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Abstract - This paper is about modelling and control of 
Vertical Takeoff and Landing (VTOL) type Unmanned 
Aerial Vehicle (UAV) specifically, micro hexarotor. The 
nonlinear dynamic model of the hexarotor is formulated 
using the Newton-Euler method, the formulated model is 
detailed including aerodynamic effects and rotor 
dynamics that are omitted in many literature. Based on 
the mathematical model, several algorithms have been 
analyzed, varying between the classical linear 
Proportional-Integral-Derivative (PID) controllers to 
more complex nonlinear schemes as backstepping or 
sliding-mode controllers. Simulation based experiments 
were conducted to evaluate and compare the 
performance of the proposed control techniques in terms 
of dynamic performance, stability and the effect of 
possible disturbances. Finally, integral backstepping is 
augmented with FST (Frenet-Serret Theory) action and 
proposed as a tool to design attitude, altitude and 
position controllers. The conclusion of this work is a 
proposal of hybrid systems to be considered as they 
combine advantages from more than one control 
philosophy.  
These developments are part of the overall project 
initiated by the team (EAS) of the Computer Laboratory, 
systems and renewable energy (LISER) of the National 
School of Electrical and Mechanical (ENSEM). 
 

Key Words: Hexacopter; Nonlinear control; Newton-
Euler method; PID; Backstepping; sliding-mode; Frenet-
Serret Theory (FST). 

 
 
 
 

1. INTRODUCTION 

Unmanned autonomous aerial vehicles have become a real 
center of interest. In the last few years, their utilization has 
significantly increased. Many research papers have been 
published on the topic of modeling and control strategies of 
autonomous multirotors. Today, they are used for multiple 
tasks of civil as well as military applications, such as 
navigation, search and rescue mission, building exploration, 
surveillance, security, transportation and much more. The 
multirotors are commonly used in dangerous and 
inaccessible environments. 
 We introduce one configuration of a multi rotor composed 
of six rotors. This work will focus on the modeling and 
control of a hexarotor type UAV. The reason for choosing the 
multirotor is in addition to its advantages (high agility and 
maneuverability, relatively better payload, vertical take-off 

and landing (VTOL) ability), the hexarotor does not have 
complex mechanical control linkages due to the fact that it  
 
 
 
 
 
 
 
 
 
 

relies on fixed pitch rotors and uses the variation in motor 
speed for vehicle control [1].      
 
However, these advantages come at a price as controlling a 
hexarotor is not easy because of the coupled dynamics and 
its commonly under-actuated design configuration [2]. In 
addition, the dynamics of the hexarotor are highly non-linear 
and several uncertainties are encountered during its 
missions [3], thereby making its flight controls a challenging 
venture. This has led to several control algorithms proposed 
in the literature.  
The contributions of this paper are: firstly, deriving an 
accurate and detailed mathematical model of the hexarotor 
UAV, developing linear and nonlinear control algorithms and 
applying those on the derived mathematical model in 
computer based simulations and to provide a valid 
confrontation and a comparison between five different 
control techniques in terms of their dynamic performance 
and their ability to stabilize the system under the effect of 
possible disturbances. The conclusion of this work is a 
proposal of hybrid systems to be considered as they combine 
advantages from more than one control philosophy. 
 

 
 

Fig 1. A picture of the developed hexarotor 
(SMART\ENSEM) 

 

The paper remainder is organized as follows. In the next 
Section the mathematical formulation and the dynamic 
model of the hexacopter are described, while section III 
gives a review of the popular controllers proposed for the 
hexarotor  systems, then  a integral backstepping augmented 
with FST action is proposed as a tool to control attitude, 
altitude and position controllers; In section IV, the 
simulation results are given to highlight the proposed 
method; Finally, the last section, draws the conclusions and 

 

Autonomous HexaRotor Arial Dynamic Modeling and a Review of Control 
Algorithms 

 

 

Mostafa Moussid1, Asmaa Idalene2, Adil Sayouti3, Hicham Medromi4 
 

1 Doctoral student in computer engineering, the National Higher School of electricity and mechanics (ENSEM), Morocco 
2 Doctoral student in computer engineering, the National Higher School of electricity and mechanics (ENSEM), Morocco 

3 Dr. Professor, Royal Navy School (ERN) of Morocco, Casablanca, Morocco 
4 Dr. Professor and Director, the National Higher School of electricity and mechanics (ENSEM), Morocco 

 

   
 



          INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)               E-ISSN: 2395-0056 

               VOLUME: 02 ISSUE: 05 | AUG-2015           WWW.IRJET.NET                                                           P-ISSN: 2395-0072 

 

© 2015, IRJET                                            ISO 9001:2008 Certified Journal                                                                    Page 1198 
 

suggests possible improvements to be carried out during 
future work dynamic model of the hexarotor UAV. 

2.  DYNAMIC MODEL OF THE HEXAROTOR 
The hexarotor is an under-actuated system because it has 
six-degree of freedom while it has only four inputs. The 
collective input (or throttle input) is the sum of the thrusts of 
each motor. The goal of this section is to define physical 
Equations of Motion that describes the dynamics and 
aerodynamics of the UAV involved. The mathematical model 
of the hexacopter has to describe its attitude according to 
the well-known geometry of this UAV. More specifically, this 
aerial vehicle basically consists of six propellers located 
orthogonally along the body frame. Figure 1 shows this 
configuration. There are three movements that describe all 
possible combinations of attitude: Roll (rotation around the 
X axis) is obtained when the balance of rotors 1, 2 and 3(or 
6, 5 and 4) is changed (speed increases or decreases). By 
changing the angle, lateral acceleration is obtained; pitch 
movement (rotation around the Y axis) is obtained when the 
balance of the speed of the rotors1 and 6 (or 3 and 4) is 
changed. The angle change results in a longitudinal 
acceleration; yaw (rotation about the Z axis) is obtained by a 
simultaneous change of speed of the motors (1,3,5) or (2,4,6) 

2.1 Hexacopter Kinematics 
Suppose that RI-frame denotes earth fixed frame and            
RB -frame denotes body fixed frame which can be seen in   
Fig. 1, the airframe orientation is denoted by 

B

I matrix.
B

I stands for the rotation from RB to RI. The 

dynamic model of hexarotor is derived from Newton-Euler 
approach.  

 
 

Fig 2.The structure of hexarotor and its frames 
 

Meanwhile, the Euler angles are roll angle ϕ]-  ,  [, pitch 

angle θ𝜖]-  ,  [ and yaw angle ψ𝜖]-π ,π [ respectively. The 

rotation matrices from body frame to earth frame can be 
obtained as, 
 

 

 

 

 

And denoting ω as the angular body rate of the airframe in 
body-fixed frame, angular body rate and Euler angle 
parameterization relationship can be given as, With                 
η = [ ϕ, θ, ψ]T, 

 

 

   Rr=                                                              with  ω= Rr  

 

 

 

The two main forces come from gravity and the thrust of the 
rotors but to make the model more realistic rotor drag and 
air friction is also included. The UAV rotorcraft system are 
quite complex. Their movements are governed by several 
effects either mechanical or aerodynamic.  
In order to get equations of motion of entire system, the 
following assumptions have been made: 

• The hexarotor structure is rigid and symmetrical 

• The hexarotor center of mass and body-fixed frame 

coincides 

• Thrust and drag forces are proportional to the square of 

the propellers’ speeds 

• The propellers are rigid 

According to Newton-Euler equation [4]: 
 

(1) 

 

2.2 Hexacopter Mathematical Model 

The equations of motion, that governs the translational and 
the rotational motion for the hexarotor with respect to the 
body frame are, 
 

2.2.1 Translational Dynamics: 

          x = 1/m (  sinsinsincoscos  )U1- xkftx   /m 

    y =1/m (  cossinsin sincos  )U1- ykfty  /m    (2) 

    z = 1/m (  cos cos )U1- zk  ftz  /m– g. 
 

2.2.2 Rotational  Dynamics: 

xx
J  =  ( yy

J -
zz

J )-Kfax
2

 - JrΩr + l Uϕ 

yy
J  =   (

zz
J - xx

J )-Kfay
2

 +JrΩr +  lUθ 

zz
J  =   ( xx

J -
yy

J )-Kfaz
2

 + lUψ 
 

The hexacopter’s total thrust force and torque control inputs 
U1, Uϕ, Uθ, Uψ are related to the six motor’s speed by the 
following equations: UT=[U1,Uϕ,Uθ,Uψ] is the vector of 
(artificial) input variables[5]: 
 

        
        

U1 B B b b b b  
        

Uϕ -b / 2 -b -b / 2 B / 2 b B / 2  

        

Uθ -b  / 2 0 b  / 2 b  / 2 0 -b  / 2  
        

Uψ -d D -d d -d d  
        

        
If the rotor velocities are needed to be calculated from the 
control inputs, an inverse relationship between the control 
inputs and the rotors' velocities is needed, which can be 
acquired by inverting the matrix in (5) to give, 
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= ( U1  +2 Uϕ - Uψ) 

= ( U1 + Uϕ -  Uθ + Uψ) 

= ( U1- Uϕ -  Uθ - Uψ) 

= ( U1 -2 Uϕ +  Uψ)                         (5) 

= ( U1 - Uϕ +  Uθ -  Uψ) 

= ( U1 + Uϕ + Uθ + Uψ) 

The complete dynamics of the UAV is described by 

 = 

xxJ

1
 [  ( yy

J -
zz

J ) -Kfax
2

 - JrΩr + l Uϕ].   

 = 

yyJ

1
 [  (

zz
J - xx

J ) -Kfay
2

 +JrΩr + lUθ]. 

 = 

zzJ

1
 [  ( xx

J -
zz

J )-Kfaz
2

 + Uψ]                      (6) 

x = -
m

ftxk
x  + 

m

1
UX U1 

y = -
m

ftyk
y  + 

m

1
UYU1 

z = -
m

ftzk
z  - g +

m

 coscos
 U1 

 
with :          UX =  sinsinsincoscos  . 

                                 UY =  cossinsin sincos  .    

3. CONTROL STRATEGY  
Due to the nature of the dynamics of the hexarotor, several 
control algorithms have been applied to it. As to be expected, 
each control scheme has its advantages and disadvantages. 
The control schemes used could be broadly categorized as 
linear and non-linear control schemes. In this review a broad 
range of controllers within these categories are discussed. 
In this section, a control strategy is based on two loops 
(inner loop and outer loop). The inner loop contains four 
control laws: roll command (ϕ), pitch command (θ), yaw 
control (ψ) and controlling altitude Z. The outer loop 
includes two control laws positions (x, y). The outer control 
loop generates a desired for roll movement (θd) and pitch 
(ϕd) through the correction block. This block corrects the 
rotation of roll and pitch depending on the desired yaw (ψd). 
The figure below shows the control strategy we will adopt 
 

 

Fig 2. Synoptic scheme of the proposed control strategy 
 

The dynamic model presented in equation set (6) can be 

rewritten in the state-space form x = f(X, U). X 𝜖 R12 is the 
vector of state variables given as follows: 
           [ϕ         θ          ψ          x           y            z      ] 
 
           [ x1   x2     x3    x4    x5    x6    x7    x8      x9    x10   x11   x12]  
 

x1=ϕ x7= x 
x2= 1=  x8= 7=  

x3=θ x9= y                            
x4= 3=  x10= 9=  

 x5= ψ x11= z 
x6= 5=  x12= 11=  

 

2=  = a1x4x6 + a2  + a3Ωrx4 + b1Uϕ 

4=  = a4x2x6 + a5  + a6Ωrx2 + b2 Uθ. 

6=  = a7x2x4 + a8  + b3 Uψ. 

8=  = a9x8+ UXU1. 

10=  = a10x10+ UYU1. 

12=  = a11x12+ U1 – g. 

 
To simplify, define, 

a1=( yy
J -

zz
J )/ xxJ  a2=- Kfax / xxJ  a9=- Kftx /m 

a4=( zz
J -

xx
J )/ yyJ  a5=- Kfay/ yyJ  a10=- Kfty/m 

a7=( xxJ - yyJ )/ zzJ  a8=- Kfaz / zzJ  a11=- Kftz /m 

a3=- Jr/Jxx a6=- Jr/Jyy  
b1= l/Jxx b2= l/Jyy b3= l/Jzz 

 

Rewriting the last equation (7) to have the angular and the 
translational accelerations in terms of the other variables 
(Rotational and translational equations of motion), 
 

2                                a1x4x6 + a2  + a3Ωrx4 + b1Uϕ 
 
         4         =             a4x2x6 + a5  + a6Ωrx2 + b2 Uθ 

6                                          a7x2x4 + a8  + b3 Uψ 

 
 

X
T
 = 

(7) 

(8) 
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8                          a9x8 + (cosx1cos x5 sin x3 + sinx1sin x5)
m

U1  

        10     =         a10x10+ (cosx1sin x3 sin x5 – sinx1cos x5) 
m

U1  

         12                               a11x12 - g + (cosx1cos x3) 
m

U1  

3.1 PID Controller for Hexarotor 

After the mathematical model of the hexarotor along with its 
open loop simulation is verified, a PID controller was 
developed. The block diagram for a PID controller is shown 
in Figure 3. 

Fi
g 3. PID Controller Block Diagram 

The purpose of the PID controller is to force the Euler angles 
to follow desired trajectories. The objective in PID controller 
design is to adjust the gains to arrive at an acceptable degree 
of tracking performance in Euler angles.  
 
Position and Altitude controller: 
PID controller is defined for controlling the ex= xd – x,            
ey= yd –y and ez= zd – z. The control objective is to drive both 
values to zero (ex, ey , ez )=(0,0,0). In this sense, the control 
laws are: 

d= kpx(xd - x) + kdx( d -  )+ kix  ʃ(xd - x)dt 

d = kpy(yd - y) + kdy( d -  )+ kiyʃ(yd - y)dt 

U1 = kp(z –zd ) + kd(  – d )+ kiʃ(z –zd )dt 
 

Attitude  and heading controller: 
The control objective is to maintain the hexarotor in a 
constant altitude (z). The PID controller for the ϕ, θ and ψ 
dynamics can be given as 
 

Uϕ= kpϕ(ϕd –ϕ) + kdϕ( d – )+ kiϕʃ(ϕd –ϕ)dt    (Roll angle) 

Uθ= kpθ(θd –θ) + kdθ( d– )+ kiθʃ(θd –θ)dt          (Pitch angle) 

Uψ= kpψ(ψd –ψ) + kdψ( d – )+ kiψʃ(ψd –ψ)dt   (Yaw angle) 
 

In order to design the PID controllers, nonlinear rotational 
dynamics of hexarotor are linearized around zero, which are 
given by (8). 
 

ϕ(s) = (l / s2Jxx)Uϕ(s); θ(s) =(l / s2Jyy)Uθ(s); ψ(s) =(1 / s2Jxx) Uψ (s) 
 

It is well known that a conventional linear control (PID) can 
stabilize a VTOL hexarotor in non critical conditions (e.g., 
without external disturbances such as wind gusts) or around 
a specific operating point. In real conditions the use of a 
classical linear control is limited to a small neighborhood 
around the operating point. Classical linear controllers are 
not applicable, and nonlinear control approaches are 
required 
 

3.2 Feedbach linearization theory 
The central idea of feedback linearization is to algebraically 
transform a given nonlinear system dynamics to dynamics of 
a linear one, so that the well established linear control 
techniques can be applied. Feedback linearization is 
achieved by exact state transformation and feedback, rather 
than by linear approximation of the dynamics. The relative 
degree and order of the roll, pitch and yaw subsystem is the 
same. Input-state feedback linearization can be applied to 
three subsystems. The nonlinear system is transformed into 
controllable canonical form after feedback linearization. The 
closed loop system is reduced to three double integrators 
after applying inputs Uϕ, Uθ and Uψ, 

Uϕ = fϕ(x2 ,x4 , x6) + U2 
Uθ = fθ(x2 ,x4 , x6) + U3 
Uψ =fψ(x2 ,x4 , x6) + U4 

Where U2, U3and U4 are new inputs. On this basis, in order 
to obtain a linear model, the following equations still 
demand to be met: 

a1x4x6 + a2  + a3Ωrx4 + b1fϕ(x2 ,x4 , x6) = K2 x2  
a4x2x6 + a5  + a6Ωrx2 + b2fθ(x2 ,x4 , x6) = K3 x4 
a7x2x4 + a8  + b3fψ(x2 ,x4 , x6) = K4 x6 

where K2, K3 and K4 are undetermined parameters. 
According to (9), the feedback linearization items fϕ , fθ and  
fψ are given as, 
 

fϕ(x2 , x4 , x6) =1/b1 (K2 x2  - a1x4x6 - a2  - a3Ωrx4 ) 
fθ(x2 , x4 , x6) = 1/b2 (K3 x4  - a4x4x6 - a5  - a6Ωrx2 ) 
fψ(x2 , x4 , x6) = 1/b3 (K4 x6  - a7x2x4 - a8 ) 

 

Substituting (9) into (8), meanwhile considering (10), the 
linear system can be obtained as 

2 =K2 x2  +  b1U2. 

4  =K3 x4  +  b2U3 

6  =K4 x6  +  b3U4 
We consider the Lyapunov function 

V (x2, x4, x6) =  ( ) 

(x2, x4, x6) = x2 2 +x4 4 + x6 6 = K2  + K3  + K4  
The derivative expressed by (13) is negative definite if  K2< 
0, K3< 0, and K4 < 0, which guarantees that the operating 
point of the feedback linearization system is asymptotically 
stable. 
Considering 1 = x2, 3= x4 and 5= x6 , it is obvious that the 
feedback linearization system, that is, (12), can be described 
by linear decoupled differential equations of second order; 
namely,   

=  K2  + b1U2 

=  K3   +b2U3 

=  K4  + b3U4  
The Laplace transformation is applied to (14), which can 
transform the system from time domain to frequency 
domain. Further, the open-loop transfer functions of 
controlled object hexarotor can be obtained as, 

G1 (s) =   ;   G2 (s) =   ;  G3 (s) =   

Feedback linearization controller is able to stabilize the 
hexarotor even for relatively critical initial conditions. 
However, the feedback linearization method has some 
important limitations. In feedback linearization an important 
assumption is that the model dynamics are perfectly known 

 

(10) 

(9) 

(11) 

(12) 

(13) 

(14) 
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and can be canceled entirely. Full state measurement is 
necessary in implementing the control law. Many efforts are 
being made to construct observers for nonlinear systems 
and to extend the separation principle to nonlinear systems. 
Moreover, no robustness is guaranteed in the presence of 
parameter uncertainty or unmodeled dynamics. 

3.3 Backsteepping controller  

In this section, a Backstepping controller is used to control 
the attitude, heading and altitude of the hexarotor. The 
Backstepping controller is based on the state space model 
derived in (7).Using the backstepping approach, one can 
synthesize the control law forcing the system to follow the 
desired trajectory. Refer to [6] and [7] for more details. By 
introducing the partial Lyapunov functions [8], to all           x-
coordinates results in the following backstepping controller: 

 
                                   xid - xi                                             i𝜖 [3,5,7,9,11] 
 
                                  (i-1)d + k(i-1)e(i-1) - xi        i𝜖 [4,6,8,10,12] 
                                                   
                                          with ki ˃ 0            i𝜖 [2,…..,12] 
 

3.3.1Backstepping  Control of the Rotations Subsystem 
Using the backstepping approach, one can synthesize the 
control law forcing the system to follow the desired 
trajectory. Refer to [7] and [8] for more details. For the first 
step we consider the tracking-error ei = x1d - x1 and we use 
the Lyapunov theorem by considering the Lyapunov 
function Vi positive definite and it’s time derivative negative 
semi-definite: 

                        i𝜖 [3,5,7,9,11] 

                                 Vi-1 +                  i𝜖 [4,6,8,10,12] 

For the first step we consider the tracking-error: 
                            e1 = x1d – x1 = ϕd - x1 

                            V1 =    and   1 = e1 1= e1( d – x2) 

The stabilization of e1can be obtained by introducing a 
virtual control input x2: 

                       x2= d + k1 e1                                     1= -k1 ≤ 0. 
 

For the second step we consider the augmented Lyapunov 
function: 

                               e2 = d + k1 e1 – x2 

                               V2 =  +  

And it’s time derivative is then: 
 2 = e1 1+ e2 2 

   =e1(-k1e1+e2) + e2( d + k1 1- a1x4x6 – a2  – a3Ωrx4–b1 u2) 
The control input Uϕ is then extracted, satisfying: 
                           2 = -k1  – k2  ≤ 0. 

Uϕ=  [-a1x4x6 – a2  – a3Ωrx4+ d+k1(-k1e1+e2)+ k2 e2+ e1] 
 

Following exactly the same steps as the roll controller, the 
control input Uθ responsible of generating the pitch rotation 
and Uψ responsible of generating the yaw rotation are 
calculated to be, 
 

Uϕ=  [-a1x4x6 – a2  – a3Ωrx4+ d+k1(-k1e1+e2)+ k2 e2+ e1] 

Uθ=  [-a4x2x6 – a5  – a6Ωrx2+ d+k3(-k3e3+e4)+ k4 e4+ e3] 

Uψ =  [-a7x2x4 – a8 + d+k5(-k5e5+e6)+ k6 e6+ e5] 
 

3.3.2Backstepping  Control of the Linear Translations  
The altitude control U1 and the Linear (UX,UY) Motion 
Control are obtained using the same approach described in 
3.3.1. 

U1= [g-a11x12+ d +k11(-k11e11+e12)+ k12 e12+ e11] 
 

UX= ( )[-a9x8+ d + k7(-k7e7+e8)+ k8 e8+ e7] 
 

UY= ( ) [-a10x10+ d +k9(-k9e9+e10)+ k10 e10+ e9]. 

Backstepping control is a recursive algorithm that breaks 
down the controller into steps and progressively stabilizes 
each subsystem. Its advantage is that the algorithm 
converges fast leading to less computational resources and it 
can handle disturbances well. The main limitation with the 
algorithm is its robustness is not good. To increase 
robustness (to external disturbances) of the general 
backstepping algorithm, an integrator is added and the 
algorithm becomes Integrator backstepping control. The 
integral approach was shown to eliminate the steady-state 
errors of the system, reduce response time and restrain 
overshoot of the control parameters. 

3.4 Sliding-mode control  

The basic sliding mode controller design procedure is 
performed in two steps. Firstly, choice of sliding surface (S) 
is made according to the tracking error, while the second 
step consist the design of Lyapunov function which can 

satisfy the necessary sliding condition (S <0) [9],[10]. 
Theapplication of sliding mode control to hexarotor dynamic 
is presented here by obtaining the expression for control 
input. The sliding surface are define,  
 

                      Sϕ= e2 + λ1e1= 1d – x2 + λ1( x1d – x1) 

Sθ= e4 + λ2 e3= 3d – x4 + λ2( x3d– x3) 

Sψ= e6 + λ3 e5= 5d – x6 + λ3( x5d– x5) 

Sx= e8 + λ4 e7= 7d – x8 + λ4( x7d– x7) 

Sy= e10 + λ5 e9= 9d – x10 + λ5( x9d– x9) 

Sz= e12 + λ7 e11= 11d – x12 + λ6( x11d– x11) 

Such that  
                                ei = xid - xi 

                                ei+1 = i                                  i𝜖 [1,….,11]       

                                  λi ˃ 0  

Assuming here that V(Sϕ) =  then, the necessary sliding 

condition is verified and lyapunov stability isguaranteed. 
The chosen law for the attractive surface is the time 
derivative of satisfying(S < 0) 

ϕ = - k1sign(Sϕ)= 2 + λ1 1 = - 2+ λ1( 1d – x2) 

      =- a1 x4 x6 –a2 x4Ωr–b1Uϕ + d+ λ1 ( d – x2). 
 

Uϕ= [-a1 x4 x6 – a2 x4Ωr+ d +λ1( d – x2)–k1sign(Sϕ)]. 
 

The same steeps are followed to extract Uθ, Uψ and U1: 

Uϕ= [- a1 x4 x6 – a2 x4Ωr+ d +λ1 e2– k1sign(Sϕ)]  (Roll) 

 

Uθ = [- a3x2 x6 – a4x2Ωr+ d+λ2 e4– k2sign(Sθ)] (Pitch) 

 

Uψ = [- a5x2 x4– a4x2Ωr+ d+λ3 e6– k3sign(Sψ)](Yaw) 

 

ei= 

Vi= 

(15) 



          INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)               E-ISSN: 2395-0056 

               VOLUME: 02 ISSUE: 05 | AUG-2015           WWW.IRJET.NET                                                           P-ISSN: 2395-0072 

 

© 2015, IRJET                                            ISO 9001:2008 Certified Journal                                                                    Page 1202 
 

U1= [ g+ d+λ4 e8– k4sign(Sz)]    (Altitude) 

 

UX= ( )[ d+λ5 e10– k5sign(Sx)]     (Linear x Motion) 

 

UY= ( )[ d+λ6 e12– k6sign(Sy)]  ( Linear y Motion) 

The SMC resulted in good stability and robustness of the 
system; but an undesirable Chattering effect of SMC was 
observed which was very notable in the attitude response 
unlike the altitude. It minimized with a continuous 
approximation of a predetermined “sign” function. The 
presence of the ‘‘sign’’ term in the SMC's control law makes it 
a discontinuous controller.  Shows that whenever the value 
of the surface s is positive, the control law works to decrease 
the trajectory to reach the sliding surface (s = 0). Ideally it 
should continue sliding on the surface once hitting it, but due 
to the delay between the change of sign and the change in 
the control action, the trajectory passes the surface to the 
other side. The main drawbacks of chattering are that it 
causes the excitation of unmodeled system dynamics that 
yields a possible instability of the system. In addition to that 
it is associated with a high power consumption and possible 
actuator damage. These drawbacks make the SMC hard to be 
implemented on real systems. 

3.5 Control using Backstepping+FST  Technique. 

To increase robustness (to external disturbances) of the 
general backstepping algorithm, the Backstepping \ FST 
control results from the merge of the Frenet-Serret Theory 
[11] and the integral backstepping technique.  
As shown in Fig. 2, the complete system control is composed 
by a cascade-connection of altitude, position and attitude 
controllers. However, attitude control is the heart of the 
control system, which maintains the UAVs stable and 
oriented towards the desired direction. This section shows 
roll- control derivation based on hybrid backstepping and 
the Frenet-Serret equations previously introduced. 
 

 
 

Fig 4. The Proposed control approach 
Consider the roll tracking error eϕ and its dynamics: 

                 eϕ = ( d – ϕ)  and  ϕ = ( d – ωx) 
A Lyapunov function:  

                            V (eϕ) = ;   then   (eϕ) =eϕ ( d – ωx) 

The angular velocity ωx  is not our control input, hence we 
must define a virtual control that fulfill with desired system 
behavior. The virtual control law for stabilizing the angular 
tracking error e2 is then defined as: 
            

                  e2=ωxd - ωx   

                   ωxd = d + αϕeϕ +λϕʃ eϕ(τ)dτ            (αϕ and λϕ> 0) 
 

                    2=αϕ ϕ + d + λϕeϕ-  = αϕ(ωxd - ωx)  + d + λϕeϕ-  
 
           With              ϕ= - αϕeϕ +λϕʃ eϕ(τ)dτ  + e2     

                        2 =αϕ (- αϕeϕ +λϕʃ eϕ(τ)dτ  + e2) + d + λϕeϕ-  
 

3.5.1 Attitude   control: 

2 =αϕ (- αϕ eϕ +λϕʃ eϕ(τ)dτ  + e2) + d + λϕeϕ– (a1x4x6 +  
+a2  + a3Ωrx4 + b1Uϕ). 

 

Solving this equation which is the control law for achieving 
roll stabilization being the desirable dynamics for the 
angular speed tracking error 2 = -eϕ – λ2 e2:  
The control input Uϕ is then extracted, satisfying: 

Uϕ=  [αϕ (- αϕeϕ +λϕʃ eϕ(τ)dτ  + e2)+ d + λϕeϕ–a1 +  

               - a2  - a3Ωr  +eϕ + λ2 e2] 

Uϕ= [eϕ(1+ λϕ- ) + e2(αϕ+ λ2)+ αϕλϕʃ eϕ(τ)dτ+ d–a1 + 

                  - a2 - a3Ωr ]. 
 

where (αϕ, λϕ and λ2)> 0 are the control parameters of the 
backstepping +FST method. 
Pitch and yaw control is derived by applying the same 
procedure. Control laws are: 

Uϕ= [eϕ(1+ λϕ- ) + e2(αϕ+ λ2)+ αϕλϕʃ eϕ(τ)dτ+ d–a1 + 

                  - a2 - a3Ωr ]. 
 

Uθ= [eθ(1+λθ- )+e3(αθ+λ3)+αθλθʃeθ(τ)dτ+ d-a4 -a5 -  

                             +a6Ωr ]. 

Uψ= [eψ(1+λψ- )+e4(αψ+λ4)+αψλψʃeψ(τ)dτ+ d-a7 -  a8 ]. 
 

3.5.2 Altitude   control: 
Using the same procedure showed in the previous 
subsection, altitude tracking error and its dynamics are: 
                      ez = εd - ε  
                      e5 =αzez +λz ʃ ez(τ)dτ  + z 

U1= [g- a11 +ez(1+λz- )+e5(αz+λ5)+αzλzʃ ez (τ)dτ] 

where (αz, λz and λ5)> 0 are the control parameters of the 
backstepping +FST method. 
 

3.5.3 Position   control: 
               ex = xd – x         e6 =αxex +λx ʃ ex(τ)dτ  + x 
               ey = yd – y       e7=αyey +λy ʃ ey(τ)dτ  + y 
 

Control laws are then introduced in Equation,  
UX= ( )[ex(1+λx- )+e6(αx+λ6)- αxλxʃex(τ)dτ] 

 

UY= ( ) [ey(1+λy- )+e7(αy+λ7)- αyλyʃey(τ)dτ]. 

where (αx, αy, λx , λy , λ6, λ7)> 0. 
 

Equations (17) show the Backstepping+FST methodology. 
The aim of addressing a new term within the single 
backstepping was to make the control effort more energetic 
in terms of angular response. This new term, called d 
corresponds to a desired acceleration function that strictly 
depends on the velocity and acceleration of the vehicle. As 
already mentioned, the Frenet  Serret formulas were used to 
obtain that function.  

(17) 

(16) 
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4. RESULTS AND DISCUSSION 

In this paper, five different controllers are presented for the 
attitude, altitude and heading of a hexarotor. The first 
technique is a PID controller, it proved to be well adapted to 
the hexarotor when flying near hover. When the controllers 
were used outside of the linear region (away from hover), 
the PID controller failed to stabilize the system due to the 
fact that PID comes out of a family of linear controllers.. The 
PID controller was only able to control the hexarotor in near 
hover and absence of large disturbances. The second one is a 
feedback linearization controller, the feedback controller, 
with simplified dynamics, was found to be very sensitive to 
sensor noise and not robust. Hence, feedback linearization 
nonlinear control shows good tracking but poor disturbance 
rejection. However, feedback linearization applied with 
another algorithm with less sensitivity to noise give good 
performance. The third control technique is the 
Backstepping, its ability to control the orientation angles in 
presence of relatively high perturbations is very interesting. 
To increase robustness (to external disturbances) of the 
general backstepping algorithm, an integrator is added and 
the algorithm becomes Integrator backstepping control. The 
integral approach was shown to eliminate the steady-state 
errors of the system, reduce response time and restrain 
overshoot of the control parameters. The sliding-mode 
technique is the fourth approach, it was well enough to 
stably drive the hexarotor to a desired position, but it did not 
provide excellent results. The SMC controller has the 
problem of chattering, the switching nature of the controller 
seems to be ill adapted to the dynamics of the hexarotor. 
Last but not least, the hybrid control algorithms based on a 
novel technique developed during this work called: hybrid 
Backstepping + Frenet-Serret Theory. This controller 
supports on existing backstepping methodology but adopts 
the FST formulation that allows introducing a desired 
attitude angle acceleration function dependent on hexarotor 
acceleration. Consequently, improvements on disturbance 
rejection and attitude tracking are achieved against other 
classical techniques.   
As evident from the review, no single algorithm presents the 
best of the required features. It was found out, in recent 
literature, that using only one type of flight control 
algorithms was not sufficient to guarantee a good 
performance, specially when the hexarotor is not flying near 
its nominal condition. 
 It also been discussed that getting the best performance 
usually requires hybrid control schemes that have the best 
combination of robustness, adaptability, tracking ability, 
optimality, fast response, simplicity and disturbance 
rejection among other factors. However, such hybrid 
systems do not guarantee good performance; hence a 
compromise needs to be found for any control application on 
which of the factors would be most appropriate. 
In table.3 summarizes the comparison of the various 
algorithms as applied to hexarotors with all things being 
equal. The performance of a particular algorithm depends on 
many factors that may not even be modeled. Hence, this 
table serves as guide in accordance with what is presented in 
this work and common knowledge ([12], [13])  
 

TABLE.3 Comparison of hexarotor control algorithms.                                                                   
Characteristic PID SMC FBL BS BS+FST 
Robust A A A LN A 
Adaptive  LN H A H H 
Optimal  LN A LN LN LN 
Intelligent LN LN LN LN A 
Tracking ability A H H H H 
 Fast convergence A H H LN A 
Precision A H H A A 
Simplicity H A A LN LN 
Disturbance rejection  LN H A H H 
Noise (signal) H LN A LN A 
Chattering  LN H LN LN LN 

Legend: LN—low to none; A—average; H—high.  
 

It is evident that even the best linear or nonlinear algorithms 
had limitations and no single controller had it all. 
Researchers have tackled this by combining the philosophies 
of one or more algorithms. Here are few examples, which are 
not in any way exhaustive of what is in literature. A hybrid 
fuzzy controller with backstepping and sliding mode control 
was implemented in [14] and successfully eliminated 
chattering effect of the sliding mode control algorithm. A 
feedback linearization controller was applied parallel with a 
high-order sliding mode controller to a hexarotor in [15]. 
The sliding mode controller was used as an observer and 
estimator of external disturbances. The system showed good 
disturbance rejection and robustness. The backstepping was 
used to achieve good tracking of desired translational 
positions and yaw angle whilst maintaining stability of roll 
and pitch angles [16]. Neural networks were used to 
compensate for un- modeled dynamics. The major 
contribution of the paper was the fact that the controller did 
not require the dynamic model and other parameters. This 
meant greater versatility and robustness.  
This paper has reviewed several common control algorithms 
that have been used on hexarotors in literature. As evident 
from the review, no single algorithm presents the best of the 
required features. It also been discussed that getting the best 
performance usually requires hybrid control schemes that 
have the best combination of robustness, adaptability, 
optimality, simplicity, tracking ability, fast response and 
disturbance rejection among other factors.  

5. CONCLUSIONS AND FUTURE WORKS 

The goal of this work was to derive a mathematical model 
for the hexarotor Unmanned Aerial Vehicle (UAV) and 
develop nonlinear control algorithms to stabilize the states 
of the hexarotor, which include its altitude, attitude, heading 
and position in space and to verify the performance of these 
controllers with comparisons via computer simulations.The 
mathematical model of a hexarotor UAV was developed in 
details including its aerodynamic effects and rotor dynamics 
which we found lacking in many literatures; a review of the 
popular controllers proposed for the hexarotor systems is 
developed. 
An important part of this work was dedicated to finding a 
good control approach for hexarotors. Five techniques were 
explored from theoretical development to final experiments.  
As evident from the review, no single algorithm presents the 
best of the required features. It also been discussed that 
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getting the best performance usually requires hybrid control 
schemes that have the best combination of robustness, 
adaptability, optimality, simplicity, tracking ability, fast 
response and disturbance rejection among  other factors.  
The integral Backstepping + FST control was used as an 
approach for attitude control (Integral Backstepping + 
Frenet-Serret Theory). This controller supports on existing 
backstepping methodology but adopts the FST formulation 
that allows introducing a desired attitude angle acceleration 
function dependent on hexarotor acceleration. 
Consequently, improvements on disturbance rejection and 
attitude tracking are achieved against other classical 
techniques. Thus, integral backstepping+FST have been 
proposed for full control of hexarotors. 
Our future work is to implementing the developed control 
techniques on real hexarotor hardware to give a more fair 
comparison between their performances. The development 
of novel control strategies and methodologies for improving 
the level of autonomy of miniature flying vehicles remains 
under current research. The research in the Computer 
Laboratory, systems and renewable energy (LISER) of the 
National School of Electrical and Mechanical (ENSEM) is 
continuing toward implementing these algorithms in real 
time.  
The positive results achieved through this development 
enhance our knowledge of this very unstable system and 
encourages us to continue towards full autonomy hexarotor. 
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