
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 432

COMPARISON OF INTEGRATED DEVELOPMENT ENVIRONMENT

(IDE) DEBUGGING TOOLS: ECLIPSE VS NETBEANS

*1 Mrs. Kavitha S., *2Ms. Sindhu S.,

*1Assisant Professor, Department of Computer Science Auxilium College (Autonomous),

Vellore, TamilNadu, India
*2 M.Phil Research Scholar, Department of Computer Science Auxilium College (Autonomous),

Vellore, TamilNadu, India

---***---
Abstract - The Integrated Development Environment

(IDE) provides many debugging tool to limit coding errors

and facilitate error correction. It avoids software failure,

reduce development and maintenance cost, improve

customer agreement and software quality. There are many

tools in IDE providing source code editor, build

computerization tools and a debugger. Most modern IDEs

have quick code completion. Some IDEs contain a compiler,

interpreter, or both, such as NetBeans and Eclipse. Both

include the concept of plug-ins in that Eclipse was more

advantageous than NetBeans, because Eclipse is a complex

structure of interconnecting components, delivering all of

the functionality. There is literally no monolithic core or

base, just a tiny runtime which loads and executes plug-ins.

In Eclipse terms: “all is a plug-in”. The compatibility

between Eclipse and NetBeans based on these attributes:

Complexity, Functionality, Extensibility, Flexibility, and

Usability to provide additional sources and to solve specific

problems and to increase efficiency, because the

programmer spending less time in re-writing code and

debugging. It also constructs bug report and the bug tracker

using the open source Eclipse Bugzilla project from Mozilla.

Key Words: Integrated Development Environment (IDE),

Everything is a plug-in, Complexity, Functionality,

Extensibility, Flexibility, and Usability.

I. INTRODUCTION

An Integrated Development Environment (IDE) or

interactive development environment is a software

application that provides comprehensive facilities to

computer programmers for software development. An IDE

normally consists of a source code editor, build

automation tools and a debugger. Most modern IDEs have

intelligent code completion. Some IDEs contain a compiler,

interpreter, or both, such as NetBeans and Eclipse. Many

modern IDEs also have a class browser, an object browser,

and a class hierarchy diagram, for use in object-oriented

software development. The IDE is designed to limit coding

errors and facilitate error correction with tools such as the

“NetBeans” FindBugs to locate and fix common Java coding

problems and Debugger to manage complex code with

field watches, breakpoints and execution monitoring.

IDE Tools

There are many IDE tools available for source code

editor, built automation tools and debugger. Some of the

tools are,

 Eclipse

 NetBeans

 Code::Blocks

 Code Lite

 Dialog Blocks

Eclipse

Eclipse is an integrated development

environment (IDE). It contains a base workspace and an

extensible plug-in system for customizing the

environment. Written mostly in Java, Eclipse can be used

to develop applications. By means of various plug-ins,

Eclipse may also be used to develop applications in other

programming languages: Ada, ABAP, C, C++, COBOL,

Fortran, Haskell, JavaScript, Lasso, Lua, Natural, Perl, PHP,

Prolog, Python etc.

Plug-ins

In computing, a plug-in (or add-in / addin, plugin,

extension or add-on / addon) is a software component

that adds a specific feature to an existing software

application. When an application supports plug-ins, it

enables customization.

http://en.wikipedia.org/wiki/Class_browser
http://en.wikipedia.org/wiki/Object_browser
http://en.wikipedia.org/wiki/Class_hierarchy
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/ABAP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Lasso_(programming_language)
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/NATURAL
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Python_(programming_language)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 433

Eclipse Plug-ins

Eclipse is an extensible platform for building IDEs. It

provides a core of services for controlling a set of tools

working together to support programming tasks. Tool

builders contribute to the Eclipse platform by wrapping

their tools in pluggable components, called Eclipse plug-

ins, which conform to Eclipse's plug-in contract.

II. Related work
Modern applications are developed using

components implemented in many different technologies,

Creating an effective integrated development environment

(IDE) for use in programming these applications presents

some special challenges because a large number of

different tool technologies have to be tightly integrated in

support of development task flows. In order to meet these

challenges, the Eclipse Platform was designed to serve as

the common basis for diverse IDE-based products,

providing open APIs (Application Programming

Interfaces) to facilitate this integration.

The IDE part of the project known as SaveIDE still

lacks many features in terms of usability to be considered

a good user-friendly environment for the end users to

work with. Since SaveIDE is designed as a set of plug-ins in

Eclipse, this thesis tries to investigate the features of

different Eclipse modeling tools used in the design of the

IDE to further improve its usability features.In order to

achieve this goal, several usability guidelines and

suggestions are examined and offered to be considered

and used in the improvement process of SaveIDE. This can

help readers and other developers get a better picture of

how to integrate the usability guidelines with Eclipse

modeling tools in order to make SaveIDE more user-

friendly.

TinyOS is a widely used open source operating

system for embedded systems written in NesC. NesC code

is first compiled into a C program which is then processed

by an ordinary C compiler. Since there is no dedicated

NesC debugger a normal C debugger is used for debugging.

C debugger is unaware of the NesC code so the user has to

have some knowledge about the implementation of the

NesC compiler, something a TinyOS developper should not

have to worry about. This paper presents a solution which

allows the developer debug a TinyOS application without

being aware of the implementation of the NesC compiler. A

TinyOS debug plug-in for Eclipse is presented. The Eclipse

plug-in facilitates debugging by integrating support for

variable examination, breakpoints and automatic

launching of debug sessions. First testers have found the

presented Eclipse plug-in to be a useful tool for TinyOS

developers.

III. PREVIOUS IMPLEMENTATIONS

Eclipse and NetBeans IDEs

The basic versions of both Eclipse and NetBeans

offer very similar standard capabilities. You get the auto-

complete options for Java code so you can select from a

menu rather than typing everything out. You get pointers

on debugging and optimizing code as you go along. GUI

builders, version control and other IDE features are also

included.

IBM offer IDE

Eclipse was rolled out successfully to a much

larger user population earlier than NetBeans. By 2003,

Eclipse already had a substantial following in the IBM

community. Acceptance spiked even higher when IBM

released control of the IDE to the newly created Eclipse

Foundation. IBM revamped its own products during the

same time period to rely heavily on the Eclipse platform.

Today, Eclipse is viewed as a well-proven platform that

commercial vendors can build on to create their own set of

products and that enterprise users can rely on for internal

application development.

Eclipse System Architecture

The Eclipse SDK includes the Eclipse Java

Development Tools, offering an IDE with a built-in

incremental Java compiler and a full model of the Java

source files. This allows for advanced refactoring

techniques and code analysis. Eclipse’s widgets are

implemented by a widget toolkit for Java called SWT,

unlike most Java applications, which use the Java standard

Abstract Window Toolkit (AWT) or Swing.

http://www.eclipse.org/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 434

Fig. 1.1 Eclipse System Architecture

NetBeans System Architecture

NetBeans is an IDE for developing software

applications in Java, JavaScript, PHP, Python, C/C++, etc.

NetBeans is also a platform framework that can be used

for developing desktop applications in Java. NetBeans was

developed in Java.

Fig 1.2 NetBeans System Architecture

IV. SYSTEM IMPLEMETNATION

4.1 Difference between Eclipse and Netbeans

NetBeans and Eclipse are two of the most popular

free and open source Java IDE, they have their differences.

Support for Maven is better in NetBeans. Because you can

get GlassFish with Java EE package for NetBeans, it is

easier to use than in Eclipses (as you have to configure

GlassFish separately). NetBeans comes with build-in GUI

builder for Swing, but you need to use a separate plug-in

in Eclipse. The general opinions within the Java

community about these two IDE are fairly similar.

4.2 Eclipse Vs NetBeans

1) Platform Support

There is no difference between the both of them

under this segment. Eclipse and NetBeans have cross-

platform support. You can have this application running

on Windows, Mac, Linux, Solaris and any other platform,

as long as JVM (Java Virtual Machine) is installed.

2) Multiple Language Support

Both have a wide range of programming language

support, which includes C/C++, Java, JavaScript and PHP.

 But how do you get this support is an interesting part.

Eclipse is a plugin based IDE. Large part of its functionality

comes from plugins. On the other hand NetBeans has

many projects and is a tool based IDE. It incorporates

many platforms using tooling support. Thus making it less

scattered.

3) Java Support

NetBeans has a strong support when you are

developing MVC based application in Java. Servlet/JSP

development is fairly very simple compared to Eclipse,

especially in the field of deployment and debugging.

4) Database Support

NetBeans comes with in-built support for and

SQL, MySQL and Oracle drivers plus it includes some

others too. So this definitely makes things easy for

beginners. However Eclipse has JDBC driver support – but

it takes some serious time to configure the connection.

 Comparing Java IDEs: Eclipse Vs NetBeans

Eclipse

Eclipse has been in existence from the year 2001,

ever since IBM released Eclipse as an open source

platform. Managed by the non-profit Eclipse Foundation,

this is used in both open source and commercial projects.

Starting in a humble manner, this has now emerged as a

major platform, which is also used in several other

languages. The greatest advantage of Eclipse is that it

features a whole plethora of plugins, which makes it

versatile and highly customizable.

http://opensource.about.com/od/basics/a/How-To-Learn-About-Open-Source-Software.htm
http://opensource.about.com/od/basics/a/How-To-Learn-About-Open-Source-Software.htm
http://opensource.about.com/od/basics/a/How-To-Learn-About-Open-Source-Software.htm
http://webtrends.about.com/od/glossary/g/opensource_def.htm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 435

NetBeans

NetBeans was independently developed in the

latter half of the 1990s. It emerged as an open source

platform after it was acquired by Sun in 1999. Now a part

of Oracle, this IDE can be used to develop software for all

versions of Java ranging between Java ME, up to the

Enterprise Edition. Like Eclipse, NetBeans too features a

variety of plugins you can work with.

NetBeans offers you various different bundles – 2

C/C++ and PHP editions, a Java SE edition, the Java EE

edition that offers everything you will ever need for your

project.

4.3 IDEs Vs Build Tools

Given the deep integration and love-hate relationship

between users of different IDEs and build tools, we

thought about starting here and covering Eclipse and

NetBeans, which comfortably take up over 90% of the IDE

market. Other tools, like Spring Tools Suite, MyEclipse,

IBM RAD, JBossDev Studio, vi/vim, emacs, etc didn’t make

up significant portions of the overall community, so to

make things simpler we didn’t cover them at this time.

The following graphic depicts the number of projects

and lines of code (measured in millions) joining this

release over the years.

Fig. 1.3 Eclipse Releases

EVALUATION RESULT:

Reuse techniques: This factor is divided into two: Reuse

between SPL members, where the technology is evaluated

on how variability can be separated from commonalities,

and how variants can be selected for the specific members.

Reuse over time, where it is evaluated on support for

introduction of unexpected features and variability during

software evolution.

Table1.1: Implementation Technologies

Variation types: Is evaluation on how the technology

handles positive and negative variability. Positive

variability is when functionality is added for creating an

SPL member and negative is when functionality is

removed Which needs to be done to perform refactoring

and two code listings (original code and refectories code)

with highlighted changes. The user can see all changes and

then confirm or cancel refactoring. The bad design here is

that after renaming the user is prompted with text to press

enter. He don't know that clicking on the small arrow will

give him the chance to see the preview first.

Fig. 1.4 Eclipse

The first survey on the ‘old’ IDE had 53

respondents. The 95% confidence interval for the mean

score is 43 to 52. The student’s comments were about

missing auto completion, differences with modern IDE’s,

and poor debugging. The second survey on the first

http://mobiledevices.about.com/od/glossary/g/What-Is-Java-Me.htm
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/6/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/6/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/6/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 436

version of the Eclipse plug-in had 64 respondents. The

95% confidence interval for the mean score is 49 to 58.

The comments were about the output of unit-tests,

missing documentation, and poor debugging again.

Unfortunately, some students also used the survey to

express discontent with parts of the course they were

taking in which they used the IDE, resulting in comments

about resist for example.

The third survey on the second version of the

Eclipse plug-in had 56 respondents. The 95% confidence

interval for the mean score is 39 to 47. The students

commented on performance issues, the lack of mental

state inspection during execution, and some

inconveniences resulting from the use of external module

files.

Fig. 1.5 NetBeans

The fourth and final survey on the second version

of the Eclipse plug-in had only 6 respondents. Though this

is a low number, a trend might be distilled from these

evaluations. The 95% confidence interval for the mean

score is 64 to 83. The comments were approving of the

immediate reporting of errors and warnings and the

stepping debugger. NetBeans remains in a stable third

place in the market, using its proximity to Java and Oracle

to its advantage when possible, most recently in the same-

day launch of NetBeans 8 to fully support Java 8, and

continued easy integration with GlassFish as the reference

implementation for Java EE 7. Here’s what we see when it

comes to NetBeans users:

Similar to Eclipse, Ant (+/- Ivy) usage (19%) by NetBeans

users is raised compared to the average (16.5%), as is

Maven usage (68.5%) compared to the average (64%).

The indication points to greater project maturity with

NetBeans users. Adoption of Gradle (3.5%) and SBT

(0.5%) compared to the average for all respondents (11%

and 2.5%, respectively) is considerably lower, indicating a

lack of affinity for newer tools and alternative JVM

languages

CONCLUSION

Eclipse is better over NetBeans for many reasons.

The first one is the startup time, NetBeans takes ages to

load, and loading on the first instance is terrible in case of

NetBeans IDE. Eclipse is very simple to get started with.

The intelligence feature on Eclipse is better than that on

NetBeans.Due to the complexity and extensibility of

Eclipse, you will need additional resources to help you

solve your specific problems. Fortunately, the web

contains several resources which can help you with your

Eclipse problems. The Eclipse bug and feature tracker is

using the open source Bugzilla project from Mozilla. In this

system you enter error reports for bugs you encounter

with the usage of Eclipse and also to request new feature

or improvements of existing features problems. This bug

tracker can be found under Eclipse Bugzilla. Here you can

search for existing bugs and review them. Eclipse can be

mainly used for some purpose are: The only purpose of

Eclipse is to increase the efficiency. Programmers should

spend less time repeating stuff. Programmers should

spend less time re writing code and debugging.

FUTURE WORK

The activities of CDT’s Multi-Core Working Group,

this group aims to bring together different people from the

community to jointly work on developing multi-core

debugging for CDT. Although this effort does cover the

debugging of target with multiple cores, we use the term

multi-core debugging in a much wider sense. Multi-core

debugging is meant to describe the simultaneous

debugging of multiple cores, processes, threads, or other

objects which are represented in standard debugger

views. Debugging Highly Complex Applications Potential

Future Features

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 437

REFERENCES:

1. Sherry Shavor, Jim D’Anjou, ScorrFairbrother, Dan

Kehn, John Kellerman, and Pat McCarthy. “The Java

Developer’s Guide to Eclipse”.Addison-Wesley,2003.

2. Benjamin Sigg. “Yeti 2 - tinyos 2.x eclipse plugin”.

Master’s thesis, ETH, 2008.

3. Matthew Telles and Yuan Hsieh. “The Science of

Debugging”. Coriolis Group Books, Scottsdale,AZ, USA,

2001.

4. Mampilly, T., &Ramnath, R. “An eclipsed-based

environment for the process-oriented

integration of engineering tools”. MS Thesis, The Ohio

State University, Department of Computer Science and

Engineering, 2007.

5. E.Gamma and K. Beck, “Contributing to Eclipse:

Principles, Patterns, and Plug-Ins. Reading”, MA, USA:

Addison-Wesley, 2004.

6. A. Sigfridsson, “The purposeful adaptation of practice:

An empirical study of distributed software

development”, Doctoral thesis, Dept. Comput. Sci. Inf.

Syst., Univ. Limerick, Limerick, Ireland, 2010.

7. J. Des Rivieres and J. Wiegand, “Eclipse: A platform for

integrated development tools”, IBM Sys. J., Apr. 2004.

8. SebastinDraxler, Gunnar Stevens, and Alexander

Boden, “Keeping the Development Environment

Up to Date-A Study of the Situated Practices of

Appropriating the Eclipse IDE”, IEEE Transaction on

Software Engineering, Nov. 2014.

9. G. C. Murphy, M. Kersten, and L. Findlater, “How are

Java Software Developers using Eclipse IDE?”, IEEE

Software Engineering, Aug. 2006.

10. R. K. Yin, “Case Study Research: Design and Methods”,

Newbury park, CA, USA: SAGE, 2009.

BIOGRAPHIES

Ms. Sindhu S., M.Phil Research

Scholar, Department of

Computer Science Auxilium

College (Autonomous), Vellore,

TamilNadu, India.

Mrs. Kavitha S., M.C.A., M.Phil.,

Assistant Professor & HOD

I/C, Department of Computer

Science Auxilium College

(Autonomous), Vellore,

TamilNadu, India.

