ON THE BINARY QUADRATIC DIOPHANTINE EQUATION

\[x^2 - 3xy + y^2 + 18x = 0 \]

S.Vidhyalakshmi ¹, M.A.Gopalan ², S.Nandhini ³

¹² Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu,
E-mail: vidhyasigc@gmail.com, mayilgopalan@gmail.com,
³ M.Phil Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu
E-mail: nandhinisampath14@gmail.com

Abstract: The binary quadratic equation \[x^2 - 3xy + y^2 + 18x = 0 \] represents a hyperbola. In this paper we obtain a sequence of its integral solutions and present a few interesting relations among them.

Key Words: Binary quadratic equation, Integral solutions.

MSC subject classification: 11D09.

1. INTRODUCTION:

The binary quadratic Diophantine equations (both homogeneous and non homogeneous) are rich in variety [¹–⁶]. In [⁷–¹⁶] the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of another interesting binary quadratic equation given by \[x^2 - 3xy + y^2 + 18x = 0. \] The recurrence relations satisfied by the solutions \(x \) and \(y \) are given. Also a few interesting properties among the solutions are exhibited.

2. METHOD OF ANALYSIS:

The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct integral solution is

\[x^2 - 3xy + y^2 + 18x = 0 \] \quad (1)

Note that (1) is satisfied by the following non-zero integer pairs

(18,18), (18,36), (-18,-54), (36,72), (-54,-162).

However, we have solutions for (1), which are illustrated below:

Solving (1) for \(x \), we've

\[x = \frac{1}{2} \left[(3y - 18) \pm \sqrt{5y^2 - 108y + 324} \right] \] \quad (2)

Let \(\alpha^2 = 5y^2 - 108y + 324 \)

which is written as

\[(5y - 54)^2 = 5\alpha^2 + 36^2 \]

\[\Rightarrow Y^2 = 5\alpha^2 + 36^2 \] \quad (3)

Where

\[Y = 5y - 54 \] \quad (4)

The least positive integer solution of (3) is
\[\alpha_0 = 144, \ y_0 = 324 \]

Now, to find the other solution of (3), consider the Pellian equation
\[Y^2 = 5\alpha^2 + 1 \]
whose fundamental solution is \((\tilde{\alpha}_0, \tilde{Y}_0) = (4,9)\)

The other solutions of (5) can be derived from the relations
\[\tilde{Y}_n = \frac{f_n}{2} \quad \tilde{\alpha}_n = \frac{g_n}{2\sqrt{15}} \]

where
\[f_n = [(9 + 4\sqrt{15})^{n+1} + (9 - 4\sqrt{15})^{n+1}] \]
\[g_n = [(9 + 4\sqrt{15})^{n+1} + (9 - 4\sqrt{15})^{n+1}] \]

Applying the lemma of Brahmagupta between \((\alpha_0, Y_0)\) & \((\tilde{\alpha}_n, \tilde{Y}_n)\),
the other solutions of (3) can be obtained from the relations
\[\alpha_{n+1} = 72f_n + \frac{162g_n}{\sqrt{5}} \]
\[Y_{n+1} = 162f_n + 72\sqrt{5}g_n \]

Taking positive sign on the R.H.S of (2) and using (4), (6) & (7), the non-zero distinct integer solutions of the hyperbola (1) are obtained as follows,
\[x_{n+1} = \frac{1}{2}(3Y_{n+1} - 18 \pm \alpha_{n+1}) \]
\[y_{n+1} = \frac{1}{5}(3Y_{n+1} + 54) \]

The recurrence relations satisfied by \(x_{n+1}, y_{n+1}\) are respectively
\[x_{n+5} - 322x_{n+3} + x_{n+1} = -4608 \]
\[y_{n+5} - 322y_{n+3} + y_{n+1} = -3456 \]

A few numerical examples are presented in the table below.

<table>
<thead>
<tr>
<th>n</th>
<th>(x_{n+1})</th>
<th>(y_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3042</td>
<td>1170</td>
</tr>
<tr>
<td>2</td>
<td>977202</td>
<td>373266</td>
</tr>
<tr>
<td>4</td>
<td>314651394</td>
<td>120187026</td>
</tr>
</tbody>
</table>

A few interesting relations among the solutions are presented below.

1) \(x_{n+1}\) & \(y_{n+1}\) are always even
2) \(x_{n+1} = 0 (\text{mod} \ 2)\)
3) \(y_{n+1} = 0 (\text{mod} \ 2)\)
4) \(\frac{3}{81}[945y_{2n+2} - 360x_{2n+2} - 7614] + 12\) is a nasty number.
5) \(\frac{1}{162}[945y_{2n+2} - 360x_{2n+2} - 7614] + 2\) is a quadratic integer.
is a cubic integer.

\[
\frac{1}{162} \left[945y_{n+3} - 360x_{n+3} - 7614 \right] + \\
3 \left[\frac{1}{162} (945y_{n+1} - 360x_{n+1} - 7614) \right]
\]

Remarkable observations:

1) By considering suitable linear transformations between the solutions of (1), one may get integer solutions for the hyperbola.

\[
131220U^2 - V^2 = 524880
\]

where

\[
U = \frac{1}{162} (945y_{n+1} - 360x_{n+1} - 7614)
\]

\[
V = 810x_{n+1} - 2115y_{n+1} + 17010
\]

103680 \(U_1^2 - V_1^2 = 414720\)

where

\[
U_1 = \frac{1}{162} (945y_{n+1} - 360x_{n+1} - 7614)
\]

\[
V_1 = \frac{1}{144} (5y_{n+3} - 1605y_{n+1} + 17280)
\]

2) By considering suitable linear transformations between the solutions of (1), one may get integer solutions for the parabola.

\[
N^2 = 162M - 52488
\]

Where

\[
M = 945y_{2n+2} - 360x_{2n+2} - 7614
\]

\[
N = 810x_{n+1} - 2115y_{n+1} + 17010
\]

\[
N_i^2 = 640M_i - 207360
\]
M = 945y_{2n+2} - 360x_{2n+2} - 7614

N_1 = -1605y_{n+1} + 5y_{n+3} + 17280

CONCLUSION:

In this paper, we have made an attempt to obtain a complete set of non-trivial distinct solutions for the non-homogeneous binary quadratic equation. To conclude, one may search for other choices of solutions to the considered binary equation and further, quadratic equations with multi-variables.

Acknowledgement:

The financial support from the UGC, New Delhi (F.MRP-5122/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.

References

3x² + xy = 14, Acta Ciencia Indica, Vol.XXXIII M.No2, P.645-646.

x² – 5xy + y² + 8x – 20y + 15 = 0”, Acta Ciencia Indica, Vol. XXXIV M. No.4, p.1803-1805c.

3x² +10xy + 4y² - 4x + 2y - 7 = 0”, Diophantus J. Maths. Vol.1(2), 123-125.

3x² – 8xy + 3y² + 2x + 2y + 6 = 0”, Scholar Journal of Physics, Mathematics and Statistics, Vol.1(2), (Sep-Nov), 41-45.

quation x² – 5xy + y² + 33x = 0”, International Journal of Innovative Science Engineering & Technology, Vol.1(6), 450-453.