A note on Trigonometric moments of Marshall – Olkin Stereographic Circular Logistic Distribution

Y. Phani¹, V. Sastry. Ch², S.V.S. Girija³, A. V. Dattatreya Rao⁴

¹ Associate Professor, Department of Mathematics, Swarnandhra College of Engineering and Technology, Seetharamapuram, A.P., India
² Research Scholar, BSR (RFSMS), Department of Statistics, Acharya Nagarjuna University, Guntur, A.P., India
³ Associate Professor, Department of Mathematics, Hindu College, Guntur, A.P., India
⁴ Professor, Department of Statistics, Acharya Nagarjuna University, Guntur, A.P., India

Abstract - Trigonometric moments play a vital role in evaluating population characteristics. This note is aimed at obtaining trigonometric moments of Marshall – Olkin Stereographic Circular Logistic.

Key Words: Trigonometric moments, Marshall – Olkin, Stereographic projection, and Gradshteyn & Ryzhik formula

1. INTRODUCTION

A random variable Φ_C on unit circle is said to have Marshall-Olkin Stereographic Circular Logistic distribution with location parameter μ, scale parameter $\sigma > 0$ and tilt parameter $\alpha > 0$ denoted by MOSCLG (μ, σ, α), if the probability density and cumulative distribution functions for $\sigma, \alpha > 0$, $-\pi \leq \theta < \pi$ are respectively given by

$$g_{\text{mos}}(\theta) = \frac{\alpha}{2\sigma} \sec^2 \left(\frac{\theta}{2} \right) \left[1 + \alpha \exp \left(-\frac{\tan \left(\frac{\theta}{2} \right) - \mu}{\sigma} \right) \right]^2 \exp \left(-\frac{\tan \left(\frac{\theta}{2} \right) - \mu}{\sigma} \right)$$

(1.1)

$$G_{\text{mos}}(\theta) = \left[1 + \alpha \exp \left(-\frac{\tan \left(\frac{\theta}{2} \right) - \mu}{\sigma} \right) \right]^{-1}$$

(1.2)

Graphs of probability density function and cdf of Marshall-Olkin Stereographic Circular Logistic Distribution $\sigma = 0.25$

Fig 1.1: Graphs of pdf of Marshall-Olkin Stereographic Circular Logistic Distribution $\sigma = 0.25$

Graphs of probability density function and cdf of Marshall-Olkin Stereographic Circular Logistic Distribution for various values of σ, α and $\mu = 0$ are presented in Fig 1.1 through 1.3

Fig 1.2 : Graphs of pdf of Marshall-Olkin Stereographic Circular Logistic Distribution $\sigma = 1.5$
Fig 1.3: The graphs of the cdf of the Marshall-Olkin Stereographic Circular Logistic Distribution

Note: It can be observed from the graphs that the Marshall-Olkin Stereographic Circular Logistic distribution is
1. Asymmetric for $\alpha \neq 1$ and symmetric for $\alpha = 1$
2. Unimodal if $\sigma < 0.5$ and bimodal if $\sigma > 0.5$.

The characteristic function of the Marshall-Olkin Stereographic Circular Logistic model is given by

$$
\varphi_{X_s}(p) = \int_{-\pi}^{\pi} e^{ip\theta} g_{MO}(\theta) d\theta
$$

$$
= \int_{-\infty}^{\infty} e^{i\varphi(\theta)} \left(1 + \alpha e^{-\frac{x}{\sigma}} \right)^{-2} e^{-\frac{x}{\sigma}} dx
$$

(1.3)

Fig 1.4: The Characteristic Function of the Marshall-Olkin Stereographic Circular Logistic model $\sigma = 0.5$

Fig 1.5: The Characteristic Function of the Marshall-Olkin Stereographic Circular Logistic model $\sigma = 0.5$

Fig 1.6: The Characteristic Function of the Marshall-Olkin Stereographic Circular Logistic model $\sigma = 0.5$
2. TRIGONOMETRIC MOMENTS OF MARSHALL–OLKIN STEREOGRAPHIC CIRCULAR LOGISTIC DISTRIBUTION

The first two trigonometric moments are derived by us using formula from (Gradshteyn and Ryzhik, 2007) and are presented in the form of the following result.

Result: Under the pdf of the Marshall–Olkin Stereographic Circular Logistic Distribution with \(\mu = 0 \), the first two

\[
\alpha_p = E(\cos p \theta) \quad \text{and} \quad \beta_p = E(\sin p \theta),
\]

\(p = 1, 2 \) are given as follows:

\[
\alpha_1 = \frac{1}{\sqrt{\pi \sigma}} \sum_{k=0}^{\infty} \left(\frac{1}{\alpha} \right) \alpha^k \frac{k+1}{k+1} G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(\frac{1}{2} \right) \left(1 - \frac{1}{2} \right)
\]

\[
\beta_1 = \frac{1}{\sqrt{\pi \sigma}} \sum_{k=0}^{\infty} \frac{1 - k}{\alpha} \left(\frac{k+1}{\alpha} \right) G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(0, 0, \frac{1}{2} \right)
\]

\[
\alpha_2 = \frac{4}{\sqrt{\pi \sigma}} \sum_{k=0}^{\infty} \left(- \frac{k+1}{\alpha} \frac{k+1}{\alpha} \right) G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(- \frac{1}{2}, 0, \frac{1}{2} \right) + G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(\frac{1}{2}, 0, \frac{1}{2} \right)
\]

\[
\beta_2 = \frac{2}{\sqrt{\pi \sigma}} \sum_{k=0}^{\infty} \frac{1 - k}{\alpha} \left(\frac{k+1}{\alpha} \right) G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(0, 0, \frac{1}{2} \right) - 2G_{31}^{13} \left(\frac{k+1}{2\sigma} \right)^2 \left(0, 0, \frac{1}{2} \right)
\]

where

\[
\int_0^\infty x^{n-1} (u^2 + x^2)^{(1-n)/2} e^{-x} dx = \frac{\mu^2 u^2}{4} G_{31}^{13} \left(\frac{1}{1 - Q - \nu, 0, \frac{1}{2}} \right)
\]

for \(\arg u \pi < \frac{\pi}{2} \), Re \(\mu > 0 \) and Re \(\nu > 0 \) and

Meijer’s G-function (Gradshteyn and Ryzhik, 2007, formula no. 3.389.2).

ACKNOWLEDGEMENT

Second author specifically acknowledge UGC, New Delhi, India for extending financial support for him under the scheme of Basic Scientific Research.

REFERENCE

