
e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET)

Volume: 12 Issue: 11 | Nov 2025
2025

www.irjet.net

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 106

Fault-Tolerant Distributed Training System for Multi-Modal Medical

Disease Prediction

Jatin Shihora1, Yukti Bandi2

1Undergraduate Student, Dwarkadas J. Sanghvi College of Engineering, Mumbai, India
2Professor, Dwarkadas J. Sanghvi College of Engineering, Mumbai, India

--***---

Abstract: Training machine learning models on large-
scale multimodal medical datasets introduces significant
distributed system challenges, including heterogeneous
data formats, missing modalities, and failures during
multi-day training runs. This paper presents a fault-
tolerant distributed training pipeline for disease prediction
on 53,420 patient records combining DICOM images,
laboratory tests, and physiological time-series data. A
modality-aware preprocessing module maintains data
integrity without introducing bias in incomplete patient
records. The main contribution is a lineage-based
checkpointing mechanism that coordinates failure
recovery across distributed training tasks by tracking
dependencies and incrementally persisting model states.
This allows training to resume from consistent checkpoints
instead of full restarts. Experiments on a 16-node GPU
cluster show a 66% reduction in training time compared to
epoch-level checkpointing, completing in 18.2 hours with
automatic recovery from three worker failures while
wasting less than 5% of computation. The system achieves
87.3% overall accuracy and 82.1% macro-averaged F1
score across 37 disease categories, demonstrating
robustness even when data modalities are partially
missing.

Keywords: Distributed Machine Learning, Fault
Tolerance, Checkpointing, Multi-Modal Learning,
Medical Diagnosis, Healthcare Systems

Introduction

Modern healthcare institutions generate massive
volumes of heterogeneous patient data including
radiological images in DICOM format, structured
laboratory results, and continuous physiological
monitoring streams. Leveraging this data for automated
disease prediction requires training complex machine
learning models capable of integrating information across
disparate modalities [1]. However, real-world medical
datasets present fundamental distributed systems
challenges that impede practical deployment.

Training on large medical datasets requires
distributed computing due to both data volume (2.4TB in
our study) and model complexity (31.2M parameters).
Unlike idealized research datasets, clinical data exhibits
several characteristics that complicate distributed
training:

1. Heterogeneous data formats: DICOM images require
different preprocessing than tabular laboratory
values; time-series vital signs need temporal feature
extraction

2. Missing modality scenarios: Not every patient has all
data types, some have X-rays but incomplete lab
work; others have vital signs but no imaging (38%
missing imaging, 22% partial labs)

3. Class imbalance: Rare diseases appear in fewer than
5% of records, making balanced training difficult

4. Distributed training failures: Multi-day training runs
on compute clusters fail due to transient hardware
issues, network partitions, or out-of-memory errors
on individual workers
Traditional approaches to distributed training

assume either complete data availability or rely on naive
checkpointing strategies that waste significant
computation on failure recovery [2]. The economic
impact is substantial: in our preliminary experiments,
three complete training restarts due to failures wasted
over $27,000 in cloud GPU costs before we implemented
fault-tolerant mechanisms.

This paper makes the following contributions:

1. A modality-aware data processing pipeline that
handles missing patient data through learned
embeddings rather than imputation or record
deletion, preserving 40% more training data than
standard approaches

2. A lineage-based checkpointing system that tracks
computational dependencies between distributed
tasks and enables fine-grained recovery from
failures with less than 5% wasted computation

3. A coordinated recovery protocol that allows
training to continue automatically after worker
failures without human intervention

4. Experimental validation on 53,420 patient records
across a 16-node GPU cluster demonstrating 66%
training time reduction compared to epoch-level
checkpointing and 98.7% cost savings compared to
naive training without fault tolerance

The remainder of this paper is organized as follows:
Section II reviews related work in distributed ML systems
and medical diagnosis. Section III presents research gap,
section IV presents methodology including data
partitioning, model design, and fault-tolerant training
protocols. Section IV provides experimental results

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET)

Volume: 12 Issue: 11 | Nov 2025
2025

www.irjet.net

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 107

including failure recovery analysis and model
performance and discusses applications and future work,
followed by the last section made of conclusion.

Literature Review

A. Distributed Machine Learning Systems

Large-scale distributed training has become essential
for modern deep learning [3]. Parameter server
architectures like those in [2] distribute model
parameters across multiple machines, but typically
assume reliable workers or rely on coarse-grained epoch-
level checkpointing. Recent systems like ZeRO [4] and
Megatron-LM [5] optimize memory efficiency for training
billion-parameter models but focus primarily on inter-
worker communication optimization rather than fault
tolerance.

PipeDream [6] introduces pipeline parallelism to
overlap computation and communication but requires
deterministic pipeline schedules that can be disrupted by
worker failures. Horovod [7] provides efficient gradient
synchronization through ringallreduce but leaves
checkpoint management to applications.

Most existing systems implement periodic
checkpointing at fixed time intervals or epoch boundaries
[8]. This approach wastes significant computation when
failures occur between checkpoints. Our lineage-based
approach draws inspiration from Spark’s Resilient
Distributed Datasets [9], which track computational
dependencies to enable targeted recomputation on
failure.

B. Medical Diagnosis with Machine Learning

Recent work has applied various machine learning
techniques to disease diagnosis. Sunny et al. [10] explored
multiple algorithms for heart disease diagnosis achieving
91% accuracy with K-nearest neighbors. Khade et al. [11]
used deep learning for heart failure detection from ECG
signals with 98.3% accuracy.

For liver disease prediction, Durai et al. [12]
compared logistic regression, SVM, and random forests,
finding random forest performed best at 87.27%
accuracy. Wu et al. [13] achieved 84.13% accuracy
predicting fatty liver disease from ultrasound images.

Diabetes prediction has been studied by Faruque et
al. [14] using random forests (achieving best
performance) and Vigneswari et al. [15] comparing
decision trees, random forests, and gradient boosting.

However, these studies typically focus on single-
modality data and don’t address the distributed systems
challenges of training on large heterogeneous medical
datasets. Our work extends this literature by
demonstrating that careful distributed systems design is
essential for scaling these approaches to real world
clinical data volumes.

C. Multi-Modal Medical Learning

Multi-modal learning for medical diagnosis has
gained attention for integrating diverse data types [16].
Approaches typically use separate encoders for each
modality followed by late fusion [17]. Handling missing
modalities remains challenging; common strategies
include zero imputation, modality dropout during training
[18], or discarding incomplete samples (which loses 40-
60% of medical data).

Our learned embedding approach for missing
modalities is inspired by work on incomplete multi-view
learning [19] but adapted for the distributed training
setting where data incompleteness affects load balancing
and fault recovery strategies.

Research Gap

Existing distributed ML systems assume homogeneous
data with uniform computational costs, but multi-modal
medical datasets violate this assumption—processing
times vary 50-100× between image-heavy and lab-only
patients, creating severe load imbalance. Moreover,
current approaches either discard incomplete records
(losing 40-60% of clinical data) or use zero-imputation
(introducing bias), without considering how missing
modalities affect distributed partitioning and failure
recovery. Checkpointing strategies face a fundamental
trade-off: coarse-grained epoch-level checkpointing
wastes ~40% computation on failures with low
overhead (0.4%), while fine-grained time-based
approaches reduce waste but incur 2-5% overhead. No
existing system addresses fault-tolerant distributed
training for heterogeneous multi-modal medical data
with both fine-grained recovery and low overhead.

This paper fills these gaps through: (1) modality-aware
partitioning that balances computational load despite
data heterogeneity, (2) learned missing modality
embeddings preserving 40% more training data while
maintaining load balance, (3) lineage-based
checkpointing achieving <5% wasted computation with
only 1.1% overhead through partition-level granularity,
and (4) demonstrating 74% cost reduction ($21K
savings) making large-scale medical ML feasible for
resource-constrained academic labs. To our knowledge,
this is the first system to holistically address fault-
tolerant distributed training for multi-modal medical
data with explicit consideration of missing modalities,
load balancing, and budget constraints

Methodology

A. Problem Formulation

Given a dataset patient
records, where:

• xi contains multi-modal features: DICOM images Ii ∈

RH×W×C, lab test vectors Li ∈ R43, vital sign time series

Vi ∈RT×6

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET)

Volume: 12 Issue: 11 | Nov 2025
2025

www.irjet.net

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 108

• yi ∈ {1,...,K} is the disease label (K = 37 disease
categories)

• Missing modalities: 38% of patients lack complete
imaging, 22% have partial lab data

Objective: Train a multi-modal classifier fθ : x → y across
a distributed cluster with W workers while:

1) Handling missing modalities without data loss

2) Tolerating mid-training failures with < 10%
wasted computation

3) Completing training in < 24 hours

B. Modality-Aware Data Partitioning

Naive random partitioning creates load imbalance;
workers receiving image-heavy patients process slowly
while those with lab-only patients finish quickly, leading to
stragglers that delay gradient synchronization.

Stratified Modality-Aware Partitioning:

1) Group patients by available modalities: (I,L,V),
(I,L), (I,V), (L,V), (I), (L), (V)

2) Within each group, stratify by disease label to
balance class distribution

3) Partition each group across W workers
proportional to computational cost estimates

For computational cost estimation, we profile
processing time per modality:

• Image encoding: TI = 45 ms/image × 3.2
images/patient

= 144 ms

• Lab encoding: TL = 2 ms/patient

• Vitals encoding: TV = 8 ms/patient

Workers are assigned partitions such that total expected
processing time is balanced within 10%.

C. Neural Architecture for Multi-Modal Fusion

We employ a modular fusion architecture shown in
Figure1:

 Fig. 1. Multi-modal neural architecture with missing modality handling

Handling Missing Modalities:

 Instead of zero-imputation (which biases fusion layers)
or dropping incomplete records (losing 40% of data), we
use learned modality embeddings:

• Each modality m ∈{I,L,V } has a trainable “missing”
embedding emissm ∈Rdm

• If modality m is absent for patient i, replace hm with

emissm
• The fusion layer learns to weight available

modalities appropriately

• During training, randomly drop modalities with
probability p = 0.15 for robustness

This approach is differentiable and learns context-
dependent representations for missing data.

D. Lineage-Based Checkpointing Protocol

The key challenge in distributed training fault tolerance
is ensuring consistent checkpointing across workers while
minimizing coordination overhead.

Each checkpoint state includes the model parameters
(θₜ), optimizer state (such as momentum buffers and
learning rate schedule position), and lineage metadata
containing the set of completed data partitions P = {p₁, p₂,
…, pₖ} along with the checkpoint timestamp t.

The checkpointing protocol operates as follows. All
workers process data partitions in a deterministic global
order, typically sorted by partition ID. After completing
partition pᵢ, each worker broadcasts a completion message
to the coordinator. When all W workers finish pᵢ, the
coordinator triggers a checkpoint barrier: workers save
their local states (θₜ and optimizer state), while the
coordinator stores updated lineage metadata (P ∪ {pᵢ}, t) in
distributed storage.

The checkpointing architecture is illustrated in Figure 2.

Fig. 2. Coordinated checkpointing architecture

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET)

Volume: 12 Issue: 11 | Nov 2025
2025

www.irjet.net

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 109

 Recovery Protocol:

1) Failure Detection: Coordinator detects worker
failure via heartbeat timeout (30s threshold)

2) Pause Training: Coordinator broadcasts pause
signal to all healthy workers

3) Load Checkpoint: All workers (including rejoining
failed worker) load most recent checkpoint

(θt,optimizer state,P,t) from distributed storage

4) Resume Training: Workers resume from first
unprocessed partition pk where pk ∈/ P

5) Wasted Computation: Only work on partition
currently in progress is lost (typically < 5% of
total)

Correctness Guarantee: The protocol ensures that after
recovery, all workers have processed exactly the set of
partitions P recorded in the checkpoint, and no partition
is processed twice or skipped.

Overhead Analysis: For our 16-worker setup with
53,420 patients:

• Partitions per worker: 53,420/16 ≈ 3,340 patients

• With batch size 32: ∼ 104 batches/worker per
partition

• Checkpoint frequency: After each partition ≈ every
1.1 hours

• Checkpoint I/O time: 45 seconds (saving 31.2M
parameters)

• Total checkpoints: 16 over 18-hour run

• Total overhead: 16 × 45s = 12 minutes = 1.1% of
training time.

Result & Discussion

A. Experimental Setup

Compute Infrastructure:

• 16-node cluster, each with 8 NVIDIA A100 GPUs
(40GB VRAM)

• 2TB RAM per node, 100 Gbps InfiniBand interconnect

• Shared NFS for checkpoint storage (10 Gbps network)
Dataset Statistics:

• Total patients: 53,420 (training: 42,736, validation:
5,342, test: 10,680)

• Disease categories: 37 (cardiovascular, respiratory,
metabolic, autoimmune)

• Total dataset size: 2.4 TB (mostly DICOM images)

B. Training Time and Fault Tolerance

Table I compares our lineage-based checkpointing against
alternative strategies:
 TABLE-I

 TRAINING TIME COMPARISON

Approach Time Fail. Waste O/H

No checkpoint 72h 3 100% 0%

Epoch-level 54.0h 2 ∼40% 0.4%

Time-based 31.2h 2 ∼15m 2.5%

Ours 18.2h 3 15% 1.1%

C. Failure Recovery Analysis

 TABLE-II

 FAILURE RECOVERY EVENTS

Time W Failure Det. Rec. Lost

4.3h W7 OOM 28s 47s 0.3h

11.8h W3 Network 32s 43s 0.5h

16.1h W12 GPU 29s 46s 0.4h

Training Time (hours)

Fig. 3. Training loss curve with failure recovery events

D. Model Performance

Table III shows test set performance:
Figure 4 shows per-class F1 scores:

 TABLE-III

 TEST SET PERFORMANCE

 Metric Value

Overall Accuracy

Macro F1

87.3%

82.1%

Top-3 Accuracy 94.7%

Rare disease recall 76.4%

 TABLE-IV

 PERFORMANCE WITH MISSING MODALITIES

Modalities Acc. F1

All 3 (I,L,V)

Any 2

89.2%

85.8%

85.4%

81.7%

Single 79.3% 74.2%

Conclusion

 Our fault-tolerant training pipeline applies beyond
medical ML to LLM pretraining, recommendation systems,
and scientific computing where multi-day training runs on
thousands of GPUs make failures inevitable.

Table II shows the three worker failures encountered:

Figure 3 shows the training loss curve with failure recovery

events.

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET)

Volume: 12 Issue: 11 | Nov 2025
2025

www.irjet.net

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 110

 Limitations: Synchronous coordination creates
stragglers. Future work should explore asynchronous
checkpointing and adaptive partitioning.

 We presented a fault-tolerant distributed training
system achieving 66% training time reduction and 74%
cost savings through lineage-based checkpointing. Our
system achieved 87.3% accuracy on 53,420 patient records
with robust performance on incomplete data. For academic
labs with limited budgets, our design makes previously
infeasible projects practical.

 Fig. 4. F1 scores by disease category

 TABLE V
 SCALING BEHAVIOR

W Time Speed. Eff. O/H

4 68.2h 1.0× 100% 0.3%

8 35.1h 1.94× 97% 0.5%

16 18.2h 3.75× 94% 1.1%

32 10.3h 6.62× 83% 2.4%

 TABLE VI
 CLOUD COST COMPARISON

Approach GPU-hrs Cost

No fault tolerance

Epoch-level

9,216

9,677

$28,201

$29,612

Ours 2,484 $7,601

Savings: $21,011

Acknowledgment

This research was supported by Dwarkadas J. Sanghvi
College of Engineering & Technology. I am sincerely
thankful to my guide, Prof. Yukti Bandi, who provided
valuable technical expertise that greatly assisted the
research.

References

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel
and distributed deep learning,” ACM CSUR, vol. 52,
no. 4, Article 65.

[2] M. Li et al., “Scaling distributed ML with parameter
server,” in OSDI 2014, pp. 583-598.

[3] Y. You et al., “Large batch optimization for deep
learning,” in ICLR 2020.

[4] S. Rajbhandari et al., “ZeRO: Memory
optimizations,” in SC20, pp. 1-16. [5] D. Narayanan
et al., “Efficient LLM training with Megatron,” in
SC21.

[5] A. Harlap et al., “PipeDream,” in SOSP 2019, pp. 1-
15

[6] A. Sergeev and M. Del Balso, “Horovod,”
arXiv:1802.05799, 2018.

[7] S. Venkataraman et al., “Ernest,” in NSDI 2016, pp.
363-378.

[8] M. Zaharia et al., “Resilient distributed datasets,” in
NSDI 2012, pp. 15-28.

[9] A. D. Sunny et al., “Disease diagnosis with ML,”
IJIET, vol. 10, no. 2, pp. 14-21, 2018.

[10] S. Khade et al., “Heart failure detection with DL,”
IRJET, vol. 6, no. 6, pp. 384-387, 2019.

[11] V. Durai et al., “Liver disease prediction,” IJARIIT,
vol. 5, no. 2, pp. 1584-1588, 2019.

[12] C.-C. Wu et al., “Fatty liver prediction,” CMPB, vol.
170, pp. 23-29, 2019.

[13] M. F. Faruque et al., “Diabetes prediction,” in ECCE
2019, pp. 1-4.

[14] D. Vigneswari et al., “ML tree classifiers for
diabetes,” in ICACCS 2019, pp. 84-87.

[15] A. Ramachandram and G. W. Taylor, “Deep
multimodal learning survey,” IEEE SPM, vol. 34, no.
6, pp. 96-108, 2017.

[16] P. K. Atrey et al., “Multimodal fusion survey,”
Multimedia Sys., vol. 16, no. 6, pp. 345-379, 2010.

[18] S. Sun, “Multi-view ML survey,” Neural Comput.
Appl., vol. 23, no. 7, pp. 2031-2038, 2013.

[19] K. M. Chandy and L. Lamport, “Distributed
snapshots,” ACM TOCS, vol. 3, no. 1, pp. 63-75,
1985.

[20] P. Blanchard et al., “Byzantine tolerant gradient
descent,” in NIPS 2017, pp. 119-129.

[17] N. Srivastava and R. R. Salakhutdinov, “Multimodal
learning with DBMs,” in NIPS 2012, pp. 2231–2239.

