
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1096

 Efficient Parallel Data Processing for Multi-Master Cloud Architecture
with Improved Self-Healing Mechanism

Megha Rode1, Amruta Amune 2, Sachin Runwal 3

1 2 3 Computer Network , G.H.Raisoni College of Engineering & Management chas, Ahmednagar, University of pune,
Maharashtra, India

---***---
Abstract - Cloud computing has emerged in a broad

range of applications domain for several open source

services such as Infrastructure-as-a- Service (IaaS) and

it has become well an established building block in IT

infrastructure During the process of cloud middleware

development Major Cloud computing companies have

started to integrate frameworks not only for the high

availability services for end-user, but also it

unfortunately neglected the availability of middleware

components which leads failure. Therefore failures in

middleware components which usually lead to a partial

failure or even total blackout of the cloud

infrastructure.

 In this paper, the new proposed system presents the

design and implementation scalable and highly

available multi-master cloud architecture for the cloud

middleware. In contrast the system suffer Not only

from lack of load balancing technique but also it suffer

from redundancy and data loss, so In the new proposed

system which develop a load balancing algorithm and

fair scheduling algorithm .The new system introduce a

concept of dynamic load balancing algorithm for the

cloud middleware architecture implemented by using

multi-master cloud pattern .The new proposed system

implement a backup server which will handle all task

of failed object so that it has guarantee there will be

no data loss as the backup server is doing all task.

Key Words: Cloud computing, Resource allocation,

Self Healing, High availability

1. INTRODUCTION
Cloud computing has appeared as a new paradigm

which promise virtually unlimited resource. Customer

uses on-demand services and charged for resources based

on pay –as-you –go principal .Today growing numbers of

companies have to process vast amounts of data in a cost-

efficient manner and these companies are operators on

Internet search engines like Google, Microsoft or Yahoo.

Running application on the cloud Infrastructure-as-a-

Service (IaaS) layer makes faults tolerance as an important

issue because failure in this layer result poor quality of

service .The proposed system focus on Management

Software Failures[1] which is based on management

software in Iaas cloud. In this paper the cloud structure is

differentiated into three levels they are Virtual Machine

Level, Cluster Level, and Cloud Level

 1. Virtual Machine Level: In this level have the failure that

gives data loss if no suitable replication mechanisms are

applied.

2. Cluster Level: In this level failure that gives a node or

even whole bunches of node are no longer available

3. Cloud Level: A failure in this level is most severe, which

results in an unavailability of the entire cloud.

Client

Fig -1: Common Cloud Middleware Stack Master –Worker
Architecure

In this paper the proposed system describe the

system implement a backup Manager which handles all

the task and information of failed object so that there is no

data loss as a backup server is doing all task. This paper is

organized as follows: section II discusses related work in

this field and which will show the differences to other

approaches. Section III describes Proposed Work of the

system The section IV Dynamic Load Balancing Algorithm

Cloud Manager Cloud Manager

Cloud Manager

Node Controller

Node Controller

Backup Manager

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1097

section V explain fair scheduling algorithm. Section V I

gives the mathematical model section VII gives the

performance evaluation and we conclude our results

2. RELATED WORK

The described approaches based on Common Cloud
Middleware Stack which is similar to the known open
source IaaS platforms like Eucalyptus, Open-Stack, open-
nebula[8], snooze, Nephele, CloudDisco .The importance
for failover mechanism technique was recognized by
Eucalyptus. Eucalyptus[9] consist of following parts,
Cloud Manager, Cluster Controller(CC), Node
Controller(NC), storage controller(SC) and Walrus on a
single machine called as a Controller which perform
continuously scheduling and monitoring and it consist of
two types of controller the primary Controller and the
secondary Controller. It is used for simulation and
evaluation function in that a fast switch over mechanism
occurred which is in an error case in Eucalyptus. This
approach has the some disadvantages with the high
availability support a faster switchover mechanism are
irrelevant, because it makes an error case not only the
interface to the cloud would be affected, but also
additional components of the installation will be affected.

 A.stanik has noted the CloudDisco[4] architecture
it consist of Cloud Manager (CM), Cluster Controller (CC),
and Node Controller (NC). On the top layer consist of the
Cloud Manager represents the interface for the user to
request list of available hardware. The cloud Manager
receiving request and sent it to cluster controller. Cluster
controller propagates all requests to node controller
which execute request and provide all resource
information

Odej kao describe a Nephele’s architecture [5]

consist Job Manager (JM), Task manager(TM), Cloud
controller and Persistence storage. Job manager which
receive client or user request and it is responsible for
scheduling and co-ordinates their execution. Each
instances runs so called as task manager a task manager
receive one and more task form job manager execute it
and after completion it gives possible error to the job
manager .with the help of cloud controller the job manager
allocate and reallocate resources .persistence storage is
used to store input data and to receive output data so here
also it uses fast switchover mechanism so this approach
having some disadvantages with the high availability
support faster switchover mechanism are irrelevant and it
affect on all components.

Similarly in Snooze [6] architecture the Group

Leader(GL) which is interface with the user and it send

request which gives a list of available Resources and to

setup the connection .The Group Leader receiving a

request for all available Resources sent it to all connected

Group Manager(GM) which is same as cluster

controller(CC) in Eucalyptus . The Group Manager collects

the list of components and returns it to the Group Leader

which is same as cloud Manager which passes it back to

the user. If the Group Leader gets unavailable then the

whole service will becomes unavailable, even though the

Group Manager and thus the resources are still available

The Local Controller(LC) which is same as Node

controller(NC) which performing scheduling and

monitoring function and it assign all information to the

group Manager. In the further course of this text, proposed

system restrict ourselves to the naming of Eucalyptus

components, as Cloud Manager is equivalent to Group

leader in Snooze Besides, the Cluster Controller and Group

Manager which is same as in Eucalyptus [3]. In OpenStack

the components are called API Server (nova-api),

Scheduler (nova-scheduler) and Compute Worker (nova-

compute) [1]. Note that the mentioned components have

similar or even equal functions within the cloud system

and the architectures are alike the pattern

3. PROPOSED WORK
The pattern described in this paper is based Common

Cloud Middleware Stack Master –Worker Architecure

which is same as that of master-worker architecture [1] .

It follows the master -worker pattern as depicted in figure

2 In contrast to master-slave architecture. In this system

the master nodes called as Cloud Manager (CM) and they

are interconnected with each other by using a full-mesh

network topology and they are communicating with each

other by using full mesh network topology. the system

consist of number of worker node here each worker node

called as the Cluster Controller (CC) and they are

connected to exactly one of the master nodes which

announces all the updates as well as it gives a list of all

information known CMs in the system since all CMs are

equal a user and a Cloud controller can connect to any

Cloud Manager. Middleware architecture in Multi-master

pattern can be subdivided in the following four

components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1098

Fig -2: Middleware architecture in Multi-master pattern

1. User/ Client:

 A user must start the virtual machine (VM) which runs so

it is called as cloud Manager (CM). A user must register

itself in cloud to interact with the cloud interface after that

user has to interact to cloud manager first.

2. Cloud Manager(CM):
The Master node which is cloud manager or cloud

controller. It is the entry point for both the user and

administrator. It provides three type services resource

service, data service and interface service .This interface

between the cloud environment and a user is a significant

component which should provide high availability support

and scalability mechanisms to achieve high quality of

service requirements which is described approach it can

be adapted to these systems. The Cloud Manager is the

interface for the user request which gives a list of available

resource and it will setup the connection to one of

components. The Cloud Manager receiving a request for all

available resource components sent it all these are

connected Cluster Controller. The Cluster Controller

collects all the list of components and returns it to the

Cloud Manager, which passes it back to the user. If the

Cloud Manager gets unavailable then the whole service

becomes unavailable .Even though the Cluster Controller

and thus the resource components are still available

3. Cluster Controller(CC)& Node Controller(NC):

4.

The Cloud Manager receives requests from the user that is

list of available resources and it transfers them to its

Cluster Controllers. The Cluster Controllers in turn

transfer the entire request to the Node Controllers which

execute the request and provide all the resource

information. In such architecture a failure of the Cloud

Controller is an error in the Cloud Level and will lead to an

outage of the entire cloud. On the other hand, a failure in a

Cluster Controller is an error in the Cluster Level and will

affect only an individual part of the cloud and whole bunch

of cloud will fail so it will be no longer together.

5. Backup Manager(BM):

When some Cloud Managers fail and the Cluster

Controllers lose the connection due to network problem

the cloud management interface a self-healing of the cloud

middleware component is initiated automatically and the

self-healing accomplishes a reconnection mechanism of

the Cluster Controllers. Thus, the cloud resources are still

available after a Cloud Manager crashed, since the Cluster

Controllers are re migrated by using another failover

instance. There by a failure in the Cluster Level can be

eliminated. Moreover, the reconnection attempts of

multiple Cluster Controllers are load-balanced between all

residual Cloud Managers in order to avoid inherited error

and to raise the performance .Backup Manager is in

picture when, Cloud Manager get failed while

communicating to user, as per previous architecture they

not consider this failure case, so when cloud manager gets

failed all calls from user passed to backup manager to

handle all process. Here proposed system will propose the

backup server for cloud manager. There will be separate

backup server for each cloud manager which takes the

backup of that CM’s CC and NC. Means it will take the

backup of that particular cloud area. Whenever CC or NC

fails then at that time backup server will be activated and

handles the task of that particular object. If CM fails then

also backup server will take charge of that CM .proposed

system develop a system which takes the backup after

particular time span. It ensures the no loss of data

guarantee

4. DYNAMIC LOAD BALANCING ALGORITHM

Dynamic Load balancing is a technique [7] to enhance

resources by exploiting dynamic resource allocation for

parallel data processing in cloud computing and to

increase throughput improvisation . It is used to reduce

response time and to increases an appropriate

distribution of the application. Load balancing algorithms

has different type of policies Information policy, Resource

type policy, Triggering policy, Location policy, Selection

policy. Load balancing algorithms is divided into two types

such as static algorithm and dynamic algorithm. Static load

balancing in this algorithm which allocate the resources

and task to the workstations which distribute the task

parallel. Multicomputer with dynamic load balancing

algorithm which allocates or reallocate resources at

runtime based on task information present in the system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1099

which may determine when and whose tasks can be

migrated or transfer they use current or recent load

balancing information when making distribution

decisions.

Not Balanced

Fig.3. Flowchart of Dynamic Load Balancing

algorithm

Multicomputer uses dynamic load balancing algorithm

with dynamic load balancing it can perform allocation and

reallocation resources at runtime based on a priori task

information, which may determine when and whose tasks

can be migrated. As a result, dynamic load balancing

algorithms can provide a significant way for the

improvement in Performance over other algorithms. Load

balancing should take place when the scheduler schedules

the task to all processors. In Dynamic load balancing

algorithm the Arrival of any new job is putted in ready

queue and passes it to any particular node. Scheduler will

schedule the job to particular processor. It will reschedule

the jobs if load is not balanced and it Allocate the job to

processor when it’s free and lastly it will Release the

processor after it competition of the whole process.

5. FAIR SCHEDULING ALGORITHM
The Fair scheduling algorithms [7] is dynamic It
continuously checks the processes. Fair scheduler does
not allocate job directly to the refer processor it first check
the balance of all process if there other processor whose
load is low then refer processor then allocate job to other
processor rather than refer processor .it addresses the
fairness issues by using mean waiting time it scheduled
the task by using fair completion time and rescheduled by
using mean waiting time each task to obtain load balance.
In Fair Scheduling algorithm task is divided into multiple
processor .In that the task with unsatisfied demand gets
equal shares. Tasks are present in ready queue and it
scheduled with fair completion time. The fair completion
time of the task is approximate by its fair task rates using a
max-min fair sharing algorithm. The tasks are assigned to
processor by increasing order of fair completion time. In
this algorithm, tasks with a higher priority order get
completed first which means that tasks are taken a higher
priority than the others which leads to starvation that
increases the completion time of tasks and load balance is
not guaranteed. Let N be the number of tasks scheduled as
time given Ti, here i=1, 2… N it gives the duration of the
task when it is executed on a processor in million
instructions per second. Let P be the number of processors
and its total computation capacity it is indicated by C and
it is defined as Let p is the multiprocessor system and its
computation capacity for processor j is defined as Cj The
earliest time of the task i started from the processor j is
the maximum communication delay and the completion

time between the task ith

 and j

th
processor. The completion

time of the task is zero when there is no task allocated to
processor j, otherwise it estimated the remaining time that
are already allocated to processor j. The demanded
computation rate is given by Xi

of a task T

i
it will play an

important role to estimate. It is estimated by the
computation capacity
Input: A set of N be the number of task and P be the

number of processor having the computational capacity c
j
.

Output: A schedule of N task

1. Create set of Ready Queues.
2. qsize < N/P

Start

Initialization of Algorithm

Scheduling Task

Check Load

Balanced or not

Setup

Connection

Completed

Calculate Minimum waiting time for

scheduled task

Reschedule the jobs

Check Load
Balancer

Release the processor after it‘s complete the whole job

Stop

Yes

Y

Balanced

Not Balanced

No

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1100

3. for each queue q
i
in Q

4. While there are the tasks present in the Ready Queue
do,
5. Assign demanded computation rate of the task Xi

6. k= C/N
7. If X

i
< k

8. Assign demanded computation rate X
i
to i

th
task as fair

rate
9. Else

10. Assign k to i
th

task as fair rate.
11. Calculate the fair completion time t

i
(x)

12. End while
13. End Loop
14. Arrange the task in growing order or in increasing
based on their t

i
(x) and submitted to processor.

 15. While the Load of any processor is greater than
average load processors do
16. Calculate the mean waiting time [MWT] for each
scheduled task

17. If Z
x

y
> 0

18 Migrated or transfer the tasks are determined by using
criteria of processor capacity.
19. Each processor which has least capacity is selected for
migration.
20. End If
21. End While

6. MATHEMATICAL MODULE

Let System S is set of User request with a cloud manager,
cloud controller and node controller.
S={Iur, CM, CC, NC, BM}
Where S= System
Iur= User Request
CM= Cloud Manager
CC= Cluster controller
NC= Node controller
BM= Backup Manager

INPUT

 S

OUTPUT

1. User Login Phase
Set I
I0= User login Id
I1= User Password
I2= Credential validation
User Interface
Set H
H0= object creation for specific logged user H1= Loading
plans
User Request
Set R
R0= create request ticket
R1= send user request to server
R2= Validation check at CM
4. Cloud Manager
Set M
M0= Take user request
M1= Checking user request
M2= checking all server status
M3= allocation server
5. Cloud Controller
Set C
C0= Create instance for user request
C1= Allocate/ Deallocate task
6. Node Controller
Set N
N0= create instance for task
N1=execute task at VM level
N2= Send result to CC
7. Backup Manager
Set B
B0= create instance for cc
B1= manage task
B2=backup all work
B3= send result to CM
Union theory
I= {I0,I1,I2}
H={H0,H1,I0}
SET I U H : {I0, I1, I2, H0, H1}
SET R= {I0, H0, H1, R0, R1, R2}
SET I U H U R: {I0, I1, I2, H0, H1, R0, R1, R2}
SET M= {I0, H0, H1, R0, R1, M0, M1, M2, M3}
SET I U H U R UM :{
I0,I1,I2,H0,H1,R0,R1,R2,M0,M1,M2,M3}
SET C= {I0, H0, H1, R0, R1, M0, M1, M2, C0, C1}
SET I U H U R U M UC
:{I0,I1,I2,H0,H1,R0,R1,R2,M0,M1,M2,M3,C0,C1}
SET N ={I0,H0,H1,R0,R1,M0,M1,C0,C1,N0,N1,N2}
SET I U H U R U M U C U N:
 {I0,I1,I2,H0,H1,R0,R1,R2,M0,M1,M2,M3,C0,C1,N0,N1,N2}
SET B ={I0,H0,H1,R0,R1,M0,C0,N0,B0,B1,B2,B3}
SET I U H U R U M U C U N U B:
{I0,I1,I2,H0,H1,R0,R1,R2,M0,M1,M2,M3,C0,C1,N0,N1,N2,
B0,B1.B2.B3}

Iur

 CM

 CC

 NC

 BM

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1101

7. PERFORMANCE EVALUATION

 This section describe and analyzes the result obtained
from the evaluation of performance analysis, in that
comparisons has been made based upon certain metrics
such as Mean Waiting time(MWT),Mean Execution
time(MET),Throughput(THP). It is expected that the
failure pattern will improve as compared to other Existing
system .The Result expected from proposed system shown
below in Table-I by using comparison table .The Proposed
system provide better high availability

Table -1: Result Evaluation by The Performance Analysis

8. CONCLUSIONS

The proposed system focuses more on high available cloud
Middleware components in the future to improve the
scalability of cloud environments. Future work will focus
on redundancy In addition with performance
measurements and comparisons to other approaches in
further publication In this paper the proposed system
describes the failover pattern for cloud middleware in
multi-.master architecture in master-worker pattern,
which prevents the failure of cloud in case of the failed
master node. The proposed system describe the
communication model for Middleware architecture in
Multi-master pattern in cloud computing. Additionally
systems have introduced a self healing mechanism for this
Middleware architecture in multi-master pattern, which
leads to an automatic reconnection mechanism of worker
nodes to another master of the cloud. Furthermore the
reconnection mechanism has the guarantees the network
consistency as well as it is balanced by an individual
failover list. Here the system described a better load
balancing technique to distribute the task from the user
requests according to the load of the master nodes. Master
of the cloud load balancing technique to distribute the
user requests according to the load of the master nodes.

ACKNOWLEDGEMENT

I like to thanks people for helping me for giving
importance guidance about project work. I am very
thankful to those who help me during my paper publishing
as well as project dissertation stage. I am thankful to
journal for giving me best opportunity to publish my
paper. I am sincerely thankful to my head of department,
my project guide and other staff members from
department for supporting me.

REFERENCES

[1] Alexander Stanik, Mareike Hoger, and Odej Kao,

“Failover Pattern with a Self-Healing mechanism for
high availability Cloud Solutions” in 2013
International Conference on Cloud Computing and
Big Data.

[2] A. Undheim, A. Chilwan, and P. Heegaard,
“Differentiated availability in cloud computing slas,”
in Proceedings of the 2011 IEEE/ACM12th
International Conference on Grid Computing, ser. GRID
’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 129–136.

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soma ,and D. Zagorodnov , “The eucalyptus open-
source cloud –computing system, in Cluster
Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE,
2009, pp. 124–1

[4] A.Stanik, M. Hovestadt, and O. Kao,“Hardware as a
service(haas):Physical and virtual hardware on
demand,” in Proceedings of the 4th IEEE Intl.
Conference on Cloud Computing Technology and
Science, ser. CloudCom 2012. IEEE publishers, 2012

[5] Warneke, D., Kao, O.: Exploiting dynamic resource
allocation for effcient parallel data processing in the
cloud. IEEE Transactions on Parallel and Distributed
Systems22 (6), 985{997 (2011)

[6] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable
and autonomi virtual machine management
framework for private clouds,” in Proceedings of the
2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), ser.
CCGRID ’12.Washington, DC, USA: IEEE Computer
Society, 2012, pp. 482–489. [Online]. Available:
http://dx.doi.org/10.1109/CCGrid.2012.71

[7] U.Karthick Kumar “ A Dynamic Load Balancing

Algorithm in Computational Grid Using Fair
Scheduling”

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1102

[8] Fault Tolerance 3.8, OpenNebula Project
(OpenNebula.org), 2012,

[9] Availableonline

http://opennebula.org/documentation:rel3.8:ftguide

[10] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “An

availability Model for eucalyptus platform: An
analysis of warm-standy replication Mechanism,” in
Systems, Man, and Cybernetics (SMC), 2012 IEEE
International Conference on, oct. 2012, pp. 1664 –
1669.

[11] M. Treaster, “A survey of fault-tolerance and
 fault- recovery techniques in parallel systems,”
 CoRR, vol. abs/cs/0501002, 2005.

[12] Y. Zhou, P. M. Chen, and K. Li, “Fast cluster failover

using Virtual memory-mapped communication,” in
Proceedings of the 13th International conference on
Supercomputing, ser. ICS ’99. New York, NY, USA:
ACM, 1999, pp. 373–382. [Online]. Available:
http://doi.acm.org/10.1145/305138.305215

[13] D. Singh, J. Singh, and A. Chhabra, “High availability of
clouds:Failover strategies for cloud computing using
integrated check pointing Algorithms,” in
Communication Systems and Network Technologies

 (CSNT), 2012 International Conference on, may 2012

