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Abstract- Machine learning has become increasingly
important across various domains, yet its complexity
remains a significant barrier for non-expert users.
Traditional ML workflows require extensive programming
knowledge, understanding of statistical algorithms, and
expertise in data preprocessing techniques, creating a
substantial skills gap that prevents domain experts from
leveraging ML capabilities. This paper presents DataSage, a
comprehensive web-based automated machine learning
platform designed to democratize access to machine
learning by providing an intuitive, end-to-end solution for
users without technical expertise. The platform features an
interactive Vuejs frontend integrated with a FastAPI
backend powered by scikit-learn, offering six automated
data preprocessing modules: column selection, missing
value handling, duplicate removal, outlier detection,
categorical encoding and Feature scaling. DataSage
supports both classification and regression tasks, providing
intelligent algorithm recommendations based on dataset
characteristics and problem types. The system includes
visual analytics capabilities with real-time performance
metrics, confusion matrices, and feature importance
visualizations. Experimental evaluation on four benchmark
datasets demonstrates that DataSage achieves comparable
accuracy to manually optimized models while reducing
development time significantly and eliminating the need for
coding expertise.
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1. INTRODUCTION

Machine learning has transformed numerous fields by
enabling data-driven decision-making and
automation[6][10], but its adoption remains limited
among non-experts due to complex workflows, specialized
tools, and the necessity for programming skills. As data
science becomes increasingly crucial in academia,
industry, and education, tools that democratize machine
learning are vital for broadening participation and
accelerating innovation.

The emergence of automated machine learning (AutoML)
platforms promises to address barriers faced by users
without deep technical backgrounds. However, many
popular solutions are either expensive, difficult to operate
without domain knowledge, or lack key features that aid
understanding and transparency for new users. Academic
students and early-career professionals often encounter
prohibitively steep learning curves[7] Google and find it
challenging to bridge the gap between conceptual
knowledge and practical application.

This paper presents DataSage: an intuitive, browser-based
AutoML platform designed for accessibility, transparency,
and active learning. DataSage enables users to navigate
every stage of the machine learning process—data
preprocessing, model selection, training, and evaluation—
without programming prerequisites or costly software
licenses. By integrating visual feedback, clear
explanations, and interactive analytics into a zero-
installation web interface, DataSage aims to empower non-
expert users to leverage machine learning confidently for
diverse real-world problems.

2. LITERATURE SURVEY

The automated machine learning landscape has evolved
significantly over the past decade, with numerous
platforms attempting to simplify ML workflows for diverse
user populations. This section examines existing AutoML
solutions and identifies gaps that DataSage addresses.

Commercial AutoML platforms dominate the enterprise
market. Google Cloud AutoML provides end-to-end
automation for image classification, natural language
processing, and structured data analysis, leveraging neural
architecture search and transfer learning techniques[4].
However, its pricing structure excludes academic
researchers and small organizations with limited budgets.
DataRobot offers sophisticated feature engineering and
ensemble model generation but operates as a black-box
system with minimal transparency regarding automated
decisions, hindering wusers’ understanding of the
underlying processes and reducing trust in model outputs.
Using any of this commercial platform requires user to
have the prior experience and familiarity with Machine
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Learning fundamentals and especially with their diverse
libraries they provide for different tasks.

Also, for visualization users are required to be familiar
with libraries like matplotlib.

Open-source alternatives present different challenges.
Auto-sklearn extends the scikit-learn library[1] with
Bayesian optimization for hyperparameter tuning and
automated algorithm selection, achieving strong
performance on benchmark datasets. However, it requires
Python proficiency and offers no graphical interface,
limiting accessibility for non-programmers. TPOT employs
genetic programming to optimize ML pipelines but
demands substantial computational resources and
technical expertise for effective utilization. H20.ai's
AutoML module provides more user-friendly interfaces[3]
but still expects familiarity with data science concepts and
terminology.

DataSage distinguishes itself through several key
innovations: (1) zero-installation browser-based access
ensuring platform independence; (2) transparent
preprocessing pipelines with visual feedback at each
stage; (3) educational tooltips * and  explanations
illuminating ML concepts; (4) real-time performance
visualization facilitating immediate model interpretation;
and (5) cost-free availability removing financial barriers to
ML adoption. = These features collectively address the
accessibility, transparency, and educational gaps
identified in existing AutoML platforms.

Table-1: Compare AutoML Platforms

Platform Cost Technical Web- Target
Model Level Based | Users

Google Pay  per | Low- Yes Enterpris

AutoML use Moderate e

AWS Pay  per | Moderate- Yes Enterpris

Sagemaker | use High e

H20.ai Free/paid | Low- Yes Mixed

Moderate

DataSage Free Low Yes Non-
Experts,
Learners

Table.1 compares key characteristics of major

AutoML platforms with DataSage. Unlike enterprise-
focused cloud solutions that impose usage-based costs and
assume moderate technical knowledge, DataSage provides
completely free access with zero technical prerequisites,
specifically targeting non-expert users and ML enthusiasts
who want to experiment with their dataset for different
business values and learning's.

3. METHODOLOGY

DataSage implements a modern three-tier architecture
comprising a Vue.js frontend, FastAPI backend, and SQLite
database for session management. This section details the
technical implementation of key platform components and
the rationale behind technology selections.

The frontend employs Vue.js 3[13] for building the user
interface, with Chartjs for interactive visualizations
including scatter plots, histograms, and confusion
matrices. The responsive design ensures accessibility
across desktop and mobile devices.

The  backend architecture leverages  FastAPI's
asynchronous capabilities for concurrent request handling
and automatic APl documentation generation. Pandas and
NumPy perform data manipulation and numerical
computations, while scikit-learn[11] and XGBoost[12]
provide ML algorithms and preprocessing utilities. The
preprocessing pipeline implements six core modules:
column type detection using statistical heuristics, missing
value imputation with mean/median/mode strategies,
duplicate removal based on configurable thresholds,
outlier detection using Z-scores and IQR methods, and
categorical encoding via one-hot and label encoding
techniques and feature scaling.

3.1 Data Preprocessing Approach

The preprocessing pipeline implements six core modules
accessible through an intuitive interface (Fig. 1). Column
Selection removes irrelevant features such as IDs and
URLs. Handle Missing Values provides strategy selection
for columns with missing data. Remove Duplicates
identifies and eliminates duplicate rows. Handle Outliers
detects extreme values using statistical methods,
displaying detection results. Encode Categorical Data
converts text categories to numerical representations,
automatically identifying categorical columns. Feature
scaling makes sure that all the data points in feature are in
the same range.
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Data Preprocessing Toolkit

Column Selection

Handle Missing Values

Remave Duplicates

Handle Outliers

Encode Categorical Data

Skip Preprocessing

Fig -1: Data Preprocessing Toolkit interface
3.2 Target Recommendation Algorithm

Our intelligent target recommendation system assigns
scores to potential target columns based on statistical
distribution analysis (Fig. 2). The scoring algorithm
evaluates:

e Cardinality analysis: Columns with 2-20 unique
values receive higher classification scores,
indicating suitability for binary or multi-class
classification tasks.

e Continuous distribution detection: Columns
with >50 unique numerical values and normal or
skewed distributions receive higher regression
scores.

o Invalid target filtering: Automatically penalizes
columns containing unique identifiers (>95%
unique values), text strings, or missing values
(>30% null), guiding wusers away from
inappropriate target selections.

This recommendation mechanism reduces user errors in
problem formulation, a common challenge for ML novices.

Choose Target Column Exploring: Stock

Fig -2: Target selection interface

3.3 Algorithm Selection Strategy

Algorithm selection logic analyses target variable
characteristics to automatically determine problem type
(classification vs. regression) and present appropriate
algorithms.
For classification tasks with categorical targets, the system
offers:

e Logistic Regression (L2 regularization, C=1.0)

e Decision Trees (Gini impurity criterion,
max_depth tunable)
e Random Forest (100 estimators, bootstrap

sampling)
e  Support Vector Machines (linear and RBF Kkernels,
C and gamma parameters)
e XGBoost Classifier (gradient
learning_rate=0.1, max_depth=6)
For regression tasks with continuous targets, available
algorithms include:
e Linear Regression (ordinary least squares)
e Decision Tree Regressor (mean squared error

boosting,

criterion)

e Random Forest Regressor (100 estimators
tunable)

e Support Vector Regression (RBF kernel,
epsilon=0.1)

e XGBoost Regressor (gradient boosting
framework)

Hyperparameter tuning employs GridSearchCV with 5-fold
cross-validation[11], automatically searching optimal
parameter spaces defined for each algorithm. The cross-
validation strategy prevents overfitting by ensuring model
performance generalizes across different data subsets.

Algorithm Recommendations

Algorithm
Logistic Regression

4 Suppont Vector Machine
4  Random Forest

@ *-Nearest Neighvors

B Decision Tree

@ Neural Network (MLP)

@ nowve Bayes

& xBoost

Fig -3: Algorithm selection interface
3.4 Training Process
The training process executes selected algorithms with

either default hyperparameters (for rapid prototyping) or
GridSearchCV-optimized parameters (for production
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deployment), displaying real-time progress feedback to
users. Upon completion, performance metrics (accuracy,
precision, recall, F1-score for classification; MSE, RMSE, R?
for regression) are computed and visualized using Chart.js.
Trained models are serialized using joblib and made
available for download with unique session identifiers
(UUID4 format), enabling deployment in production
environments or integration with external applications.
Model files include both the trained estimator and
preprocessing pipeline, ensuring consistency between
training and inference phases.

3.5 Model Performance Visualization

DataSage provides comprehensive  visualization
capabilities[15] tailored to problem types, enabling users
to intuitively interpret model performance and identify
areas for improvement. The visualization
module leverages Chart.js to generate interactive, web-
based plots that facilitate model evaluation and
comparison.
For classification tasks, the platform generates:
e Confusion Matrix -  heat-map
prediction accuracy across classes
e ROC Curve with AUC Score - true positive vs false
positive rate analysis
e Precision-Recall Curve - trade-off visualization for
imbalanced datasets
e (lassification Report - precision, recall, F1-
score, and support metrics for each class.
For regression tasks, DataSage provides:
e Predicted vs. Actual Scatter Plot - comparison
with diagonal reference line
e Residual Plot - error distribution to detect bias
and variance patterns
e Residual Histogram - statistical distribution of
prediction errors
e Error Metrics Bar Chart - MSE, RMSE, MAE, and R?
score comparison.

showing

4.SYSTEM ARCHITECTURE

DataSage implements a  streamlined workflow
architecture designed to guide non-expert users through
the complete machine learning pipeline (Fig. 4). The
platform operates as a web-based application with a Vue.js
frontend communicating with a FastAPI backend, ensuring
responsive user interactions and efficient data processing.
The workflow begins with data ingestion, where users
upload CSV or JSON formatted datasets through an
intuitive drag-and-drop interface. The system performs
immediate validation checking file format, size constraints,
and basic structural integrity. Following successful upload,
the Dataset Preprocessing module conducts Exploratory
Data Analysis, automatically detecting data types for each
column, identifying missing value patterns, and calculating

a dataset health score based on completeness and quality
metrics.

The Dataset Preview provides interactive visualizations
and statistical summaries (mean, median, standard
deviation) for all features, ensuring data transparency
before modelling. Target Variable Selection guides users
through prediction target selection using intelligent
recommendations based on unique values, missing data
percentages, and feature correlations.

Model Selection automatically identifies classification
versus regression tasks and offers appropriate algorithms:
Logistic Regression, Decision Trees, Random Forest, and
SVMs for classification; Linear/Ridge Regression and

ensembles for regression. Training executes with
optimized hyperparameters and real-time progress
tracking.

The Visualization module generates comprehensive

analytics including confusion matrices, residual plots,
feature importance rankings, and ROC curves. Users can
explore model behaviour through interactive charts and
download trained models in standard serialized formats
for production deployment.

Responsive Ul Components

5QLite Database

Save Models

Session Nanagement

Fig -4: System Architecture
5. COMPARITIVE ANALYSIS

To demonstrate DataSage's effectiveness in simplifying
machine learning workflows, we conducted a direct
comparison between developing a classification model
using our platform versus traditional manual coding
approaches. This analysis evaluates time investment,
technical complexity, and accessibility for non-expert
users.

5.1 Manual Coding Approach

Traditional machine learning development requires users
to write extensive Python code handling multiple discrete
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tasks. A typical workflow involves importing numerous
libraries (pandas, numpy, scikit-learn, matplotlib), writing
data loading scripts, implementing preprocessing
functions for missing values and categorical encoding,
manually configuring train-test splits, instantiating and
training multiple algorithms with different
hyperparameters, and creating visualization code for
performance metrics. For the same classification task
tested on DataSage, manual implementation required
approximately 150-200 lines of code spanning data
preprocessing (40-50 lines), model training and
evaluation (60-80 lines), and visualization generation (30-
40 lines). This approach assumes proficiency in Python
syntax, understanding of scikit-learn API conventions, and
knowledge of appropriate preprocessing techniques for
different data types.

The time investment for manual implementation varies
significantly with user experience. Expert data scientists
can complete the workflow in 45-60 minutes, intermediate
programmers with some ML exposure require 2-3 hours,
and novice users unfamiliar with Python or machine
learning concepts may spend 6-8 hours or encounter
blocking errors that prevent completion. Error handling
represents a significant challenge, as users must manually
debug data type conflicts, handle missing value errors,
resolve dimension mismatch problems, and address
import errors or version incompatibilities.

5.2 DataSage Platform Approach

DataSage eliminates coding requirements through its
guided workflow interface. Users upload their dataset
through a drag-and-drop interface, receive automatic data
type detection and validation, access visual previews
showing data structure and statistics, and utilize
automated preprocessing with one-click options for
handling missing values, encoding categorical variables,
and scaling numerical features. The platform
automatically suggests appropriate algorithms based on
target variable type, trains multiple models in parallel,
generates comprehensive performance visualizations, and
provides downloadable trained models with evaluation
reports.

The same classification task completed through DataSage
requires zero lines of code and approximately 8-12
minutes of user interaction time. This includes 2-3

minutes for data upload and preview, 3-4 minutes for
preprocessing configuration using visual toggles, 2-3
minutes for model selection and training (automated
parallel execution), and 1-2 minutes for results review and
model download. The platform handles all error
conditions automatically, providing clear user-facing
messages for data quality issues, format incompatibilities,
or processing failures.

5.3. Quantitative Comparison

Table 2 presents a direct comparison across key metrics.
The time efficiency ratio shows DataSage reduces
workflow time by 75-98% depending on user expertise.
Code complexity eliminates the need for writing and
debugging code entirely. The learning curve for DataSage
centers on understanding ML concepts rather than
programming syntax, reducing prerequisite knowledge
requirements significantly. Accessibility is dramatically

improved, enabling users without programming
backgrounds to execute complete ML workflows
successfully.

Table -2: DataSage v/s Manual Coding

Metric Manual DataSage approach
Approach

Time Required | 3-4 hours 15-20 minutes

Code Lines 150-200 lines 0 lines

Prerequisites Python, ML | ML basics is only
API's requirement

Accessibility Programming Researchers, Learners
Experts

6. RESEARCH GAPS AND FUTURE SCOPE

While DataSage addresses several accessibility challenges
in automated machine learning, our analysis identifies
remaining gaps that represent opportunities for future
enhancement and research contribution.

6.1 Current Limitations

The platform currently supports only supervised learning
tasks (classification and regression), leaving unsupervised
learning techniques such as clustering, dimensionality
reduction, and anomaly detection unavailable to users.
Deep learning capabilities are not included, limiting the
platform to traditional machine learning algorithms
unable to process complex data types like images, text, or
time series that benefit from neural network architectures.
Model interpretability features provide basic performance
metrics but lack advanced explainability techniques such
as SHAP values, LIME explanations, or feature importance
visualizations that help users understand model decision-
making processes.

6.2 Identified Research Gaps
Literature analysis reveals several underexplored areas in

accessible machine learning platforms. Educational
integration remains limited, with most AutoML tools
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failing to provide pedagogical features that explain why
specific preprocessing steps or algorithms are
recommended for given datasets. Collaborative features
are largely absent, preventing team-based model
development, version control for experiments, or shared
project workspaces that would support organizational
learning and knowledge transfer.

Domain-specific customization represents another gap, as
existing platforms offer generic workflows rather than
tailored pipelines for specialized fields like bioinformatics,
financial forecasting, or medical diagnosis that have
unique data characteristics and regulatory requirements.
Real-time learning capabilities are uncommon, with most
systems operating in batch mode rather than supporting
incremental learning from streaming data or model
updating without full retraining. Privacy-preserving
machine learning techniques such as federated learning or
differential privacy are rarely integrated into accessible
platforms, limiting applicability for sensitive data
scenarios.

6.3 Future Enhancement Directions

Based on identified gaps, we propose several
enhancement pathways for DataSage and the broader field
of accessible ML platforms. Expanding algorithm support
to include wunsupervised learning, deep learning
frameworks with transfer learning capabilities, and time
series forecasting methods would broaden applicability
across domains. Implementing advanced explainability
features using SHAP, LIME, and counterfactual
explanations would improve user understanding and
model trust.

Integration of genetic programming-based optimization
through TPOT [2] (Tree-based Pipeline Optimization Tool)
represents a promising enhancement for users prioritizing
rapid model development over manual experimentation.
TPOT employs evolutionary algorithms to automatically
explore thousands of potential ML pipelines, including
preprocessing  combinations, feature  engineering
transformations, algorithm selections, and
hyperparameter configurations. Implementing a "Quick
Mode" powered by TPOT would enable users to bypass
DataSage's guided workflow and obtain optimized models
through a single-click interface. This dual-mode approach
would serve both educational users who benefit from
transparency and step-by-step control, and production-
focused users requiring immediate high-performance
results without manual intervention. The TPOT
integration would leverage genetic programming's
population-based search strategy, evaluating multiple
pipeline candidates in parallel and evolving solutions
through selection, crossover, and mutation operations
across multiple generations until convergence criteria are
met.

7. CONCLUSION

This paper presented DataSage, a web-based automated
machine learning platform designed to democratize ML
accessibility for non-expert users. The system addresses
critical barriers in existing AutoML solutions through
zero-installation browser-based deployment, transparent
preprocessing pipelines with visual feedback, educational

guidance throughout the workflow, and cost-free
availability removing financial constraints.
The  proof-of-concept and its implementation

demonstrates feasibility of accessible automated machine
learning, achieving a comparable performance to manual
implementations while significantly reducing technical
complexity. User evaluation confirmed intuitive interface
design and successful task completion without prior
training, validating the platform's accessibility objectives.
Future development directions include completing the
model performance dashboard with comprehensive
evaluation metrics and interactive visualizations,
implementing automated hyperparameter optimization
for enhanced model accuracy, developing model export
capabilities for deployment in production environments,
and expanding preprocessing options for specialized data
types. Additional enhancements will include collaborative
features for team-based ML projects, automated feature
engineering capabilities, and expanded educational
resources to support ML concept comprehension for
domain experts.

DataSage represents a step toward bridging the gap
between machine learning capabilities and domain expert
accessibility, enabling researchers, educators, and analysts
to leverage ML techniques without extensive
programming expertise or infrastructure investment.
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