain an access token that
grants access to that API. A single access token can grant
varying degrees of access to multiple APIs. A variable
parameter called scope controls the set of resources and
operations that an access token permits. During the
access-token request, your application sends one or more
values in the scope parameter. There are several ways to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 838

make this request, and they vary by type of application
you are building.

For example, a JavaScript application might
request an access token using a browser redirect to Google,
while an application installed on a device that has no
browser uses web service requests. Some requests require
an authentication step where the user logs in with their
Google account. After logging in, the user is asked whether
they are willing to grant the permissions that your
application is requesting. This process is called user
consent. If the user grants the permission, the Google
Authorization Server sends your application an access
token (or an authorization code that your application can
use to obtain an access token). If the user does not grant
the permission, the server returns an error.

(iii). Send the access token to an API. After an
application obtains an access token, it sends the token to a
Google API in an HTTP authorization header. It is possible
to send tokens as URI query-string parameters, but we
don't recommend it, because URI parameters can end up in
log files that are not completely secure. Also, it is good
REST practice to avoid creating unnecessary URI
parameter names. Access tokens are valid only for the set
of operations and resources described in the scope of the
token request.

(iv). Refresh the access token, if necessary.
Access tokens have limited lifetimes. If your application
needs access to a Google API beyond the lifetime of a single
access token, it can obtain a refresh token. A refresh token
allows your application to obtain new access tokens. Final
after getting the token from Google, the key is exchanged
between the Google server and the web application, and
then if the results match, then the user is allowed to enter
in to the application.

Fig 4: Open Authentication Process

2. Web Service Identification

 In this module, the web services based on the
functionalities required are generated. In general, each
web services are intended to perform a separate operation.
A web service repository is a set of disjoint services. We
denote it as {w1, w2,}

3. Functionality Request

As the growth of web related requirements
increases gradually, the users who interact with the web
needs the system to system interaction, created the need
for a structure which provided interaction not only with
the user but also help application to application
interaction. This problem called as Application Integration
which is resolved by Web Services. Moreover, with the
addition of the intelligence and autonomy of software
agents, transactions may be equally automated for
consumer-to-consumer, business-to-consumer, and
business-to-business collaborations.

But it is a clear observation that number of web
services is increased where a problem is raised to find an
appropriate web service which satisfies user needs. The
user wants an efficient way to find an appropriate web
service which satisfied his needs in a short time. The
functionality is mainly decided based on the input that is
set for the web services and the output of the web services
that the user needs. This is done in this module.

4. QoS Constraint

 The objective of this module is to maximize an
application-specific utility function under the end-to-end
QoS constraints. Existing methods can be divided into two
types: local selection method and global selection method.
The local selection method is simple and efficient, but
cannot meet the end-to-end QoS constraints. The global
selection method can satisfy the global QoS constraints, but
at the price of higher computational time, and it is not
suitable for the dynamic environment To address this
issue, an algorithm to combine global QoS constraints with
local selection is proposed, which first splits the global QoS
constraints into local constraints using heuristic method,
and then uses local selection to find the optimal solution
under the local constraints. It is intended to improve the
performance by reducing the computation time greatly
while achieving close-to-optimal results.

5. Operation Applicability

In this module, the web services are given an
operation. After setting the operation the Web service is
triggered. Then the implications evolved during the life
time of the web service call are monitored. The variation is
identified among the services where the operation differs
one among the other as the time varies for each different
web service calls.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 839

5.1 Cross Domain Call
To make a cross domain call among web services,

the Cross Origin Resource Sharing (CORS) is used which
allows many resources from outside domain where the
browser and the server are interact to determine whether
or not to allow the cross-origin request.

Consider an example, a page from
http://www.application1.com attempts to access a user’s
data in http://www.application2.com If the user’s browser
implements CORS, then request header (i.e.) Origin:
http://www.application1.com sends to application2. If an
application2 allows the request, then it sends Access-
Control-Allow-Origin: http://www.application1.com
header in its response. If it does not allow the cross origin
request, then browser sends an error to application1
instead of application2 response by using the following
header Access-Control-Allow-Origin: * this is applicable in
the public content and it is intended to be accessible to
everyone. It is related to JSONP technique for cross domain
requests to make a cross domain call.

Table 1.1, some of the outages in the cloud

In April, 2011, Amazon elastic compute cloud
(EC2) experienced service disruption because of the
incorrect network change performed few days before the
outage occurred. The network change supposed to be a
regular test of scalability. Amazons service was unable to
read and write operations. Microsoft Sidekick experienced
a massive outage [21] in 2009, which left his customers
without access to their services. The data loss resulted
from a system failure, this happened because of the lack of
Microsoft disaster recovery policy. In 2008, Google Gmail
experienced two outages. The problem was connected with
availability concern. Since then, Google Apps offer a
premiere edition for $50, in which customer gets 24*7
phone and email support in order to be able to access
Google services at anytime (even in case of outages).
Foursquare, in 2011, experienced several outages and their
service was unavailable to the customers. This happened
because of the lack of scalability and their servers could
not manage to scale enough so they crashed. Face book
also experienced an outage; customers were unable to log
in. It was explained due to the site’s experimental features
which were being tested at the moment of the outage.

Fig5: CONCEPTUAL VIEW OF THE ARCHITECTURE

 A Cloud provider is a company or an individual
that delivers cloud computing based services and
solutions to consumers.

 A cloud consumer is a company or an individual
that uses a cloud service provided by a

 Cloud service provider directly or through a
broker.

 A cloud broker is an intercessor between cloud
providers and cloud consumers.

IV. HTTP REDIRECT METHOD

The Http Redirect concept is used to make a cross
domain call to third party web services. The Http Redirect
property specifies the directory or URL to which a client is
redirected when attempting to access a specific resource.
For fast data retrieval this Http Redirect is used. In the
simplest configuration, it needs only to set the enabled and
destination attributes of the <http Redirect> element in
order to redirect clients to a new location.

4.1 Aim of Http Redirect:

Firstly, transferring to another page using Redirect
conserves server resources.

Instead of telling the browser to redirect, it simply
changes the "focus" on the Web server and transfers the
request. This means you don't get quite as many HTTP
requests coming through, which therefore eases the
pressure on your Web server and makes your applications
run faster.

Secondly, Redirect maintains the original URL in
the browser. This can really help streamline data entry
techniques, although it may make for confusion when
debugging.

4.2 Virtualization and Cloud Computing

Virtualization is a core technology for enabling
cloud resource sharing. It enables abstraction of services
and applications from the underlying IT infrastructure

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 840

[S20, S25, and S55]. Study [S25] gives an explanation of key
cloud infrastructure evolution phases and architectural
enablers for cloud data centres. The second phase [S25] is
abstraction, data centre assets are abstracted from the
services from which they are provided, enabled by
virtualization. There are two basic approaches for enabling
virtualization in the Cloud Computing environment [S14]:
hardware virtualization and software virtualization.
“Private clouds hold their own virtualization infrastructure
where several virtual machines are hosted to provide
service to their clients [S29] “. Studies [S31, S20]
introduced the term server virtualization.

V. RESULT AND DISCUSSION

5.1 CHANNEL API FOR CHAT IMPLEMENTATION

The Channel API creates a persistent connection
between your application and servers, allowing your
application to send messages to JavaScript clients in real
time without the use of polling. This is useful for
applications designed to update users about new
information immediately.

Using the HttpRedirect, the OAuth 2.0 is
implemented to make the cross domain call and channel
API sends the data in a secured channel establish among
the sender and receiver using MD5(Message Digest)
Hashing, apart from this the channel API based multiuser
chat is implemented in order to show the efficiency of web
service call made on every chat. Each channel is subjected
to be a separate network connection and help to access
quickly to update the information to users.

The following elements are used mainly in channel
API.

 i. JavaScript Client - the user interacts with a
JavaScript client built into a webpage.

 ii. The Server - creating a unique channel for
individual JavaScript clients and send a token. Receive the
update messages from clients via HTTP request. Finally,
sending update messages to clients via their channels. iii.
The client ID - The Client ID is responsible for identifying
individual JavaScript clients on the server.

iv. Token - Tokens are responsible for allowing the
JavaScript Client to connect and listen to the channel
created for it. v. The channel - A channel is a one-way
communication path through which the server sends
updates to a specific JavaScript client identified by its
Client ID. vi. The message - Messages are sent via HTTP
requests from one client to the server. vii. Socket - The
JavaScript client opens a socket using the token provided
by the server. It uses the socket to listen for updates on the
channel.viii. Presence - The server can register to receive a
notification when a client connects to or disconnects from
a channel.

The two diagrams illustrate the life of a typical
example message sent via Channel API between two
different clients using one possible implementation of

Channel API.

Fig 6: REQUEST TOKEN IN CHANNEL API

This diagram shows the creation of a channel on

the server. In this example, it shows the JavaScript client
explicitly requests a token and sends its Client ID to the
server. In contrast, you could choose to design your
application to inject the token into the client before the
page loads in the browser, or some other implementation if
preferred.

Fig 7: POSTING MSG IN CHAT API

Next, the server uses Client A’s Client ID to create a

channel and then sends the token for that channel back to
Client A. Client A uses the token to open a socket and listen
for updates on the channel.

VI. EVALUATION

Evaluation is the final phase of doing a systematic
literature review in which we evaluate (analyze) articles
after the full text screening and define our final selected
studies. According to the results of a quality assessment
and setting up the levels of maturity, we will thoroughly
analyze and classify all the given and existing approaches

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 841

to the topic architecting for the cloud. It is important to
follow guidelines for the each step to reduce chances for
mistakes or excluding relevant materials. With the number
of 240 articles after the full text screening we needed to do
a quality assessment of materials to determine which
article should be in the final list and which we could
exclude. We took into consideration articles that had a pre-
defined level of maturity which led to easier assessment of
the maturity in general and future dimensions of cloud
architecture.

Figure illustrates metro and backbone traffic
growth based on video caching and DCs being located
centrally within the metro network (case 1, metro
centralized). According to the study, metro traffic will grow
by a factor of 5.6 times: “Metro traffic driven by all
applications will increase 560% by 2017”. In comparison,
“backbone traffic will grow by a factor of 3.2X” and “metro
traffic will grow almost twice as fast as backbone traffic by
2017”. Metro traffic includes broadcast TV, time-shifted TV,
VoD, Internet video, web data; mobile video and audio,
communication (video, VoIP, e-mail, immersive), file
sharing, residential cloud; and DC-to-DC interconnect.

Fig 8: TRAFFIC GROWTH IN METRO AND BACKBONE
NETWORK

The Bell Labs study forecasts that traffic derived

from video (pay TV and Internet video) will skyrocket by
as much as 720 percent. Data center (user-to-DC and DC-
interconnect) traffic is forecast to increase more than
440% during the same time period. Combined, video and
data center traffic are the key drivers to an overall forecast
growth of 560% increase in traffic in the metro by 2017.

Fig 9: DUE TO THE INCREASED CONCENTRATION OF
TRAFFIC SOURCES

Fig10: METRO DISTRIBUTED

This master thesis was written by two students.
The systematic literature review was done twice by each
student separately (for reducing bias); the results of the
research were compared and summed in the end. Through
whole phases (both researching and writing) assigned
mentor observed and helped. In the first phase of doing a
systematic literature review, planning, we used the search
terms ‘cloud architecture’ OR ‘cloud architecting’. While
screening the articles we realized that the term 'cloud
design' is also used very often in the same manner as the
previous terms. Therefore, the term of 'cloud design' was
also added to the main search terms and the additional
reference scanning was done. Although doing the
systematic literature review twice, there might be some
missed articles. Explanation for this could be that
researches used different terms from ‘architecting’ and/or
‘designing’ cloud applications in their studies. Our selected
list of studies consists of studies found by different search
libraries (defined in sub-chapter 3.1), summed with

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 842

studies found by using snowball effect.

VII. CONCLUSION

In this paper, a new technique has been proposed
to get optimized Web Service Composition. To achieve the
Quality of Service, a CORS mechanism is used to make the
cross domain call. Using HTTP Redirect, the fast data
retrieval access can be obtained which causes high
throughput and reliability. Also, to increase the efficiency
of QoS, Channel API is used for multiuser chat where the
web services call made on every chat also, it update the
information quickly. For security reasons, Open
Authentication protocol is used. Thus our whole process
satisfies the non-functional properties of QoS.
Computational cost and time complexity is reduced by our
algorithm called approximation algorithm. In a large web
service repositories the above process are applicable to
obtain the optimal QoS. Moreover, the overall global QoS
constraints are highly obtained.

REFERENCES

[1] Alcatel Lucent white paper, “Bell Labs Metro Network

Traffic Growth: An Architecture Impact Study,” 2013.

[2] NFV white paper, “Network Functions Virtualization,”

(http://portal.etsi.org/NFV/NFV_White_Paper.pdf), 2012.

[3] Ericsson white paper, “The Telecom Cloud Opportunity:

How Telecom Operators Can Leverage Their Unique

Advantages in the Emerging Cloud Market,” 2012.

[4] IBM Institute for Business Value, “The Natural Fit of

Cloud with Telecommunications,” 2012.

[5] L. Velasco et al., “Elastic Operations in Federated

Datacenters for Performance and Cost Optimization,”

Elsevier Computer Commun., vol. 50, 2014, pp. 142–51.

[6] L. Contreras et al., “Towards Cloud-Ready Transport

Networks,” IEEE Commun. Mag., vol. 50, 2012, pp. 48–55.

[7] L. Velasco et al., “Cross-Stratum Orchestration and Flex

grid Optical Networks for Datacenter Federations,” IEEE

Network, vol. 27, 2013, pp. 23–30.

[8] M. Jinno et al., “Multiflow Optical Transponder for

Efficient Multilayer Optical Networking,” IEEE Commun.

Mag., vol. 50, 2012, pp. 56–65.

[9] D. King and A. Farrel, “A PCE-Based Architecture for

Application-Based Network Operations,” RFC 7491, March

2015.

[10] ONF Solution Brief, “Open Flow-enable Transport

SDN,” May 2014.

[11] L. Velasco et al., “In-Operation Network Planning,”

IEEE Commun. Mag., vol. 52, 2014, pp. 52–60.

[12] ETSI GS NFV 001, “Network Functions Virtualization

(NFV): Use Cases,” V1.1.1, Oct. 2013.

[13] L. Contreras et al., “Towards Cloud-Ready Transport

Networks,” IEEE Commun. Mag., vol. 50, 2012, pp. 48–55.

[14] L. Velasco et al., “Cross-Stratum Orchestration and

Flex grid Optical Networks for Datacenter Federations,”

IEEE Network, vol. 27, 2013, pp. 23–30.

[15] M. Jinno et al., “Multiflow Optical Transponder for

Efficient Multilayer Optical Networking,” IEEE Commun.

Mag., vol. 50, 2012, pp. 56–65.

[16] D. King and A. Farrel, “A PCE-Based Architecture for

Application-Based Network Operations,” RFC 7491,

March 2015. [10] ONF Solution Brief, “Open Flow-enable

Transport SDN,” May 2014.

[17] L. Velasco et al., “In-Operation Network Planning,”

IEEE Commun. Mag., vol. 52, 2014, pp. 52–60.

[18] ETSI GS NFV 001, “Network Functions Virtualization

(NFV): Use Cases,” V1.1.1, Oct. 2013.

[13] Ll. Gifre et al., “Experimental Assessment of

ABNOdriven Multicast Connectivity in Flex grid Networks,”

IEEE J. Lightw. Technol. (JLT), vol. 33, pp. 1-8, 2015.

[19] M. Mishra et al., “Dynamic Resource Management

using Virtual Machine Migrations,” IEEE Commun. Mag.,

vol. 50, 2012, pp. 34–40.

[20] J. Barrera, M. Ruiz, and L. Velasco, “Orchestrating

Virtual Machine Migrations in Telecom Clouds,” Proc. OFC,

2015.

BIOGRAPHIES

1. Mrs. Kavitha S.K., M.C.A.,

M.Phil Research Scholar,

Department of Computer Science,

D.K.M. College for Women

(Autonomous), Vellore,

TamilNadu, India.

3. Mrs. Sangeetha Lakshmi G., Asst. Prof

Department of Computer Science, D.K.M. College

for Women (Autonomous), Vellore, TamilNadu,

India.

2. Ms. Siva Sankari A., HOD, Department of

Computer Science, D.K.M. College for Women

(Autonomous), Vellore, TamilNadu, India.

