Computational analysis of helical coil Heat exchanger for Temperature and Pressure drop

Vishwas M. Palve1, Prof. Rajesh V. Kale2

1 M.E.student (Heat Power), Mechanical Engineering, Rajiv Gandhi Institute of Technology, Andheri, Maharashtra, India
2 Assistant Professor, Mechanical Engineering, Rajiv Gandhi Institute of Technology, Andheri, Maharashtra, India

Abstract – A helically coil-tube heat exchanger is generally applied in industrial applications due to its compact structure, larger heat transfer area and higher heat transfer capability, etc. The importance of compact heat exchangers (CHEs) has been recognized in aerospace, automobile, gas turbine power plants, and other industries for the last 60 years or more due to several factors as mentioned above. However flow and heat transfer phenomena related to helically coil-tube heat exchanger are very sophisticated. A computational fluid dynamics (CFD) methodology using ANSYS FLUENT 15.0 is used here to investigate effects of tube diameter and mass flow rate on the heat transfer and pressure drop characteristics in a helical coil heat exchanger. Simulation has been done by varying the mass flow rate from 180 Lph to 420 Lph on different configuration of helical coiled tube. The result shows that the temperature drop and pressure drop are affected by geometry of helical coil heat exchanger.

Key Words: Computational fluid dynamics, helical coil heat exchanger, Heat transfer, temperature drop, Pressure drop.

1. INTRODUCTION

Heat transfer in helical coils is higher than as compared to straight coils. Because of its compact size, higher film coefficient, they are widely used in industrial applications like power generation, nuclear industry, process plant, heat recovery system, chemical process industries etc. These heat exchanger are used to control the temperature of the reactors for exothermic reactions. They have less expensive design. Helical geometry allows the effective handling at higher temperatures and extreme temperature differentials without any highly induced stress or expansion of joints. Helical coil heat exchanger consists of series of stacked helical coiled tubes and the tube ends are connected by manifolds, which also acts as fluid entry and exit locations. S.D. Sancheti & DR.P.R. Suresh [1] have worked on the Experimental and CFD estimation of the heat transfer in helically coiled heat exchanger. His work focused on the fluid –to – fluid heat transfer. He validated the basic methodology of CFD analysis in a heat exchanger, without considering actual properties of fluid, a constant value was established instead. For various boundary conditions, the heat transfer characteristics were compared for a helical coil. He found that specification for constant heat flux and constant temperature boundary condition doesn’t yield desired modeling for an actual possible heat exchanger. So, heat exchanger was analyzed considering conjugate temperature dependent and heat transfer properties. Use of constant values for the basic thermal and transport properties in the heat exchanger resulted in prediction of inaccurate heat transfer coefficients. From the results obtained from experiment a correlation was developed for the calculation of inner heat transfer coefficient in a helical coil heat exchanger. J. S. Jayakumar [2] observed that the use of constant values for the transfer and thermal properties of the fluid resulted in inaccurate heat transfer coefficients. Based on the CFD analysis results a correlation was developed in order to evaluate the heat transfer coefficient of the coil. In this study, analysis was done for both the constant wall temperature and constant wall heat flux boundary conditions. The Nusselt numbers that were obtained were found to be highest on the outer coil and lowest in the inner side. Various numerical analyses were done so as to relate the coil parameters to heat transfer. The coil parameters like the diameters of the pipes, the Pitch Circle Diameters have significant effect on the heat transfer and the effect of the pitch is negligible. Rahul Kharat, Nitin Bhardwaj and R. S Jha [3] worked on the Development of heat transfer coefficient correlation for concentric helical coil heat exchanger. The existing correlation was found to result in large discrepancies with increase in the gap between the two concentric coils when they were compared with the experimental results. In their work, CFD simulations and with Fluent 6.3.26 was compared with the experimental data, which was used to develop improved correlation for the heat transfer coefficient. Mathematical model was also developed for analyzing the data, which were obtained from experimental results and CFD to account for the effects, by different parameters and functional variables like coil gap, coil diameter and tube diameter. Using numerical technique Optimization was done for the heat transfer.
coefficient by the new correlation, which fits the experimental data within an error band of 3-4%.

J.S. Jayakumar, S.M. Mahajani, J.C. Mandal, Kannan N. Iyer and P.K. Vijayan[4] worked on the Thermal hydraulic characteristics of air-water two-phase flows in helical pipes. He worked on the two fluid Eulerian-Eulerian calculation in Fluent 6.3 for the analysis. The parameters which influence the nature of flow are pitch coil diameter, pitch and diameter in helical coils. CFD analysis was carried out and their variation on thermal and hydraulic characteristics by changing the inlet void fraction for a given flow velocity. The correlations for heat transfer and drop in pressure were analyzed. Estimation of inner heat transfer coefficient by changing the void fraction and flow velocity, results in reduction in ‘h’ is less below 5% and significant above 15% void fraction.

Timothy J. Rennie, Vijaya G.S. Raghavan[5] worked on the Numerical studies of a double pipe helical heat exchanger. A double-pipe helical heat exchanger was modeled numerically for numerical flow and the heat transfer characteristics were studied for different fluid flow rates and tube sizes. The overall heat transfer coefficient for both counter and parallel flow were calculated. Simulations were validated by comparing the Nusselt numbers. Greatest thermal resistance were found around the annular region. A correlation was found between the annulus Nusselt no. with a modified dean number, which gave a strong linear relationship. Akiyama, M. and Cheng, K.C.[6] worked on the Boundary vorticity method for laminar forced convection heat transfer in curved pipes. Based on their theoretical work he proposed that the Vortex formation and conversion from laminar to turbulent flow occurs due to the secondary flow by the curvature of the helically coil, which produces a centrifugal force and was analyzed by the CFD using Fluent and various correlations were developed.R.K. Patil, B.W. Shende and P.K. Ghosh [7] worked on the Boundary vorticity method for laminar forced convection heat transfer in curved pipes. Based on their theoretical work he proposed that the Vortex formation and conversion from laminar to turbulent flow occurs due to the secondary flow by the curvature of the helically coil, which produces a centrifugal force and was analyzed by the CFD using Fluent and various correlations were developed.

Heat transfer characteristics were studied for different fluid flow rates and tube sizes. The overall heat transfer coefficient for both counter and parallel flow were calculated. Simulations were validated by comparing the Nusselt numbers. Greatest thermal resistance were found around the annular region. A correlation was found between the annulus Nusselt no. with a modified dean number, which gave a strong linear relationship. Akiyama, M. and Cheng, K.C.[6] worked on the Boundary vorticity method for laminar forced convection heat transfer in curved pipes. Based on their theoretical work he proposed that the Vortex formation and conversion from laminar to turbulent flow occurs due to the secondary flow by the curvature of the helically coil, which produces a centrifugal force and was analyzed by the CFD using Fluent and various correlations were developed.

1.1 Governing Equations

Applying boundary conditions, the governing equations for convective heat transfer are as follows:

Continuity equation

\[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0 \]

Navier-stokes field equations (only x-direction equation is given below)

\[\rho \left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \rho x + \frac{\partial p}{\partial x} + \frac{1}{\rho} \left[\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} \right] + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \]

Energy equation

Heat transfer coefficient

\[h = \frac{-k \frac{\partial T}{\partial x}}{T_w - T_f} \]

Critical Reynolds number as per the correlation given by Schmidt(1967)

\[Re_{cr} = 2300 \left[1 + 8.6 \left(\frac{d}{D} \right)^{0.45} \right] \]

Friction factor

\[f = \frac{2 \nu p d}{\rho L v^2} \]
2. CFD ANALYSIS

Geometric model is prepared in Ansys-15 design modeler after preparation of model meshing was done using Ansys ICEM CFD software. Sizing of mesh with relevance centre as Medium with slow transition which will help in getting faster results. Configuration of computer was 2 Gb ram with core i3 processor. Mesh with 368216 nodes and 264053 elements were generated. Various sections were named as inlet, outlet copper, tube and fluid. Fluent with double precision is used for setup. Materials are selected as copper for tube and water as fluid. K epsilon (2eqn) model is selected with energy equation in ON condition. Boundary condition for inlet as velocity inlet and at outlet as pressure out. The temperature is set at 343K and velocity input is given as per mass flow rate. Heat transfer coefficient is set at 450 w/m2K. The number of iteration is set to 500 and the solution is calculated and various contours, vectors and plots are obtained. Hot water flows inside the tube. Table 2.1 and 2.2 shows the properties of water and copper tube respectively.

Table No 2.1 Properties of water

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>1000</td>
<td>kg/m(^3)</td>
</tr>
<tr>
<td>Dynamic</td>
<td>(\mu)</td>
<td>0.001</td>
<td>kg/ms</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>(C_p)</td>
<td>4182</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>(k)</td>
<td>0.6</td>
<td>W/mK</td>
</tr>
</tbody>
</table>

Table No 2.2 Properties of copper tube.

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>8978</td>
<td>kg/m(^3)</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>(C_p)</td>
<td>381</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>(k)</td>
<td>387.6</td>
<td>W/mK</td>
</tr>
</tbody>
</table>

Table No 2.3 Model dimensions

<table>
<thead>
<tr>
<th>Coils</th>
<th>Outside Diameter</th>
<th>Inside Diameter</th>
<th>Pitch</th>
<th>Coil Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>coil-1</td>
<td>9.525</td>
<td>7.8994</td>
<td>30</td>
<td>210</td>
</tr>
<tr>
<td>coil-2</td>
<td>7.9248</td>
<td>6.2992</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>coil-3</td>
<td>4.7498</td>
<td>3.2512</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4 shows the CFD results for temperature drop and pressure for various tube diameter configurations with constant pitch and pitch coil diameter as data shows that there is increase in temperature drop as the tube diameter goes on reducing whereas pressure drop goes on increasing.
3. RESULTS AND DISCUSSION.

Figure no 3.1 Temperature drop vs flow rate for various tube diameter.

Figure no 3.2 Temperature drop & Pressure drop vs flow rate for various tube diameter.

Figure no 3.3 Temperature drop & Pressure drop vs flow rate for various tube diameter.

As in Figure 3.1 we can observe that nature of curve is same for all tube dimension. Temperature drop goes on reducing as the flow rate goes on reducing. Figure 3.2 shows the pressure drop goes on increasing as the flow rate increase.

Figure 3.3 show combine temperature and pressure drop vs flow rate for different tube diameter. Its been observed that temperature and pressure drop is optimum at flow rate between 300 lph to 350 lph.

4. CONCLUSIONS

Heat transfer characteristics of the heat exchanger with helical coil are also studied using the CFD code. Analysis has been carried out both for the constant wall temperature and constant wall heat flux boundary conditions. Fluid particles are found to undergo oscillatory motion inside the pipe and this causes fluctuations in heat transfer rates. Studies have been carried out by varying pipe diameter with constant pitch circle diameter and pitch. Their influence on heat transfer and pressure drop has been brought out. Unlike the flow through a straight pipe, the centrifugal force caused due to the curvature of the pipe causes heavier fluid (water-phase) to flow along the outer side of the pipe. High velocity and high temperature are also observed along the outer side. It was observed that the variation in tube diameter has greater influence on temperature drop and pressure drop. As the tube diameter goes on reducing the temperature drop increased along with loss of pressure also takes place i.e. pressure drop occur due to which pumping power increases. Temperature drop is maximum for lower flow rate and goes on reducing as the flow rate increases. Whereas pressure drop is directly proportional to flow rate. Optimum range for flow rate of water through helical coiled tube is 300 lph to 350 lph.

REFERENCES

BIographies

Vishwas Palve
M.E. student (Heat Power), Mechanical Engineering, Rajiv Gandhi Institute of Technology, Andheri, Maharashtra, India

Prof. Rajesh V. Kale
Assistant Professor, Mechanical Engineering Department, Rajiv Gandhi Institute of Technology, Andheri, Maharashtra, India. He has 24 years of teaching and research experience.