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Abstract - Artificial Intelligence (AI) and robotics are transforming the landscape of space exploration by enabling 
autonomous decision-making, adaptive mission planning, and resilient operations in extreme environments. This paper 
presents a consolidated review of recent advancements in AI-driven robotics, focusing on applications in optical 
experimentation, planetary surface exploration, spacecraft guidance, and mission optimization. The discussion integrates 
developments from five key research works: the OptoMate platform for automating free-space optics experiments using fine-
tuned large language models (LLMs) and precision robotics; JAXA’s deployment of autonomous rovers and pinpoint landing 
systems in asteroid and lunar missions; legal and governance analyses addressing the risks and liabilities of AI operations in 
space; deep reinforcement learning (DRL) frameworks for navigation, hazard detection, and resource allocation; and 
evolutionary optimization techniques for interplanetary trajectory design. The review identifies performance gains achieved 
in both simulated and real- world missions while highlighting limitations in explainability, simulation-to-reality transfer, and 
regulatory compliance. Future research directions include hybrid AI-human decision systems, legal-aware mission planning, 
and explainable AI for high- stakes operations. This synthesis aims to guide researchers toward more reliable, transparent, 
and accountable AI- driven space systems. 
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I.INTRODUCTION 

Space exploration has come a long way— from the early days of fully human- controlled missions to today’s use of smart, 
independent systems. Artificial Intelligence (AI) and robotics are now at the center of this change. They help spacecraft and 
rovers work on their own, make quick decisions, and adapt to unexpected problems. This is especially important for 
missions far from Earth, where communication delays can take several minutes and 
Conditions can change without warning. With AI, robots in space can plan their paths, avoid dangers, use resources wisely, 
and complete their goals without constant human instructions.   In recent years, technologies like deep reinforcement 
learning (DRL), large language models (LLMs), computer vision, and evolutionary optimization have greatly improved 
what autonomous systems can do. For example, AI-powered robots can now design and set up complex optical 
experiments in a lab. DRL-based systems can help rovers find safer and faster routes on difficult terrain. Algorithms 
inspired by nature can also guide spacecraft along the best possible path while balancing fuel, time, and safety. 

Space agencies like Japan’s JAXA, Europe’s ESA, and the United States’ NASA have already shown how powerful these 
technologies can be. JAXA’s Hayabusa-2 mission used small hopping rovers to explore an asteroid’s surface without human 
control, and their SLIM lander demonstrated highly accurate landing technology. ESA and NASA are also testing AI for 
coordinating groups of satellites, servicing spacecraft in orbit, and navigating in dangerous planetary environments. These 
advances make missions more efficient and open the door for long-term projects like building a base on the Moon or 
exploring Mars. But as AI becomes more common in space missions, it brings new challenges. The rules and laws for space 
activities were written decades ago and don’t fully cover AI’s unique issues, like who is responsible if an autonomous 
system causes an accident, or how to handle massive amounts of space-generated data. This means engineers, scientists, 
and policy-makers need to work together to make sure AI systems are safe, trustworthy, and follow international space 
laws. 
 
This paper reviews recent progress in AI- based robotics for space missions. It looks at five key areas: AI in optical 
experiments, robotics for planetary exploration, legal and policy issues, DRL-based mission planning, and advanced 
algorithms for spacecraft guidance. By studying these areas, we highlight the main achievements, the challenges that 
remain, and possible future directions to make AI systems for space more reliable, transparent, and ready for real 
missions. 

I. Literature Review 

Uddin et al. (2025) presented the OptoMate platform, a groundbreaking example of combining generative AI with robotics 
for the automation of free-space optical experiments. The system integrates a fine- tuned LLaMA3.1-8B-Instruct large 
language model with Quantum-informed Tensor Adaptation (QuanTA) to design optical setups that are both spatially and  

Volume: 12 Issue: 11 | Nov 2025 www.irjet.net 

http://www.irjet.net/
http://www.irjet.net/


International Research Journal of Engineering and Technology (IRJET) E-ISSN: 2395-0056 

P-ISSN: 2395-0072 Volume: 12 Issue: 11 | Nov 2025 www.irjet.ne
t 

                 

© 2025, IRJET       |       Impact Factor value: 8.315       |       ISO 9001:2008 Certified Journal       |     Page 343 
 

 
physically valid. OptoMate follows a design–assembly–verification loop, where the AI model first generates a detailed plan 
for an optical experiment, the instructions are sent to a 7-degree- of-freedom robotic arm, and a computer vision system 
verifies alignment and precision before proceeding. This feedback mechanism ensures that the physical implementation 
matches the AI- generated design, reducing assembly errors. In tests, OptoMate achieved 41.2% pre- validation accuracy, 
outperforming both prompt-engineered GPT-4o and zero-shot baselines. Uddin et al. emphasize the platform’s potential for 
space missions, where autonomous optical systems could handle tasks like laser-based communication, interferometry, or 
adaptive optics without human supervision, especially in deep- space environments where communication delays are 
significant. 
 
Kubota (2020) offered an in-depth overview of the Japan Aerospace Exploration Agency’s (JAXA) AI-enabled robotics 
programs, focusing on asteroidand lunar missions. In the Hayabusa-2 mission, the deployment of MINERVA- 
II rovers marked a significant achievement in autonomous planetary robotics. Unlike traditional wheeled rovers, these 
compact robots moved by hopping—a design choice dictated by the asteroid Ryugu’s extremely low gravity, which renders 
wheels ineffective. Operating autonomously, the rovers navigated hazardous terrain, captured over 600 high-resolution 
images, and transmitted them to Earth. The mission also deployed a Small Carry-on Impactor (SCI) to create an artificial 
crater, enabling the study of subsurface material composition. Kubota also discusses the Smart Lander for Investigating 
the Moon (SLIM), which uses AI-assisted visual navigation and hazard detection to achieve pinpoint landings within 100 
meters of the target site. These innovations demonstrate how AI can improve landing accuracy, reduce operational risks, 
and enhance surface exploration efficiency in resource- limited environments. 

Gal et al. (2023) shifted the focus to governance, policy, and legal challenges associated with AI in outer space. They 
critically analyze how the current international space law framework— primarily the Outer Space Treaty (1967) and the 
Liability Convention (1972)—fails to address scenarios involving autonomous decision-making systems. Three primary 
challenges are identified. First, liability ambiguity, where determining responsibility for AI-caused damage or collisions 
remains unclear, particularly if the AI acts 

unpredictably. Second, data governance, as AI-driven missions generate massive datasets that raise questions about 
ownership, privacy, and equitable access. Third, accountability, since AI decisions are often based on complex algorithms 
that are not easily interpretable, making post- incident investigation difficult. Gal et al. argue for integrating AI governance 
models into space law to ensure transparent decision-making, traceability, and fair accountability, especially as more 
commercial actors enter the space domain. 
 
Santwani and Rani (2024) provided a detailed study of Deep Reinforcement Learning (DRL) techniques for enhancing the 
autonomy of space robotics. DRL enables robots to learn optimal strategies through trial-and-error interactions with the 
environment, making it well-suited for unpredictable planetary terrains. They introduce AlphaNavNet, an adaptive path- 
planning system that learns to navigate partially known terrains by balancing safety and efficiency. AstroPlannerNet is 
presented as a mission scheduling system that optimizes resource allocation under strict time and energy constraints. 
StellarRL, a multi-agent DRL framework, coordinates fleets of robots for collaborative tasks such as asteroid mining. A 
notable contribution is the integration of Explainable AI (XAI) methods, ensuring that decisions—such as hazard 
avoidance maneuvers—can be explained and verified by human operators. Simulation results showed StellarRL 
improving multi-robot coordination efficiency by more than 20% compared to conventional approaches, suggesting 
strong potential for real-world deployment in cooperative space missions. 
 
Izzo et al. (2018) reviewed the application of evolutionary algorithms and AI-based optimization techniques in spacecraft 
guidance and control. They compared the performance of algorithms such as Differential Evolution (DE), Particle Swarm 
Optimization (PSO), and Covariance Matrix Adaptation Evolutionary  Strategy  (CMA-ES) in solving complex 
trajectory design problems. CMA-ES was found to outperform DE and PSO in multi-objective optimization scenarios, 
particularly when trade-offs between fuel consumption, travel time, andmission risk had to be considered. The study also 
examined Monte Carlo Tree Search (MCTS) for sequential decision- making and discussed hybrid approaches that combine 
traditional astrodynamics with AI optimization. These hybrid methods not only improved solution quality but also reduced 
computational time, making them highly applicable for designing interplanetary transfer trajectories and rendezvous 
maneuvers under tight mission constraints. 
 
Taken together, these studies illustrate the breadth of AI’s role in modern space exploration, spanning laboratory 
automation, planetary surface mobility, spacecraft guidance, and the legal frameworks that govern their use. They show 
that AI is not just a technical enhancement but atransformative force that impacts both the operational capabilities and the 
governance of space missions. The literature indicates a clear trend toward greater autonomy, improved adaptability, and 
interdisciplinary integration, setting the stage for the methodologies and results discussed in the subsequent sections. 
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II. Methodology 

The reviewed studies collectively employ a range of artificial intelligence techniques, robotics architectures, and 
optimization strategies to enhance autonomy, precision, and decision-making in space exploration systems. While the 
individual applications vary—from laboratory automation to planetary landing and trajectory optimization—they share 
common methodological principles that can be integrated into a unified operational framework. 
 
The general process begins with mission objective definition, where requirements such as navigation accuracy, task 
allocation, or experimental setup are translated into formal problem statements. For laboratory- based automation tasks, 
large language models (LLMs) are fine- tuned using domain-specific adaptation methods to generate experimental designs 
that adhere to spatial and physical constraints. These models produce step-by- step assembly instructions, which are 
executed by multi- degree-of-freedom robotic arms equipped with precise motion control algorithms. Computer vision 
modules are used to verify the physical implementation, employing image recognition, edge detection, and geometric 
validation to ensure component alignment and correct configuration. This closed-loop control system integrates feedback 
from the vision module to the AI planner, allowing iterative refinement until the setup meets the required specifications. 
 
For planetary exploration missions, the methodology incorporates autonomous mobility algorithms capable of 
operating in low-gravity and unpredictable environments. Instead of relying solely on wheeled locomotion, 
hopping and other alternative mobility mechanisms are deployed, supported by onboard visual navigation systems. 
These systems process terrain images in real time, using feature extraction and hazard detection algorithms to identify 
safe landing zones or movement paths. Advanced guidance, navigation, and control (GNC) systems integrate AI-based 
terrain recognition with preloaded surface maps, enabling pinpoint landings and obstacle avoidance. Hazard 
detection operates in both pre- landing and in-motion phases, allowing robots or landers to adjust their trajectories 
dynamically. 
 
For decision-making and adaptive control, Deep Reinforcement Learning (DRL) plays a central role. DRL agents are 
trained in simulated environments that model 

the gravitational, visual, and physical characteristics of target celestial bodies. Architectures such as convolutional neural 
networks (CNNs) are used for processing visual input, while recurrent neural networks (RNNs) handle temporal 
dependencies in decision-making. In multi- robot scenarios, policy-sharing and decentralized coordination frameworks 
enable cooperative behavior, with each agent learning to optimize its actions for collective mission success. Explainable AI 
components are integrated into the decision pipeline, generating interpretable visualizations and reasoning traces that 
mission operators can review for transparency and trust. 
 
In spacecraft guidance and control, evolutionary optimization algorithms— including Differential Evolution 
(DE), Particle Swarm Optimization (PSO), and Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)—are 
applied to multi-objective trajectory design problems. These algorithms iteratively refine solutions by exploring large, 
nonlinear search spaces, balancing objectives such as fuel efficiency, travel time, and mission safety. Monte Carlo Tree 
Search (MCTS) is employed for sequential maneuver planning, particularly in missions requiring multiple gravity assists or 
complex rendezvous sequences. Hybrid methods combine AI optimization with traditional orbital mechanics models, 
ensuring that computationally derived solutions remain physically valid. 

Finally, a governance and compliance layer is included in the methodological framework to ensure alignment with 
international space laws and ethical AI principles. This involves mapping operational AI capabilities to regulatory 
requirements, defining accountability measures, and establishing traceability mechanisms for autonomous decision- 
making processes. 
 
Overall, the methodology is characterized by the integration of AI-based planning and control algorithms with domain-
specific robotics and aerospace engineering models, supported by closed-loop feedback systems, simulation-to-reality 
transfer, and explainable decision- making tools. This combination ensures that autonomous space systems are both 
technically capable and operationally trustworthy, capable of functioning effectively in the challenging and unpredictable 
conditions of space exploration. 
 

III. Results and Discussion 

The application of AI-powered automation in laboratory- based optical experiments produced notable improvements in 
precision and repeatability. By combining fine-tuned large language models with robotic arms and computer vision 
verification, experimental setups achieved alignment accuracy within sub-millimeter tolerances. This closed-loop process 
reduced configuration errors and assembly time when compared to manual methods, 
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demonstrating strong potential for autonomous optical calibration in space applications such as laser communication 
and astronomical instrumentation. 
 
In planetary surface exploration, AI- enhanced mobility systems provided superior navigation capabilities in low- gravity 
and irregular terrain environments. Robots equipped with hopping mechanisms were able to traverse asteroid and lunar 
surfaces more effectively than traditional wheeled designs. Real-time visual navigation, supported by hazard detection 
algorithms, allowed autonomous identification of safe paths and landing zones, improving operational safety and reducing 
reliance on ground control instructions. 

Pinpoint landing technologies also showed significant advancements. By integrating AI-assisted terrain recognition with 
preloaded surface maps, landing systems achieved high positional accuracy, often within 100 meters of target coordinates. 
These systems dynamically adapted during descent to avoid hazards such as slopes, large rocks, or shadowed areas, 
ensuring a safer and more reliable landing process in unpredictable environments. 
 
In the context of cooperative multi-robot missions, deep reinforcement learning architectures improved efficiency and 
adaptability. Simulations of asteroid mining operations demonstrated that multi-agent frameworks completed task 
allocations more than 20% faster than baseline approaches. Decentralized policy-sharing allowed robots to respond to 
local changes without compromising coordinated mission objectives, increasing overall system resilience. 
 
Explainable AI components added value to these operations by providing clear justifications for decision-making 
processes. Operators were able to review visual and analytical reasoning for route choices, hazard avoidance maneuvers, 
and task assignments, which increased transparency and trust in autonomous decision- making systems. This capability is 
particularly valuable for missions requiring human oversight despite high levels of autonomy. 
 
Spacecraft trajectory design and control also benefited from advanced optimization methods. Covariance matrix 
adaptation evolutionary strategy delivered the most balanced results in multi-objective optimization tasks, effectively 
managing trade-offs between fuel efficiency, travel time, and mission safety. Hybrid approaches that combined AI 
optimization with classical astrodynamics reduced computation times while maintaining physically valid and mission-
feasible trajectories. Monte Carlo tree search proved especially effective for sequential maneuver planning in missions 
involving complex gravity assist sequences. 

IV. Future directions 

Future work should focus on improving AI models for space exploration by training them with more mission- specific 
datasets. Combining simulated and real operational data will help these systems make better decisions in unstructured and 
unpredictable environments. 
 
Planetary mobility could benefit from hybrid systems that combine hopping, rolling, and legged locomotion in a single 
robot. AI-driven adaptability would allow dynamic switching between movement types depending on the terrain, 
improving mission efficiency and durability. 
 
Precision landing technologies can be enhanced through multi-sensor fusion, integrating visual data with LiDAR, radar, 
and thermal imaging. This would increase reliability in low-light or dust-heavy environments such as lunar poles and 
shadowed craters.  For multi-robot missions, decentralized learning and swarm intelligence can enable large fleets to 
operate effectively with minimal communication. This will be particularly useful in deep-space missions where 
communication delays are unavoidable. 

Explainable AI should be advanced to provide clearer, real- time reasoning for autonomous decisions. This would increase 
trust from mission operators and improve post- mission analysis. 

Spacecraft trajectory planning could explore quantum- enhanced optimization for faster and more accurate solutions. 
Real- time adaptive corrections onboard could allow spacecraft to respond to changing conditions without waiting for 
ground commands 
 

V. Conclusion 

This study reviewed advancements in artificial intelligence, robotics, and optimization techniques that are redefining the 
capabilities of modern space missions. Across the five referenced works, a clear trend emerged—AI is transitioning from a 
support tool to a mission-critical component, enabling greater autonomy, precision, and operational efficiency in both 
terrestrial test environments and real extraterrestrial applications. 
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Research on automated laboratory optical systems demonstrated how large language models, when fine- tuned with 
domain- specific adaptations, can work alongside robotic arms and computer vision to achieve sub-millimeter assembly 
accuracy. Such closed-loop automation has immediate applications in space-based optical systems, where autonomous 
alignment and calibration are vital for communication and scientific instrumentation. 
Planetary exploration studies showcased the benefits of AI- enhanced mobility and landing systems, particularly in low- 
gravity or hazardous terrains. Hopping mechanisms, AI- based hazard detection, and terrain recognition combined with 
preloaded maps achieved safe and precise landings within meters of targets. These methods reduced human intervention 
requirements, making operations more efficient and resilient. 

Deep reinforcement learning approaches for multi-robot coordination proved effective in simulated asteroid mining 
scenarios, enabling faster task allocation and adaptability through decentralized decision-making. The addition of 
explainable AI improved transparency, allowing human operators to trust and verify autonomous decisions in critical 
missions. Similarly, spacecraft guidance research revealed that evolutionary optimization algorithms— especially 
covariance matrix adaptation evolutionary strategy—can produce efficient, balanced trajectories, while hybrid methods 
improved computation times without compromising physical accuracy. 
 
Finally, governance-oriented analysis emphasized that while technical advancements are significant, regulatory 
frameworks lag behind. Current space law does not adequately address liability or accountability for AI-driven systems 
operating independently. Addressing these gaps will be critical for safe and responsible mission deployment. 
 
In summary, the collective findings of these studies confirm that AI-driven systems offer substantial improvements in 
autonomy, adaptability, and performance across the space mission lifecycle. However, technical progress must be matched 
by legal and operational safeguards to ensure that these systems can be deployed responsibly, sustainably, and effectively 
in the next generation of space exploration. 
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