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Abstract: Training machine learning models on large-
scale multimodal medical datasets introduces significant 
distributed system challenges, including heterogeneous 
data formats, missing modalities, and failures during 
multi-day training runs. This paper presents a fault-
tolerant distributed training pipeline for disease prediction 
on 53,420 patient records combining DICOM images, 
laboratory tests, and physiological time-series data. A 
modality-aware preprocessing module maintains data 
integrity without introducing bias in incomplete patient 
records. The main contribution is a lineage-based 
checkpointing mechanism that coordinates failure 
recovery across distributed training tasks by tracking 
dependencies and incrementally persisting model states. 
This allows training to resume from consistent checkpoints 
instead of full restarts. Experiments on a 16-node GPU 
cluster show a 66% reduction in training time compared to 
epoch-level checkpointing, completing in 18.2 hours with 
automatic recovery from three worker failures while 
wasting less than 5% of computation. The system achieves 
87.3% overall accuracy and 82.1% macro-averaged F1 
score across 37 disease categories, demonstrating 
robustness even when data modalities are partially 
missing. 
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Introduction 
 

Modern healthcare institutions generate massive 
volumes of heterogeneous patient data including 
radiological images in DICOM format, structured 
laboratory results, and continuous physiological 
monitoring streams. Leveraging this data for automated 
disease prediction requires training complex machine 
learning models capable of integrating information across 
disparate modalities [1]. However, real-world medical 
datasets present fundamental distributed systems 
challenges that impede practical deployment. 

Training on large medical datasets requires 
distributed computing due to both data volume (2.4TB in 
our study) and model complexity (31.2M parameters). 
Unlike idealized research datasets, clinical data exhibits 
several characteristics that complicate distributed 
training: 

 

1. Heterogeneous data formats: DICOM images require 
different preprocessing than tabular laboratory 
values; time-series vital signs need temporal feature 
extraction 

2. Missing modality scenarios: Not every patient has all 
data types, some have X-rays but incomplete lab 
work; others have vital signs but no imaging (38% 
missing imaging, 22% partial labs) 

3. Class imbalance: Rare diseases appear in fewer than 
5% of records, making balanced training difficult 

4. Distributed training failures: Multi-day training runs 
on compute clusters fail due to transient hardware 
issues, network partitions, or out-of-memory errors 
on individual workers 
Traditional approaches to distributed training 

assume either complete data availability or rely on naive 
checkpointing strategies that waste significant 
computation on failure recovery [2]. The economic 
impact is substantial: in our preliminary experiments, 
three complete training restarts due to failures wasted 
over $27,000 in cloud GPU costs before we implemented 
fault-tolerant mechanisms. 
 
This paper makes the following contributions: 

1. A modality-aware data processing pipeline that 
handles missing patient data through learned 
embeddings rather than imputation or record 
deletion, preserving 40% more training data than 
standard approaches 

2. A lineage-based checkpointing system that tracks 
computational dependencies between distributed 
tasks and enables fine-grained recovery from 
failures with less than 5% wasted computation 

3. A coordinated recovery protocol that allows 
training to continue automatically after worker 
failures without human intervention 

4. Experimental validation on 53,420 patient records 
across a 16-node GPU cluster demonstrating 66% 
training time reduction compared to epoch-level 
checkpointing and 98.7% cost savings compared to 
naive training without fault tolerance 
 

The remainder of this paper is organized as follows: 
Section II reviews related work in distributed ML systems 
and medical diagnosis. Section III presents research gap, 
section IV presents methodology including data 
partitioning, model design, and fault-tolerant training 
protocols. Section IV provides experimental results 
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including failure recovery analysis and model 
performance and discusses applications and future work, 
followed by the last section made of conclusion. 

 

Literature Review 
 

A. Distributed Machine Learning Systems 

Large-scale distributed training has become essential 
for modern deep learning [3]. Parameter server 
architectures like those in [2] distribute model 
parameters across multiple machines, but typically 
assume reliable workers or rely on coarse-grained epoch-
level checkpointing. Recent systems like ZeRO [4] and 
Megatron-LM [5] optimize memory efficiency for training 
billion-parameter models but focus primarily on inter-
worker communication optimization rather than fault 
tolerance. 

PipeDream [6] introduces pipeline parallelism to 
overlap computation and communication but requires 
deterministic pipeline schedules that can be disrupted by 
worker failures. Horovod [7] provides efficient gradient 
synchronization through ringallreduce but leaves 
checkpoint management to applications. 

Most existing systems implement periodic 
checkpointing at fixed time intervals or epoch boundaries 
[8]. This approach wastes significant computation when 
failures occur between checkpoints. Our lineage-based 
approach draws inspiration from Spark’s Resilient 
Distributed Datasets [9], which track computational 
dependencies to enable targeted recomputation on 
failure. 

 

B. Medical Diagnosis with Machine Learning 

Recent work has applied various machine learning 
techniques to disease diagnosis. Sunny et al. [10] explored 
multiple algorithms for heart disease diagnosis achieving 
91% accuracy with K-nearest neighbors. Khade et al. [11] 
used deep learning for heart failure detection from ECG 
signals with 98.3% accuracy. 

For liver disease prediction, Durai et al. [12] 
compared logistic regression, SVM, and random forests, 
finding random forest performed best at 87.27% 
accuracy. Wu et al. [13] achieved 84.13% accuracy 
predicting fatty liver disease from ultrasound images. 

Diabetes prediction has been studied by Faruque et 
al. [14] using random forests (achieving best 
performance) and Vigneswari et al. [15] comparing 
decision trees, random forests, and gradient boosting. 

However, these studies typically focus on single-
modality data and don’t address the distributed systems 
challenges of training on large heterogeneous medical 
datasets. Our work extends this literature by 
demonstrating that careful distributed systems design is 
essential for scaling these approaches to real world 
clinical data volumes. 

 

C. Multi-Modal Medical Learning 

Multi-modal learning for medical diagnosis has 
gained attention for integrating diverse data types [16]. 
Approaches typically use separate encoders for each 
modality followed by late fusion [17]. Handling missing 
modalities remains challenging; common strategies 
include zero imputation, modality dropout during training 
[18], or discarding incomplete samples (which loses 40-
60% of medical data). 

Our learned embedding approach for missing 
modalities is inspired by work on incomplete multi-view 
learning [19] but adapted for the distributed training 
setting where data incompleteness affects load balancing 
and fault recovery strategies. 

Research Gap 
 

Existing distributed ML systems assume homogeneous 
data with uniform computational costs, but multi-modal 
medical datasets violate this assumption—processing 
times vary 50-100× between image-heavy and lab-only 
patients, creating severe load imbalance. Moreover, 
current approaches either discard incomplete records 
(losing 40-60% of clinical data) or use zero-imputation 
(introducing bias), without considering how missing 
modalities affect distributed partitioning and failure 
recovery. Checkpointing strategies face a fundamental 
trade-off: coarse-grained epoch-level checkpointing 
wastes ~40% computation on failures with low 
overhead (0.4%), while fine-grained time-based 
approaches reduce waste but incur 2-5% overhead. No 
existing system addresses fault-tolerant distributed 
training for heterogeneous multi-modal medical data 
with both fine-grained recovery and low overhead. 

This paper fills these gaps through: (1) modality-aware 
partitioning that balances computational load despite 
data heterogeneity, (2) learned missing modality 
embeddings preserving 40% more training data while 
maintaining load balance, (3) lineage-based 
checkpointing achieving <5% wasted computation with 
only 1.1% overhead through partition-level granularity, 
and (4) demonstrating 74% cost reduction ($21K 
savings) making large-scale medical ML feasible for 
resource-constrained academic labs. To our knowledge, 
this is the first system to holistically address fault-
tolerant distributed training for multi-modal medical 
data with explicit consideration of missing modalities, 
load balancing, and budget constraints 

 

Methodology 
 

A. Problem Formulation 

Given a dataset  patient 
records, where: 

• xi contains multi-modal features: DICOM images Ii ∈ 

RH×W×C, lab test vectors Li ∈ R43, vital sign time series 

Vi ∈RT×6  
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• yi ∈ {1,...,K} is the disease label (K = 37 disease 
categories) 

• Missing modalities: 38% of patients lack complete 
imaging, 22% have partial lab data 

Objective: Train a multi-modal classifier fθ : x → y across 
a distributed cluster with W workers while: 

1) Handling missing modalities without data loss 

2) Tolerating mid-training failures with < 10% 
wasted computation 

3) Completing training in < 24 hours 

B. Modality-Aware Data Partitioning 

Naive random partitioning creates load imbalance; 
workers receiving image-heavy patients process slowly 
while those with lab-only patients finish quickly, leading to 
stragglers that delay gradient synchronization. 

Stratified Modality-Aware Partitioning: 

1) Group patients by available modalities: (I,L,V ), 
(I,L), (I,V ), (L,V ), (I), (L), (V ) 

2) Within each group, stratify by disease label to 
balance class distribution 

3) Partition each group across W workers 
proportional to computational cost estimates 

For computational cost estimation, we profile 
processing time per modality: 

• Image encoding: TI = 45 ms/image × 3.2 
images/patient 

= 144 ms 

• Lab encoding: TL = 2 ms/patient 

• Vitals encoding: TV = 8 ms/patient 

Workers are assigned partitions such that total expected 
processing time is balanced within 10%. 
 

C. Neural Architecture for Multi-Modal Fusion 

We employ a modular fusion architecture shown in 
Figure1: 

 Fig. 1. Multi-modal neural architecture with missing modality handling 

Handling Missing Modalities: 

 Instead of zero-imputation (which biases fusion layers) 
or dropping incomplete records (losing 40% of data), we 
use learned modality embeddings: 

• Each modality m ∈{I,L,V } has a trainable “missing” 
embedding emissm ∈Rdm 

• If modality m is absent for patient i, replace hm with 

emissm 
• The fusion layer learns to weight available 

modalities appropriately 

• During training, randomly drop modalities with 
probability p = 0.15 for robustness 

This approach is differentiable and learns context-
dependent representations for missing data. 

D. Lineage-Based Checkpointing Protocol 

The key challenge in distributed training fault tolerance 
is ensuring consistent checkpointing across workers while 
minimizing coordination overhead. 

Each checkpoint state includes the model parameters 
(θₜ), optimizer state (such as momentum buffers and 
learning rate schedule position), and lineage metadata 
containing the set of completed data partitions P = {p₁, p₂, 
…, pₖ} along with the checkpoint timestamp t. 

The checkpointing protocol operates as follows. All 
workers process data partitions in a deterministic global 
order, typically sorted by partition ID. After completing 
partition pᵢ, each worker broadcasts a completion message 
to the coordinator. When all W workers finish pᵢ, the 
coordinator triggers a checkpoint barrier: workers save 
their local states (θₜ and optimizer state), while the 
coordinator stores updated lineage metadata (P ∪ {pᵢ}, t) in 
distributed storage. 

The checkpointing architecture is illustrated in Figure 2. 

 

Fig. 2. Coordinated checkpointing architecture  
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    Recovery Protocol: 

1) Failure Detection: Coordinator detects worker 
failure via heartbeat timeout (30s threshold) 

2) Pause Training: Coordinator broadcasts pause 
signal to all healthy workers 

3) Load Checkpoint: All workers (including rejoining 
failed worker) load most recent checkpoint 

(θt,optimizer state,P,t) from distributed storage 

4) Resume Training: Workers resume from first 
unprocessed partition pk where pk ∈/ P 

5) Wasted Computation: Only work on partition 
currently in progress is lost (typically < 5% of 
total) 

Correctness Guarantee: The protocol ensures that after 
recovery, all workers have processed exactly the set of 
partitions P recorded in the checkpoint, and no partition 
is processed twice or skipped. 

Overhead Analysis: For our 16-worker setup with 
53,420 patients: 

• Partitions per worker: 53,420/16 ≈ 3,340 patients 

• With batch size 32: ∼ 104 batches/worker per 
partition 

• Checkpoint frequency: After each partition ≈ every 
1.1 hours 

• Checkpoint I/O time: 45 seconds (saving 31.2M 
parameters) 

• Total checkpoints: 16 over 18-hour run 

• Total overhead: 16 × 45s = 12 minutes = 1.1% of 
training time. 

Result & Discussion 
 

A. Experimental Setup 

Compute Infrastructure: 

• 16-node cluster, each with 8 NVIDIA A100 GPUs 
(40GB VRAM) 

• 2TB RAM per node, 100 Gbps InfiniBand interconnect 

• Shared NFS for checkpoint storage (10 Gbps network) 
Dataset Statistics: 

• Total patients: 53,420 (training: 42,736, validation: 
5,342, test: 10,680) 

• Disease      categories: 37 (cardiovascular, respiratory, 
metabolic, autoimmune) 

• Total dataset size: 2.4 TB (mostly DICOM images) 

B. Training Time and Fault Tolerance 

Table I compares our lineage-based checkpointing against 
alternative strategies: 
                                   TABLE-I                                                                   

        TRAINING TIME COMPARISON 

 

Approach Time Fail. Waste O/H 

No checkpoint 72h 3 100% 0% 

Epoch-level 54.0h 2 ∼40% 0.4% 

Time-based 31.2h 2 ∼15m 2.5% 

Ours 18.2h 3 15% 1.1% 

 
C. Failure Recovery Analysis 

             TABLE-II 

    FAILURE RECOVERY EVENTS 

Time W Failure Det. Rec. Lost 

4.3h W7 OOM 28s 47s 0.3h 

11.8h W3 Network 32s 43s 0.5h 

16.1h W12 GPU 29s 46s 0.4h 

Training Time (hours) 

Fig. 3. Training loss curve with failure recovery events 
 

D. Model Performance 

Table III shows test set performance: 
Figure 4 shows per-class F1 scores: 
 
                              TABLE-III 

            TEST SET PERFORMANCE 

      Metric Value 

Overall Accuracy 

Macro F1 

87.3% 

82.1% 

Top-3 Accuracy 94.7% 

Rare disease recall 76.4% 

 
                          TABLE-IV 

                   PERFORMANCE WITH MISSING MODALITIES 

Modalities Acc. F1 

All 3 (I,L,V) 

Any 2 

89.2% 

85.8% 

85.4% 

81.7% 

Single 79.3% 74.2% 

 

Conclusion 
 

 Our fault-tolerant training pipeline applies beyond 
medical ML to LLM pretraining, recommendation systems, 
and scientific computing where multi-day training runs on 
thousands of GPUs make failures inevitable.  

Table  II  shows  the  three  worker  failures  encountered: 

Figure 3 shows the training loss curve with failure recovery 

events. 
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 Limitations: Synchronous coordination creates 
stragglers. Future work should explore asynchronous 
checkpointing and adaptive partitioning.  

 

 We presented a fault-tolerant distributed training 
system achieving 66% training time reduction and 74% 
cost savings through lineage-based checkpointing. Our 
system achieved 87.3% accuracy on 53,420 patient records 
with robust performance on incomplete data. For academic 
labs with limited budgets, our design makes previously 
infeasible projects practical. 

             Fig. 4. F1 scores by disease category 

   TABLE V 
    SCALING BEHAVIOR 

W Time Speed. Eff. O/H 

4 68.2h 1.0× 100% 0.3% 

8 35.1h 1.94× 97% 0.5% 

16 18.2h 3.75× 94% 1.1% 

32 10.3h 6.62× 83% 2.4% 

 

                                      TABLE VI 
                  CLOUD COST COMPARISON 

Approach GPU-hrs Cost 

No fault tolerance 

Epoch-level 

9,216 

9,677 

$28,201 

$29,612 

Ours 2,484 $7,601 

Savings:   $21,011 

 
Acknowledgment 

This research was supported by Dwarkadas J. Sanghvi 
College of Engineering & Technology. I am sincerely 
thankful to my guide, Prof. Yukti Bandi, who provided 
valuable technical expertise that greatly assisted the 
research. 

References 

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel 
and distributed deep learning,” ACM CSUR, vol. 52, 
no. 4, Article 65. 

[2] M. Li et al., “Scaling distributed ML with parameter 
server,” in OSDI 2014, pp. 583-598. 

[3] Y. You et al., “Large batch optimization for deep 
learning,” in ICLR 2020. 

[4] S. Rajbhandari et al., “ZeRO: Memory 
optimizations,” in SC20, pp. 1-16. [5] D. Narayanan 
et al., “Efficient LLM training with Megatron,” in 
SC21. 

[5] A. Harlap et al., “PipeDream,” in SOSP 2019, pp. 1-
15 

[6] A. Sergeev and M. Del Balso, “Horovod,” 
arXiv:1802.05799, 2018. 

[7] S. Venkataraman et al., “Ernest,” in NSDI 2016, pp. 
363-378. 

[8] M. Zaharia et al., “Resilient distributed datasets,” in 
NSDI 2012, pp. 15-28. 

[9] A. D. Sunny et al., “Disease diagnosis with ML,” 
IJIET, vol. 10, no. 2, pp. 14-21, 2018. 

[10] S. Khade et al., “Heart failure detection with DL,” 
IRJET, vol. 6, no. 6, pp. 384-387, 2019. 

[11] V. Durai et al., “Liver disease prediction,” IJARIIT, 
vol. 5, no. 2, pp. 1584-1588, 2019. 

[12] C.-C. Wu et al., “Fatty liver prediction,” CMPB, vol. 
170, pp. 23-29, 2019. 

[13] M. F. Faruque et al., “Diabetes prediction,” in ECCE 
2019, pp. 1-4. 

[14] D. Vigneswari et al., “ML tree classifiers for 
diabetes,” in ICACCS 2019, pp. 84-87. 

[15] A. Ramachandram and G. W. Taylor, “Deep 
multimodal learning survey,” IEEE SPM, vol. 34, no. 
6, pp. 96-108, 2017. 

[16] P. K. Atrey et al., “Multimodal fusion survey,” 
Multimedia Sys., vol. 16, no. 6, pp. 345-379, 2010. 

[18] S. Sun, “Multi-view ML survey,” Neural Comput. 
Appl., vol. 23, no. 7, pp. 2031-2038, 2013. 

[19] K. M. Chandy and L. Lamport, “Distributed 
snapshots,” ACM TOCS, vol. 3, no. 1, pp. 63-75, 
1985. 

[20] P. Blanchard et al., “Byzantine tolerant gradient 
descent,” in NIPS 2017, pp. 119-129.

[17] N. Srivastava and R. R. Salakhutdinov, “Multimodal 
learning with DBMs,” in NIPS 2012, pp. 2231–2239. 


