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Abstract -  We developed a new framework that 
combines a Swin Transformer for image analysis with a 
LLMa2 to achieve high classification accuracy and provide 
textual explanations for its predictions. Our model 
classifies lung adenocarcinoma subtypes with 98.69% 
accuracy and a near-perfect AUC of 0.9997. It performs 
consistently well across all five cancer subtypes, and 
demonstrated robustness to class imbalance. We also 
found that using 20x magnification provides an optimal 
balance of diagnostic power and computational efficiency. 
Furthermore, the integrated LLM acts as an intelligent 
assistant, generating textual explanations of the AI's 
decisions by listing salient morphological features, and 
flagging low-confidence predictions for pathologist 
review. This combined approach gives clinicians a highly 
accurate and interpretable tool for histopathology. 
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1.INTRODUCTION   

In digital pathology, Transformers are particularly well-
suited for analyzing the entire context of a 
histopathological image at once, modeling dependencies 
between distant nsformers directly solve, allowing them to 
model the morphological patterns characteristic of 
different cancer subtypes. Large language models (LLMs) 
have the potential to automatically extract clinical 
information, aid in diagnosis and treatment, and support 
full-cycle lung cancer care, according to a systematic 
review of 28 studies. However, bias control and data 
security limitations still exist [1].  
Moreover, LLMs and vision-language models when 
combined, provide strong multimodal AI capabilities for 
diagnosis, prognosis, and image analysis in the treatment 
of lung cancer; however, ethical, legal, and validation 
issues restrict their clinical application[2]. However, LLMs 
are not currently approved for this sensitive task due to 
government regulations and patient privacy laws that 
differ across countries, hospitals, and demographics. 
Transformer-based analysis can use LLMs' predictive 
ability to generate descriptive text based on the image 
analysis. These models show promising venue for research 
in a controlled and secure manner without violating 
ethical, legal, or regulatory constraints, even though LLMs 

are currently not permitted as medical devices and cannot 
directly affect clinical care[3].  Medical image analysis 
relies heavily on resolution; deep learning models use 
patch-based processing, multi-resolution inputs, and 
super-resolution techniques to improve feature extraction, 
classification accuracy, and diagnostic reliability in 
ultrasound imaging and histopathology. Likewise, multi-
resolution multiple-instance learning techniques in whole-
slide histopathology utilize slide-level supervision to 
pinpoint diagnostically relevant areas, eliminating the 
need for pixel-level annotations and thereby improving 
grading accuracy and clinical reliability[4 5 6].  
Therefore, we propose a framework that uses a Swin 
Transformer for histopathological classification and 
integrates an LLM in a post-hoc manner to enhance the 
interpretability and clinical utility of the predictions. While 
pathologists naturally choose the best magnifications, 
modern systems obtain multi-resolution whole slide 
images that require significant resources.  

 

1.1 Related Work  

  Transformer architectures now provide a method for 
diagnosing lung cancer by using self-attention 
mechanisms to model global histological patterns across 
entire images [7]. Likewise, these models can detect subtle 
long-range dependencies that are potentially useful for 
cancer detection without the need for explicit 
segmentation. Talib et al. [8] proposed a framework that 
integrates transformers and CNNs. [8],  that combines a 
CNN for tissue type classification with a TransSegNet for 
lesion segmentation via a vision transformer. Similarly, 
Srinivas et al. [9] introduced BoTNet, a hybrid architecture 
replacing spatial convolutions in the final three bottleneck 
blocks of ResNet with multi-head self-attention (MHSA). 
However, such a technique lacks LLM-aware assistance, 
and creates Bottleneck Transformer (BoT) blocks that 
preserve residual structure.   
Similarly. Chen et al.  [10] proposed Visformer, a hybrid 
architecture that systematically transitions from a 
Transformer (DeiT) to a CNN (ResNet). It integrates 
convolutional operations such as stage-wise down-
sampling, Batch Normalization, and 3×3 local convolutions 
in early layers, retaining self-attention in later 
stages. Wang et al. [11] also proposed a hybrid CNN–
Transformer (HCT) model for NSCLC N-staging and 
survival prediction from CT scans. The model integrates a 
3D ResNet for local feature extraction and a Transformer 
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for global context modeling, concatenating outputs for 
final prediction. Shafi and Chinnappan [12] proposed a 
hybrid Transformer–CNN–LSTM model for lung disease 
segmentation and classification. This method features an 
Improved Transformer-based CNN(ITCNN) for 
segmentation and a hybrid LinkNet–Modified LSTM (L-
MLSTM) for classification, combining texture, shape, and 
deep features. For semantic segmentation, Wu et 
al. [9] proposed Fully Transformer Networks (FTN), a 
transformer-only model that exploits a Pyramid Group 
Transformer encoder and a Feature Pyramid Transformer 
decoder, demonstrating that transformers can surpass 
hybrid CNN-transformer models. Similarly, Xie et 
al. [13] created SegFormer, an encoder-decoder model for 
image segmentation. To improve computational efficiency 
or accuracy, several modified architectures have been 
introduced. Liu et al [14] propose the Swin Transformer, a 
hierarchical vision transformer that computes self-
attention within local windows and uses shifted windows 
for cross-window connections, providing linear 
complexity relative to image size. Chen et 
al [15] present CrossViT, a dual-branch vision transformer 
processing different patch sizes and fusing them via cross-
attention for efficient multi-scale feature fusion. For data-
efficient training, Touvron et al [12] developed DeiT, a 
training strategy for Vision Transformers that uses a 
distillation token, allowing the student ViT to learn from a 
convnet teacher without external data. In the domain of 
self-supervised learning, Li et al [16] tackle computational 
challenges through EsViT, a multi-stage architecture that 
employs local self-attention and a region-matching pre-
training task.Furthermore, Wu et al [17] introduced Visual 
Transformers (VTs), a token-based image representation 
framework that replaces pixel arrays with semantic 
tokens, modeling contextual dependencies through 
transformers.Several models have been designed for 
histopathology. Zhao et al [18] present PKMT-Net, a 
transformer designed to emulate pathologist reasoning by 
combining multi-scale soft segmentation with cross-
attention, achieving 0.9970 AUC for lung cancer 
subtyping.  Yagappan et al.  [19] developed gSC-DViT, a 
simplified Vision Transformer that achieves 99.69% 
accuracy with lower computational cost.  Durgam et 
al. [20] introduce the CanNS framework, which includes a 
Swin-Transformer UNet (SwiNet) for segmentation. The 
application of transformers extends beyond imaging. 
Wang et al.[21] introduce MedAlbert, a transformer-based 
model for early lung cancer detection from sequential EHR 
data that represents patient care pathways as a language 
of medical codes. In genomics, Mahbub et al. [22] develop 
HEMERA, a human-explainable transformer predicting 
lung cancer risk from GWAS genotype data.  

1.2 Domain & Magnification Analysis  

For this study, we mainly use 143 de-identified H&E-
stained WSIs of lung adenocarcinoma from BMIRDS, 
including DHMC_wsi_4.zip (Images 120–143). Slides were 

annotated for Lepidic, Acinar, Papillary, Micropapillary, 
and Solid patterns and scanned at 20x or 40x. For deep 
learning, we extracted 72,108 512×512 RGB patches at 
20x with consistent WSI-class mapping using OpenSlide 
and libvips.  

 

 
 

Fig-1 Class and Weight Distribution of Darmouth 20x 
Histopathology Slides 

The distribution of images among the five subtypes of lung 
adenocarcinoma and the appropriate class weights used 
during training is shown in this figure 1. making the 
classification task more robust and clinically realistic. 
Figure 1 illustrates the inherent class imbalance,  making it 
a genuine research venue for real diagnostic settings, 
where rare subtypes like Lepidic and Micropapillary occur 
infrequently. The data is vetted by three expert 
pathologists according to the major patterns: Lepidic, 
Acinar, Papillary, Micropapillary, and Solid. Although the 
WSIs were scanned at either 20x or 40x magnification, our 
extracted patch dataset includes only 72,108 512×512 
pixel RGB patches annotated by WSI class. Consistent 
subtype trends were verified by cross-validation on the 
LungHist dataset, which contains 691 H&E-stained lung 
histology images from 45 patients collected at Hospital 
Clínico de Valladolid in 2023, captured at 20x and 40x 
magnification using Leica DM 2000 and ICC50 W 
microscopes. Images are classified into seven classes—
well, moderately, and poorly differentiated 
adenocarcinoma (ACA_BD, ACA_MD, ACA_PD), squamous 
cell carcinoma (SCC_BD, SCC_MD, SCC_PD), and normal 
lung (NOR)—with patient-wise annotations and consistent 
1200×1600 px resolution. Our analysis of magnification 
impact, based on Swin Transformer classification, found 
that 20x maintained diagnostic integrity while achieving 
greater average model confidence across the majority of 
subtypes with minimal dispersion. Using pretrained Swin 
Transformer models, 20x decreases computational 
overhead, speeds up processing, and maintains accuracy, 
according to statistical analysis and workflow metrics, 
proving a reliable, repeatable, and therapeutically effective 
framework. 
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 Fig-2 Cross-Domain Magnification Analysis((BD: Well-Differentiated, MD: Moderately Differentiated, PD: Poorly 
Differentiated)) 

 
According to the cross domain magnificaion analsysis of 

WSI slides, BD is somewhat superior at 40x magnification 
(0.9396 vs. 0.9266), whereas MD (0.9608 vs. 0.8983) and 
PD (0.9533 vs. 0.9395) subtypes attain higher or 
equivalent model accuracy at 20x magnification. Overall, 
20x supports its effectiveness for deep learning 
applications by maintaining diagnostic performance with  

little loss. In summary, for the majority of lung 
adenocarcinoma subtypes, 20x magnification offers a fair 
trade-off between computational efficiency, model 
confidence, and diagnostic fidelity. 20x is generally 
adequate for dependable, repeatable, and effective deep 
learning-based histopathological analysis, even though 
40x marginally helps         

2. Methodology  

We implemented a multi-scale tumor classification 
framework combining transformer-based architecture 
with a Swin Transformer for visual pattern recognition 
and a LlaMA-2  Large Language Model (LLM) for clinical 
reasoning and explanation. Our core classifier is built on a 
Swin Transformer (Swin-T) architecture, which is pre-
trained on ImageNet. Its key innovation is a hierarchical 
structure with shifted windows, enabling efficient 
computation of self-attention across different scales to 
capture both fine-grained cellular details and broader 
tissue architecture in histopathology images. The model is 
trained to classify five major histologic subtypes of lung 
adenocarcinoma: Acinar, Lepidic, Papillary, 
Micropapillary, and Solid, each with distinct morphological 
patterns and clinical prognoses. The methodological 
novelty lies in the post-hoc, confidence-based integration 
of an LLM and state-of-the-art classification performance 
metrics on the domain test set using a transformer model 

instead of traditional CNN models. We are using a locally 
hosted LLaMA 2 7B model that acts as an "Intelligent LLM 
Analyst" in this context. It is worth mentioning that LLaMA 
integration into the Swin Model is not used for 
classification but to exploit clinical reasoning to address 
the problem of generalization. In this context, our 
framework functions as an explainable AI pipeline 
powered by ImageNet for powerful pattern recognition 
and feature extraction, and assisted by a medically 
informed LLM model. The output of the Swin 
Transformer—the predicted class, confidence score, and 
probability distribution—is passed to the LLM. Based on 
this data, the LLM generates expert-level clinical analyses, 
including morphological feature explanations, differential 
diagnoses, and verification steps for low-confidence 
predictions. The system works in two stages. First, the 
Swin Transformer processes input images to produce a 
classification. Second, based on prediction confidence 
thresholds, selected cases are routed to the LLM. The LLM, 
prompted with the predicted class, confidence scores, and 
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an instruction to generate a pathological report, provides a 
textual report that explains the AI's decision, providing a 
justification for the prediction for potential clinical use. 

 

 
Fig -3 Proposed Framework: LLM-Assited Transformer Model for Lung Cancer Classification on Histopathological Images 

  
 Histopathology images are obtained from the data source, 
verified by expert pathologists, and organized into five 
distinct lung adenocarcinoma subtypes. A stratified data 
split is applied, followed by controlled data augmentation 
to increase variability while preserving key morphological 
characteristics. The pre-trained Swin Transformer (Swin-
T) model is then fine-tuned using focal loss and AdamW 
optimization for five-class classification. Model 
performance is evaluated using accuracy, macro F1-score, 
AUC, top-k accuracy, and confusion matrix analysis. 
 
Following classification, an integrated LLaMA-2 LLM 
module performs post-hoc interpretive reasoning. High-
confidence predictions are reported directly, while low-
confidence predictions are routed to the LLM for 
morphological justification, reliability assessment, and 
differential diagnosis support. This enables both strong 
classification performance and clinically meaningful, 
pathology-aligned interpretability. 
 

3. Results & Visualization  

The proposed SWIN Transformer model achieved strong 
performance in lung cancer subtype classification, with an 
accuracy of 98.69%, precision of 98.59%, recall of 98.26%, 
and an AUC of 0.9997 (Table 1). These results indicate that 
the model can reliably distinguish between five lung 
cancer subtypes using only histopathological image 
features, suggesting practical value for automated pre-
screening workflows. The Top-2 Accuracy of 99.86%  
 
further demonstrates that, even when the highest-
probability prediction is incorrect, the correct label is 
almost always present among the top two predicted 
classes, reinforcing decision stability. 
 

 
The framework was particularly effective at subtyping 
adenocarcinoma cases. Its performance remains balanced 
across all classes, even under class imbalance, as reflected 
by the macro-level scores (Table 1). Training and 
validation curves (Figures 5 and 6) progress in parallel, 
showing stable learning without overfitting. The confusion 
matrix and overall performance summary (Figure 7) 
confirm consistency in the model’s predictions and 
support its potential suitability for clinical diagnostic 
assistance.   
 

Table- 1 Evaluation Metric on All Classes 

Metric Value 

Accuracy:   0.9869 

Precision:  0.9859 

Recall:  0.9826 

F1 (Macro):  0.9842 

AUC (Macro):  0.9997 

Top-2 Accuracy:   0.9986 

 
The validation metrics across epochs (Fig. 4) show steady 
improvement and alignment between training and 
validation behavior. The loss curves remain smooth and 
closely aligned (Fig. 5), indicating stable optimization and 
no signal of overfitting. Class-wise results (Table 2) 
confirm consistent recognition performance across all five 
adenocarcinoma subtypes, with high precision, recall, and 
F1-scores. Solid, acinar, and lepidic patterns score near-
perfect values, while micropapillary and papillary remain 
strong despite higher morphological variability. These 
results show that the model extracts subtype-specific 
morphological cues rather than memorizing visual 
artifacts. 
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Fig- 4 Proposed Model: Validation Metrics Per Epoch 

  

 
Fig-5 Training and Validation Loss with Stability 

 
Table -2: Class wise classification performance is displayed for 

each lung cancer subtype   

Class  Precision  Recall  F1-Score  AUC  

Solid  0.9932  0.9932  0.9932  0.9999  

Acinar  0.9855  0.9892  0.9873  0.9994  

Lepidic  0.9887  0.9860  0.9873  1.0000  

Micropapillary  0.9850  0.9685  0.9767  0.9998  

Papillary  0.9768  0.9761  0.9764  0.9994  

 
Fig. 6 visualizes test-set predictions. The confusion matrix 
in Fig. 4 shows dense diagonal concentration, confirming 

correct class assignments in most samples. 
Misclassifications are sparse and occur mainly between 
morphologically overlapping subtypes. The model 
separates texture-rich patterns (solid, acinar) and fine 
alveolar structures (lepidic) with clear margin, 
demonstrating strong feature disentanglement. The 
discriminative strength comes from hierarchical self-
attention, which captures spatial dependencies across 
nuclei, stroma, and gland architectures. This supports 
reliable subtype interpretation and suggests strong 
generalization potential for real-world histopathological 
workflows. 
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Fig-6 shows the Swin Transformer's model performance on the test set 

The confusion matrix for each of the five subtypes of lung 
adenocarcinoma is displayed in the left panel of the figure 
4, demonstrating excellent accuracy in each class. As 
depicted on the right panel, minimal misclassification is 
indicated by the concentration of correct predictions along 
the diagonal. Per-class performance measures (Precision, 
Recall, and F1-score) for each subtype are shown in the 
right panel. Reliable classification performance is reflected 
in the model's consistently high results, with solid and 
acinar subtypes attaining nearly flawless metrics. 
   

3.1 LLM Prediction Confidence and Differential 
Analysis of Lung Adenocarcinoma Subtypes 
 
The LLM module contributes interpretability by linking 
confidence values to diagnostic reliability. High-confidence 
predictions (>0.7) align with correct subtype assignments, 
while mid-range values (0.52–0.58) mark cases with 
overlapping histological patterns, such as subtle 
transitions between acinar and micropapillary growth. 
This behavior does not mask ambiguity; it exposes where  
 
 

tissue morphology provides incomplete separation, 
making the uncertainty itself meaningful. 
The differential probability output reflects the degree of 
similarity across subtype candidates. In Case 3, the values 
0.5846 vs. 0.4154 correspond to real architectural 
proximity rather than model noise. The system therefore 
produces ranked diagnostic likelihoods rather than a 
forced categorical decision, allowing the interpretation to 
mirror the way pathologists reason when patterns blend 
or borders are unclear. 
 
Figure 7 illustrates these effects across six patient cases. 
The left panel shows confidence levels that distinguish 
straightforward from uncertain presentations. The middle 
panel compares predicted and true subtypes, revealing 
that errors occur predominantly in borderline 
morphologies. The right panel visualizes probability 
distributions that demonstrate how the LLM expresses 
graded reasoning rather than a single-point claim. 
 
 

 

 
Fig-7 LLM forecasts for six patients of lung cancer are shown 
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This structure supports practical clinical use: confident 
outputs can be accepted directly, while uncertain cases are 
flagged with explicit reasoning for pathologist review, 
preserving diagnostic responsibility while increasing 
efficiency and transparency. 
 

4. CONCLUSIONS  
 
We presented a framework for lung adenocarcinoma 
subtyping that combines a Swin Transformer with an LLM 
for enhanced interpretability. The framework achieved a 
high level of performance in lung adenocarcinoma 
subtyping, with overall accuracy of 98.69%, precision of 
98.59%, recall of 98.26%, macro F1-score of 0.9842, and 
AUC of 0.9997. In addition, the proposed model also 
showed excellent class-wise performance despite class 
imbalance. External validation on the LungHist700 dataset 
confirmed that 20x magnification provides a 
computationally efficient option while maintaining 
diagnostic integrity, with subtypes showing superior or  
equivalent performance (MD: 0.9608 vs 0.8983 at 40x; PD: 
0.9533 vs 0.9395). Furthermore, the integration of an LLM 
provided a method for generating reports, and textual 
descriptions aligned with pathological concepts and 
differential diagnoses to aid pathologist decision-making. 
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