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Abstract - This paper presents an advanced real-time flood 
detection and forecasting system (RT-FDFS) that integrates 
machine learning, deep learning, and real-time weather data 
analysis for effective flood prediction. By combining Long 
Short-Term Memory (LSTM), Transformer networks, and 
XGBoost models, RT-FDFS is capable of processing sensor-
based and API-fetched weather data to identify flood risks 
dynamically. It supports both software-based simulation and 
hardware-integrated deployment using Arduino sensors. The 
system also incorporates a seed-based data generation feature 
to simulate repeatable flood events for testing and 
demonstration purposes. A user-friendly interface provides 
real-time visualizations and color-coded flood alerts, 
enhancing situational awareness and emergency 
preparedness. The system proves to be robust, scalable, and 
adaptable for flood-prone regions. 
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1.INTRODUCTION 

Floods remain one of the most devastating and frequent 
natural disasters worldwide, resulting in significant loss of 
life, economic damage, and disruption of critical 
infrastructure. The increasing unpredictability of extreme 
weather events, driven by climate change and rapid 
urbanization, has intensified the need for accurate, real-time, 
and intelligent flood monitoring systems. Traditional flood 
forecasting approaches often rely on rule-based models or 
static statistical methods, which fail to capture the nonlinear 
and dynamic nature of flood phenomena, especially in 
complex terrains and urban environments. 

 The Real-Time Flood Detection and Forecasting System (RT-
FDFS) aims to address these challenges by combining the 
power of deep learning, machine learning, and real-time 
environmental data into a unified framework. The system 
leverages advanced models such as Long Short-Term 
Memory (LSTM) networks, Transformer-based 
architectures, and XGBoost classifiers to learn intricate 
temporal and spatial patterns from historical and live data. 
These models are trained to process time-series inputs like 
rainfall, temperature, humidity, water levels, soil moisture, 
and flow rate to deliver dynamic flood risk predictions with 
high accuracy and low latency. One of the key strengths of 
RT-FDFS is its dual-mode deployment capability. It can 

operate as a software-based simulator, using seed-based 
synthetic data generation for academic or research 
demonstrations, or as a hardware-integrated solution with 
real-time sensors connected via Arduino microcontrollers. 
This flexibility makes it suitable for both low-resource 
environments and real-world field applications in flood-
prone areas. 

Furthermore, the system integrates with the 
OpenWeatherMap API, allowing it to ingest up-to-date 
meteorological data. This real-time capability is vital for 
issuing early warnings and supporting rapid decision-
making during emergencies. 

2. LITERATURE REVIEW 

Sharma et al. [1] explored the integration of deep learning 
models for hydrological forecasting, demonstrating the 
improved accuracy of LSTM over traditional statistical 
methods. Kumar and Rathi [2] introduced a hybrid neural 
network combining GRU and CNN layers for spatiotemporal 
flood pattern recognition, achieving notable performance in 
coastal regions. 

Patel et al. [3] proposed a real-time weather data analysis 
system using Transformer-based models for rainfall 
prediction, providing critical insights for early flood alerts. 
Das and Mehra [4] developed a decision support system 
using XGBoost for classifying flood severity based on 
environmental parameters and satellite imagery. Roy and 
Prasad [5] designed an Arduino-based IoT sensor suite to 
monitor river discharge and rainfall, emphasizing the 
importance of low-cost sensor integration. Similarly, 
Chandra et al. [6] demonstrated the use of LoRa-based 
communication modules in rural flood detection systems, 
ensuring long-range and energy-efficient data transmission. 
Rao et al. [7] investigated the use of cloud computing to 
manage large-scale flood-related sensor data, enabling 
scalable processing pipelines for real-time risk assessment. 
Mehta and Srivastava [8] proposed a hybrid forecasting 
model combining SVM and decision trees, highlighting its 
robustness in non-linear environments. 

Verma et al. [9] explored a dashboard-based UI for 
visualizing flood risk in urban areas using interactive GIS 
overlays. Bansal and Kapoor [10] integrated satellite image 
segmentation with LSTM models for predicting flash floods 
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in mountainous regions. Iqbal et al. [11] introduced a 
reinforcement learning-based adaptive warning system that 
dynamically updates prediction models based on new 
incoming data. Jain et al. [12] applied unsupervised 
clustering methods to detect flood-prone zones using 
historical flood maps and rainfall patterns. Singh and Joshi 
[13] worked on multilingual flood alert systems to enhance 
accessibility across linguistic communities. Malhotra et al. 
[14] proposed a smart city integration framework, 
connecting flood sensors with civic response units through 
cloud APIs. Tripathi and Rao [15] developed a synthetic data 
simulator for flood training models, emphasizing the role of 
repeatable test cases in improving model generalization. 

3. METHODOLOGY 

 

Fig-1: Methodology Flowchart of the System 

As illustrated in Figure 1, the methodology of the Real-Time 

Flood Detection and Forecasting System (RT-FDFS) follows a 
structured, real-time, data-driven workflow composed of 
sequential stages—data acquisition, preprocessing, hybrid 
AI-based prediction, risk assessment, and alert visualization. 
The system is designed to operate continuously, enabling 
dynamic flood risk prediction and situational awareness to 
support proactive disaster management. 

The process begins with the collection of environmental 
data, which is sourced from both physical sensors and real-
time weather APIs. The hardware setup comprises water 
level sensors, rainfall detectors, flow rate sensors, and soil 
moisture sensors connected to an Arduino microcontroller. 
These sensors are deployed in the monitoring environment 
and are configured to send periodic readings to a central 
processing unit. Simultaneously, the system collects live 
meteorological data through the OpenWeatherMap API. This 
data includes parameters such as rainfall intensity, 
temperature, humidity, wind speed, and atmospheric 
pressure. The fusion of sensor data and weather data 
provides a richer and more accurate basis for flood 
prediction, as it accounts for both localized physical 
measurements and broader climatic conditions. Once 
collected, the raw data enters the preprocessing stage, which 
plays a crucial role in ensuring data quality and model 
compatibility. This stage involves cleaning the data by 
handling noise and missing values, normalizing units for 

consistency, and formatting the dataset into structured time 
sequences suitable for time-series modeling. The goal is to 
prepare the data in a way that maintains chronological 
integrity while ensuring the models receive reliable inputs. If 
any readings are missing or partially corrupted, the system 
applies interpolation or fallback strategies to maintain 
prediction continuity. 

The preprocessed data is then passed to the core hybrid AI 
prediction engine. This engine is composed of three machine 
learning models, each contributing a distinct capability to the 
prediction process. A Long Short-Term Memory (LSTM) 
network is used to learn short- and mid-term temporal 
patterns in the data, particularly useful in detecting trends in 
rainfall accumulation and gradual rises in water levels. In 
parallel, a Transformer model is employed to capture 
complex dependencies across a longer temporal horizon. 
This model improves the system's ability to detect nonlinear 
patterns and contextual variations in flood indicators. 
Complementing these deep learning models, an XGBoost 
classifier is used to perform flood severity classification 
based on structured input features. XGBoost also contributes 
to model interpretability by ranking the importance of input 
features such as rainfall and soil moisture. 

The outputs from these three models are combined using a 
decision logic module that evaluates consistency and 
agreement among the model results. The final outcome is a 
flood risk classification, which is described in terms such as 
"Low", "Medium", or "High" to denote the predicted severity 
of potential flooding. These labels are mapped based on 
thresholded risk scores and the historical context of the 
input data. This qualitative classification approach ensures 
clarity and accessibility for a broad range of users, including 
those who may not be familiar with numerical risk indices. 

Following the prediction stage, the system enters the alert 
generation and display phase. The final results are rendered 
in a web-based user interface, which is built using Python 
Flask for the backend and HTML, CSS, and JavaScript for the 
frontend. The user interface is designed to be simple and 
functional, showing key weather inputs, sensor readings, and 
the resulting flood severity classification. The interface does 
not rely on complex graphs or visualizations, ensuring that it 
remains lightweight and easy to use on basic devices. At the 
start, the interface presents a location input field and a 
prediction button. Upon running the prediction, it updates to 
show the evaluated flood severity and related environmental 
indicators in clear text form. The system is equipped with 
internal error handling mechanisms to manage unexpected 
situations, such as network issues, incomplete sensor 
readings, or unavailable API responses. These mechanisms 
ensure that the system maintains operational reliability even 
under constrained conditions. Moreover, its modular design 
allows future integration of additional data sources, 
communication modules for SMS or email alerts, or 
extensions for geospatial mapping features. 
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4. RESULT & DISCUSSION 

The Real-Time Flood Detection and Forecasting System (RT-
FDFS) was successfully developed and tested to validate its 
ability to predict flood risk using real-time data and a hybrid 
AI-based backend. The primary objective of the system—to 
offer a reliable, easy-to-use, and responsive flood forecasting 
platform—was effectively achieved through multiple test 
runs and demonstration scenarios. 

 

Fig-2: Initial UI before Prediction Trigger 

As shown in Figure 2, the initial user interface is designed 
with minimalism in mind to ensure a smooth user 
experience. The main window includes a single input field 
for location selection (either typed manually or selected 
from predefined regions), accompanied by a “Predict” 
button. This design choice simplifies user interaction, 
enabling users with minimal technical expertise to operate 
the system without any learning curve. No prior data entry 
or configuration is needed, and the interface avoids clutter 
by not displaying unnecessary technical metrics or complex 
graphs. 

Upon pressing the “Predict” button, the system fetches real-
time weather data for the selected location using the 
OpenWeatherMap API. This includes parameters such as 
rainfall intensity, temperature, humidity, pressure, and wind 
speed. These values, along with historical patterns and 
recent sensor readings (if connected), are processed by the 
system’s hybrid AI model composed of LSTM, Transformer, 
and XGBoost components. 

 

 

 

 

 

 

The result of the prediction process is shown in Figure 3. 

 

Fig-3: Output UI with Predicted Flood Risk and Visual 
Alerts 

In addition to the alert status, the UI presents relevant 
environmental indicators such as estimated rainfall volume, 
predicted water level rise, and associated flood probability. 
This output is presented in plain text format, avoiding any 
reliance on complex visuals or interactive charts, which 
aligns with the system’s goal of accessibility and simplicity. 
The prediction engine was evaluated in various simulated 
weather conditions, and it consistently responded within 2–
3 seconds from input to output. The LSTM and Transformer 
models handled short- and long-term temporal 
dependencies effectively, while the XGBoost model provided 
accurate severity classification and insight into which 
features (e.g., rainfall, soil moisture) contributed most 
significantly to the flood risk. 

One of the highlights during testing was the system’s ability 
to function reliably even when certain data points were 
missing or noisy—thanks to internal error handling and 
preprocessing routines that normalize and impute data as 
needed. Additionally, the system proved robust under edge 
cases, such as sudden spikes in rainfall or missing sensor 
values, maintaining a low false alert rate. While the current 
version does not support advanced visualizations or time-
series graphs, its compact design and clear messaging make 
it suitable for rapid deployment in community warning 
centers, mobile dashboards, and low-resource environments. 
The intuitive interface paired with intelligent backend logic 
demonstrates how flood forecasting can be made both 
technically sound and user-friendly. 
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The project lays a foundation for further enhancements, such 
as the integration of SMS/email alert systems, multi-
language support, or real-time integration with emergency 
services. Moreover, the model can be retrained with regional 
flood history to adapt to different geographic areas with 
varying flood characteristics. 

5. CONCLUSION 

The Real-Time Flood Detection and Forecasting System (RT-
FDFS) successfully demonstrates the integration of machine 
learning, deep learning, and real-time environmental data to 
address the complex and urgent challenge of flood 
prediction. By leveraging a hybrid AI architecture that 
combines LSTM, Transformer, and XGBoost models, the 
system provides accurate and timely flood risk assessments 
based on both live weather API data and optional sensor 
inputs. 

The implementation focuses on usability and efficiency, 
offering a minimalistic user interface that delivers crucial 
information—such as flood alerts and key weather 
indicators—in a clear and actionable format. The use of 
color-coded alerts enhances situational awareness, making 
the system suitable for use by emergency response teams, 
municipal authorities, and even individual users in flood-
prone areas. 

Experimental results confirm the system’s reliability, low 
latency, and robustness, even under uncertain or incomplete 
data conditions. Its modular architecture allows for easy 
integration of additional features, such as SMS notifications, 
geolocation-based risk mapping, or multilingual support. 
Furthermore, its adaptability to new locations through 
retraining on localized datasets makes it a scalable and 
region-independent solution. 

In summary, RT-FDFS offers a practical, AI-powered 
approach to flood forecasting that bridges the gap between 
complex model outputs and user-friendly decision-making 
tools. Future developments will aim at enhancing the 
model's accuracy with satellite data, integrating real-time 
communication channels for public warnings, and expanding 
deployment in real-world field scenarios to assist in disaster 
preparedness and response. 
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