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Abstract We developed a new framework that
combines a Swin Transformer for image analysis with a
LLMaZ2 to achieve high classification accuracy and provide
textual explanations for its predictions. Our model
classifies lung adenocarcinoma subtypes with 98.69%
accuracy and a near-perfect AUC of 0.9997. It performs
consistently well across all five cancer subtypes, and
demonstrated robustness to class imbalance. We also
found that using 20x magnification provides an optimal
balance of diagnostic power and computational efficiency.
Furthermore, the integrated LLM acts as an intelligent
assistant, generating textual explanations of the Al's
decisions by listing salient morphological features, and
flagging low-confidence predictions for pathologist
review. This combined approach gives clinicians a highly
accurate and interpretable tool for histopathology.
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1.INTRODUCTION

In digital pathology, Transformers are particularly well-
suited for analyzingthe entire context of a
histopathological image at once, modeling dependencies
between distant nsformers directly solve, allowing them to
model the morphological patterns characteristic of
different cancer subtypes. Large language models (LLMs)
have the potential to automatically extract clinical
information, aid in diagnosis and treatment, and support
full-cycle lung cancer care, according to a systematic
review of 28 studies. However, bias control and data
security limitations still exist [1].

Moreover, LLMs and vision-language models when
combined, provide strong multimodal Al capabilities for
diagnosis, prognosis, and image analysis in the treatment
of lung cancer; however, ethical, legal, and validation
issues restrict their clinical application[2]. However, LLMs
are not currently approved for this sensitive task due to
government regulations and patient privacy laws that
differ across countries, hospitals, and demographics.
Transformer-based analysis can use LLMs' predictive
ability to generate descriptive text based on the image
analysis. These models show promising venue for research
in a controlled and secure manner without violating
ethical, legal, or regulatory constraints, even though LLMs

are currently not permitted as medical devices and cannot
directly affect clinical care[3]. Medical image analysis
relies heavily on resolution; deep learning models use
patch-based processing, multi-resolution inputs, and
super-resolution techniques to improve feature extraction,
classification accuracy, and diagnostic reliability in
ultrasound imaging and histopathology. Likewise, multi-
resolution multiple-instance learning techniques in whole-
slide histopathology utilize slide-level supervision to
pinpoint diagnostically relevant areas, eliminating the
need for pixel-level annotations and thereby improving
grading accuracy and clinical reliability[4 5 6].

Therefore, we propose a framework that uses a Swin
Transformer for histopathological classification and
integrates an LLM in a post-hoc manner to enhance the
interpretability and clinical utility of the predictions. While
pathologists naturally choose the best magnifications,
modern systems obtain multi-resolution whole slide
images that require significant resources.

1.1 Related Work

Transformer architectures now provide a method for
diagnosing lung cancer by using self-attention
mechanisms to model global histological patterns across
entire images [7]. Likewise, these models can detect subtle
long-range dependencies that are potentially useful for
cancer detection without the need for explicit
segmentation. Talib et al. [8] proposed a framework that
integrates transformers and CNNs. [8], that combines a
CNN for tissue type classification with a TransSegNet for
lesion segmentation via a vision transformer. Similarly,
Srinivas et al. [9] introduced BoTNet, a hybrid architecture
replacing spatial convolutions in the final three bottleneck
blocks of ResNet with multi-head self-attention (MHSA).
However, such a technique lacks LLM-aware assistance,
and creates Bottleneck Transformer (BoT) blocks that
preserve residual structure.

Similarly. Chen et al. [10] proposed Visformer, a hybrid
architecture that systematically transitions from a
Transformer (DeiT) to a CNN (ResNet). It integrates
convolutional operations such as stage-wise down-
sampling, Batch Normalization, and 3x3 local convolutions
in early layers, retaining self-attention in  later
stages. Wang et al.[11] also proposed a hybrid CNN-
Transformer (HCT) model for NSCLC N-staging and
survival prediction from CT scans. The model integrates a
3D ResNet for local feature extraction and a Transformer
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for global context modeling, concatenating outputs for
final prediction. Shafi and Chinnappan [12] proposed a
hybrid Transformer-CNN-LSTM model for lung disease
segmentation and classification. This method features an
Improved Transformer-based CNN(ITCNN) for
segmentation and a hybrid LinkNet-Modified LSTM (L-
MLSTM) for classification, combining texture, shape, and
deep features. For semantic segmentation, Wu et
al. [9] proposed Fully Transformer Networks (FTN), a
transformer-only model that exploits a Pyramid Group
Transformer encoder and a Feature Pyramid Transformer
decoder, demonstrating that transformers can surpass
hybrid CNN-transformer models. Similarly, Xie et
al. [13] created SegFormer, an encoder-decoder model for
image segmentation. To improve computational efficiency
or accuracy, several modified architectures have been
introduced. Liu et al [14] propose the Swin Transformer, a
hierarchical vision transformer that computes self-
attention within local windows and uses shifted windows
for cross-window connections, providing linear
complexity relative to image size. Chen et
al [15] present CrossViT, a dual-branch vision transformer
processing different patch sizes and fusing them via cross-
attention for efficient multi-scale feature fusion. For data-
efficient training, Touvron et al [12] developed DeiT, a
training strategy for Vision Transformers that uses a
distillation token, allowing the student ViT to learn from a
convnet teacher without external data. In the domain of
self-supervised learning, Li et al [16] tackle computational
challenges through EsViT, a multi-stage architecture that
employs local self-attention and a region-matching pre-
training task.Furthermore, Wu et al [17] introduced Visual
Transformers (VTs), a token-based image representation
framework that replaces pixel arrays with semantic
tokens, modeling contextual dependencies through
transformers.Several models have been designed for
histopathology. Zhao et al[18] present PKMT-Net, a
transformer designed to emulate pathologist reasoning by
combining multi-scale soft segmentation with cross-
attention, achieving 09970 AUC for lung cancer
subtyping. Yagappanet al. [19] developed gSC-DViT, a
simplified Vision Transformer that achieves 99.69%
accuracy with lower computational cost. Durgam et
al. [20] introduce the CanNS framework, which includes a
Swin-Transformer UNet (SwiNet) for segmentation. The
application of transformers extends beyond imaging.
Wang et al.[21] introduce MedAlbert, a transformer-based
model for early lung cancer detection from sequential EHR
data that represents patient care pathways as a language
of medical codes. In genomics, Mahbub et al. [22] develop
HEMERA, a human-explainable transformer predicting
lung cancer risk from GWAS genotype data.

1.2 Domain & Magnification Analysis

For this study, we mainly use 143 de-identified H&E-
stained WSIs of lung adenocarcinoma from BMIRDS,
including DHMC_wsi_4.zip (Images 120-143). Slides were

annotated for Lepidic, Acinar, Papillary, Micropapillary,
and Solid patterns and scanned at 20x or 40x. For deep
learning, we extracted 72,108 512x512 RGB patches at
20x with consistent WSI-class mapping using OpenSlide
and libvips.

-

S

Fig-1 Class and Weight Distribution of Darmouth 20x

Histopathology Slides
The distribution of images among the five subtypes of lung
adenocarcinoma and the appropriate class weights used
during training is shown in this figure 1. making the
classification task more robust and clinically realistic.
Figure 1 illustrates the inherent class imbalance, making it
a genuine research venue for real diagnostic settings,
where rare subtypes like Lepidic and Micropapillary occur
infrequently. The data is vetted by three expert
pathologists according to the major patterns: Lepidic,
Acinar, Papillary, Micropapillary, and Solid. Although the
WSIs were scanned at either 20x or 40x magnification, our
extracted patch dataset includes only 72,108 512x512
pixel RGB patches annotated by WSI class. Consistent
subtype trends were verified by cross-validation on the
LungHist dataset, which contains 691 H&E-stained lung
histology images from 45 patients collected at Hospital
Clinico de Valladolid in 2023, captured at 20x and 40x
magnification using Leica DM 2000 and ICC50 W
microscopes. Images are classified into seven classes—
well, moderately, and poorly differentiated
adenocarcinoma (ACA_BD, ACA_MD, ACA_PD), squamous
cell carcinoma (SCC_BD, SCC_MD, SCC_PD), and normal
lung (NOR)—with patient-wise annotations and consistent
1200x1600 px resolution. Our analysis of magnification
impact, based on Swin Transformer classification, found
that 20x maintained diagnostic integrity while achieving
greater average model confidence across the majority of
subtypes with minimal dispersion. Using pretrained Swin
Transformer models, 20x decreases computational
overhead, speeds up processing, and maintains accuracy,
according to statistical analysis and workflow metrics,
proving a reliable, repeatable, and therapeutically effective
framework.
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Fig-2 Cross-Domain Magnification Analysis((BD: Well-Differentiated, MD: Moderately Differentiated, PD: Poorly
Differentiated))

According to the cross domain magnificaion analsysis of
WSI slides, BD is somewhat superior at 40x magnification
(0.9396 vs. 0.9266), whereas MD (0.9608 vs. 0.8983) and
PD (0.9533 wvs. 0.9395) subtypes attain higher or
equivalent model accuracy at 20x magnification. Overall,
20x supports its effectiveness for deep learning
applications by maintaining diagnostic performance with

2. Methodology

We implemented a multi-scale tumor classification
framework combining transformer-based architecture
with a Swin Transformer for visual pattern recognition
and a LlIaMA-2 Large Language Model (LLM) for clinical
reasoning and explanation. Our core classifier is built on a
Swin Transformer (Swin-T) architecture, which is pre-
trained on ImageNet. Its key innovation is a hierarchical
structure with shifted windows, enabling efficient
computation of self-attention across different scales to
capture both fine-grained cellular details and broader
tissue architecture in histopathology images. The model is
trained to classify five major histologic subtypes of lung
adenocarcinoma: Acinar, Lepidic, Papillary,
Micropapillary, and Solid, each with distinct morphological
patterns and clinical prognoses. The methodological
novelty lies in the post-hoc, confidence-based integration
of an LLM and state-of-the-art classification performance
metrics on the domain test set using a transformer model

little loss. In summary, for the majority of lung
adenocarcinoma subtypes, 20x magnification offers a fair
trade-off between computational efficiency, model
confidence, and diagnostic fidelity. 20x is generally
adequate for dependable, repeatable, and effective deep
learning-based histopathological analysis, even though
40x marginally helps

instead of traditional CNN models. We are using a locally
hosted LLaMA 2 7B model that acts as an "Intelligent LLM
Analyst" in this context. It is worth mentioning that LLaMA
integration into the Swin Model is not used for
classification but to exploit clinical reasoning to address
the problem of generalization. In this context, our
framework functions as an explainable Al pipeline
powered by ImageNet for powerful pattern recognition
and feature extraction, and assisted by a medically
informed LLM model. The output of the Swin
Transformer—the predicted class, confidence score, and
probability distribution—is passed to the LLM. Based on
this data, the LLM generates expert-level clinical analyses,
including morphological feature explanations, differential
diagnoses, and verification steps for low-confidence
predictions. The system works in two stages. First, the
Swin Transformer processes input images to produce a
classification. Second, based on prediction confidence
thresholds, selected cases are routed to the LLM. The LLM,
prompted with the predicted class, confidence scores, and
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an instruction to generate a pathological report, provides a
textual report that explains the Al's decision, providing a
justification for the prediction for potential clinical use.
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Fig -3 Proposed Framework: LLM-Assited Transformer Model for Lung Cancer Classification on Histopathological Images

Histopathology images are obtained from the data source,
verified by expert pathologists, and organized into five
distinct lung adenocarcinoma subtypes. A stratified data
split is applied, followed by controlled data augmentation
to increase variability while preserving key morphological
characteristics. The pre-trained Swin Transformer (Swin-
T) model is then fine-tuned using focal loss and AdamW
optimization  for five-class classification. = Model
performance is evaluated using accuracy, macro F1-score,
AUC, top-k accuracy, and confusion matrix analysis.

Following classification, an integrated LLaMA-2 LLM
module performs post-hoc interpretive reasoning. High-
confidence predictions are reported directly, while low-
confidence predictions are routed to the LLM for
morphological justification, reliability assessment, and
differential diagnosis support. This enables both strong
classification performance and clinically meaningful,
pathology-aligned interpretability.

3. Results & Visualization

The proposed SWIN Transformer model achieved strong
performance in lung cancer subtype classification, with an
accuracy of 98.69%, precision of 98.59%, recall of 98.26%,
and an AUC of 0.9997 (Table 1). These results indicate that
the model can reliably distinguish between five lung
cancer subtypes using only histopathological image
features, suggesting practical value for automated pre-
screening workflows. The Top-2 Accuracy of 99.86%

further demonstrates that, even when the highest-
probability prediction is incorrect, the correct label is
almost always present among the top two predicted
classes, reinforcing decision stability.

The framework was particularly effective at subtyping
adenocarcinoma cases. Its performance remains balanced
across all classes, even under class imbalance, as reflected
by the macro-level scores (Table 1). Training and
validation curves (Figures 5 and 6) progress in parallel,
showing stable learning without overfitting. The confusion
matrix and overall performance summary (Figure 7)
confirm consistency in the model’'s predictions and
support its potential suitability for clinical diagnostic
assistance.

Table- 1 Evaluation Metric on All Classes

Metric Value

lAccuracy: 0.9869
Precision: 0.9859
Recall: 0.9826
F1 (Macro): 0.9842
IAUC (Macro): 0.9997
Top-2 Accuracy: 0.9986

The validation metrics across epochs (Fig. 4) show steady
improvement and alignment between training and
validation behavior. The loss curves remain smooth and
closely aligned (Fig. 5), indicating stable optimization and
no signal of overfitting. Class-wise results (Table 2)
confirm consistent recognition performance across all five
adenocarcinoma subtypes, with high precision, recall, and
F1-scores. Solid, acinar, and lepidic patterns score near-
perfect values, while micropapillary and papillary remain
strong despite higher morphological variability. These
results show that the model extracts subtype-specific
morphological cues rather than memorizing visual
artifacts.
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Fig- 4 Proposed Model: Validation Metrics Per Epoch
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Fig-5 Training and Validation Loss with Stability

Table -2: Class wise classification performance is displayed for
each lung cancer subtype

Class Precision |Recall F1-Score |AUC

Solid 0.9932 0.9932 0.9932 0.9999
IAcinar 0.9855 0.9892 0.9873 0.9994
Lepidic 0.9887 0.9860 0.9873 1.0000
Micropapillary [0.9850 0.9685 0.9767 0.9998
Papillary 0.9768 0.9761 0.9764 0.9994

Fig. 6 visualizes test-set predictions. The confusion matrix
in Fig. 4 shows dense diagonal concentration, confirming

correct class assignments in most samples.
Misclassifications are sparse and occur mainly between
morphologically overlapping subtypes. The model
separates texture-rich patterns (solid, acinar) and fine
alveolar structures (lepidic) with clear margin,
demonstrating strong feature disentanglement. The
discriminative strength comes from hierarchical self-
attention, which captures spatial dependencies across
nuclei, stroma, and gland architectures. This supports
reliable subtype interpretation and suggests strong
generalization potential for real-world histopathological
workflows.
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Fig-6 shows the Swin Transformer's model performance on the test set

The confusion matrix for each of the five subtypes of lung
adenocarcinoma is displayed in the left panel of the figure
4, demonstrating excellent accuracy in each class. As
depicted on the right panel, minimal misclassification is
indicated by the concentration of correct predictions along
the diagonal. Per-class performance measures (Precision,
Recall, and F1-score) for each subtype are shown in the
right panel. Reliable classification performance is reflected
in the model's consistently high results, with solid and
acinar subtypes attaining nearly flawless metrics.

3.1 LLM Prediction Confidence and Differential
Analysis of Lung Adenocarcinoma Subtypes

The LLM module contributes interpretability by linking
confidence values to diagnostic reliability. High-confidence
predictions (>0.7) align with correct subtype assignments,
while mid-range values (0.52-0.58) mark cases with
overlapping histological patterns, such as subtle
transitions between acinar and micropapillary growth.
This behavior does not mask ambiguity; it exposes where
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tissue morphology provides incomplete separation,
making the uncertainty itself meaningful.

The differential probability output reflects the degree of
similarity across subtype candidates. In Case 3, the values
0.5846 vs. 0.4154 correspond to real architectural
proximity rather than model noise. The system therefore
produces ranked diagnostic likelihoods rather than a
forced categorical decision, allowing the interpretation to
mirror the way pathologists reason when patterns blend

or borders are unclear.

Figure 7 illustrates these effects across six patient cases.
The left panel shows confidence levels that distinguish
straightforward from uncertain presentations. The middle
panel compares predicted and true subtypes, revealing
that errors occur predominantly in borderline
morphologies. The right panel visualizes probability
distributions that demonstrate how the LLM expresses
graded reasoning rather than a single-point claim.
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Fig-7 LLM forecasts for six patients of lung cancer are shown
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This structure supports practical clinical use: confident
outputs can be accepted directly, while uncertain cases are
flagged with explicit reasoning for pathologist review,
preserving diagnostic responsibility while increasing
efficiency and transparency.

4. CONCLUSIONS

We presented a framework for lung adenocarcinoma
subtyping that combines a Swin Transformer with an LLM
for enhanced interpretability. The framework achieved a
high level of performance in lung adenocarcinoma
subtyping, with overall accuracy of 98.69%, precision of
98.59%, recall of 98.26%, macro F1-score of 0.9842, and
AUC of 0.9997. In addition, the proposed model also
showed excellent class-wise performance despite class
imbalance. External validation on the LungHist700 dataset
confirmed that 20x magnification provides a
computationally efficient option while maintaining
diagnostic integrity, with subtypes showing superior or
equivalent performance (MD: 0.9608 vs 0.8983 at 40x; PD:
0.9533 vs 0.9395). Furthermore, the integration of an LLM
provided a method for generating reports, and textual
descriptions aligned with pathological concepts and
differential diagnoses to aid pathologist decision-making.
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