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Abstract - Environmental Sound Classification (ESC) is a
critical computation in the intelligent perception for smart
environments and environmental monitoring. The objective
of this paper is to present a light-weight ESC model
developed using transfer learning on a pre-trained VGGish
model suitable for real-time inference on CPU-based and
resource-constrained platforms. The method involves
converting the raw environmental audio input signals to
log-Mel  spectrograms, fine-tuned using a small
convolutional head, with the rest of the model backbone
frozen. Moreover, the model is trained using durability
expansion approaches such as low-scale amplitude sound
and arbitrary volume scaling to boost endurance and
reduce overfitting, respectively. All the scripts were carried
out in MATLAB Online R2025b on the ESC-10 sub-dataset,
with the model having an overall accuracy of 75.0% and a
macro-F1 score of 74.34% on the validation set. Therefore,
the results showed that transferring the learning-based CNN
network can strike a pleasant medium between efficiency
and accuracy; hence such a model can be used in real-time
without a GPU on the edge or embedded platforms

Key Words: Environmental Sound Classification (ESC),
Transfer Learning, VGGish, Lightweight CNN, Edge Al,
MATLAB Online, Audio Feature Extraction.

1.INTRODUCTION

Sound is one of the most crucial human senses that
provide moderation and reality. Environmental sounds,
such as the rain, car honking, footsteps, or bird chirping,
are vast sources of contextual information that allow a
person to understand and engage with their environment.
In addition to everyday life, sound moderation is essential
for safety, judgement, and context understanding [1].
Moreover, given that sound moderation is critical for
intelligent behaviour, researchers have long sought to
develop frameworks that enable machines to
automatically detect and label the sounds present, similar
to the human brains’ auditory perception. Thus, the field
has a long history but has gained a new dynamic due to the
recent progress in Artificial Intelligence and Machine
Learning [2].

The technology developed based on this idea of
environmental sound classification has multiple
applications, including wildlife supervision, traffic and

general city governance, smart-city infrastructure, and
public security systems and may also be utilised live in
emergencies to identify alarms, sirens, or other unusual
sounds [3]. Additionally, it may be applied live to
supervise ecosystems, including detecting acoustic
patterns like animal sounds or chirping birds [4].

Most recent progress was made possible due to the
emergence of deep learning, particularly Convolutional
Neural Networks (CNNs), which enable models to
automatically spot features in raw audio signals. Due to
the CNN’s capacity to capture both spectral and quick
visual qualities from log-Mel spectrograms, such
architectures have become the major strategy for ESC
duties [8]. The VGGish model, which was already trained
on vast audio recordings, is a model template and a good
starting point for transfer learning in low-resource
situations, allowing for light, strong models suitable for
edge and embedded settings to be readily prepared.

1.2 Problem Statement and Research Gap

Although Environmental Sound Classification (ESC) has
made substantial advancements, it continues to face
specific challenges that set it apart from speech and music
classification tasks. Environmental sounds are often
irregular in pattern, vary in both duration and intensity,
and are frequently embedded within background noise
[13].

Earlier methods based on manually engineered features—
such as Mel-Frequency Cepstral Coefficients (MFCCs),
Chroma features, and spectrogram descriptors—used in
combination with traditional classifiers like Support
Vector Machines (SVMs), Gaussian Mixture Models
(GMMs), and Hidden Markov Models (HMMs), performed
adequately under controlled conditions. However, these
approaches generally failed to generalize well in noisy or
real-world environments [13].

The adoption of deep learning has helped overcome
several of these limitations. Convolutional Neural
Networks (CNNs), in particular, have shown strong
performance in automatically extracting spatial and
spectral features from spectrogram representations,
especially when used in conjunction with transfer learning
techniques [9].
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Despite this progress, recent Transformer-based models—
such as the Audio Spectrogram Transformer (AST)—have
achieved even higher accuracy, though at the cost of
significantly increased computational complexity. This
makes them less suitable for deployment on edge devices
like smartphones, IoT sensors, or CPU-only platforms
where real-time processing is required [12].

Additionally, models trained on widely used benchmark
datasets like ESC-50 or UrbanSound8K often struggle to
maintain accuracy when applied to real-world audio,
largely due to the limited diversity and insufficient
annotation in these datasets [12].

These limitations emphasize the need for lightweight,
efficient, and transferable ESC models that can maintain
high performance despite restricted computational
resources. To address this, the development of a VGGish-
based transfer learning framework is proposed, aiming to
strike a practical balance between accuracy, robustness,

and deployability in  edge-oriented computing
environments
2. LITERTAURE REVIEW

Environmental sound classification (ESC) is a new area of
research into automatic recognition and classification of
various environmental acoustic events. In contrast to
typical studies concentrating on speech and music signals,
ESC has the basis of identifying heterogeneous sounds
(e.g., breaking glass, helicopter noise, or crying babies)
which are dominative sounds in these fields of
applications like surveillance systems and criminal
investigations, wildlife monitoring and surveillance, smart
city solutions, healthcare monitoring, and smart homes.
ESC is inherently more difficult to solve than speech or
music classification since environmental sounds are non-
stationary and do not carry structured semantic
information, acoustic modulations, or invariants such as
rhythm and melody and usually have low SNR caused by
microphone placement and many overlapped acoustic
events which make the exact recognition yet more
complicated. The environmental sound classification
process involves several stages such as data collection,
pre-processing, feature extraction, feature selection, and
classification, each of which may offer possibilities for
methodological advancement with respect to performance
enhancement [20].

Early works in ESC worked with handcrafted signal-
processing features using traditional (non-convolutional)
machine-learning architectures. Before feature extraction,
data preprocessing including silence detection based on an
amplitude level, and spectrogram length reduction as well
as noise reduction based on perceptual filterbanks and
subspace-based methods. Cepstral, temporal, spectral and
image-based feature representations are among the range
of handcrafted features considered. Mel-Frequency

Cepstral Coefficients (MFCCs) are widely employed in
studies of music, speech, and environmental sounds; they
are computed by taking a Fourier transform, mapping
power to the mel scale, applying logarithm function and a
discrete cosine transform but can suffer from poor noise
robustness as well as reductions in performance for short
window lengths and non-stationary signals such as music
and sound events thus leading to alternatives being
proposed including coding-excited linear prediction or
hybrid feature sets. Spectral flatness and centroid, Chroma
features, Zero-crossing rate, Linear Predictive Coding,
Gammatone filters [14] and Gammatone Cepstral
Coefficients can all be included in the feature space with
the hope that if there is some structure in a high-
dimensional space we shall discover it. Features can be
selected based on class separability and compactness of
representation to reduce computation cost and
redundancy, i.e., to find a subset that carries most of the
variation. Classical classifiers consist of linear (SVM-
linear), non-linear (polynomial, radial basis and Gaussian
kernels) SVMs [13] with both multiclass and one-class
versions; K-NN algorithmism for urban sounds; HMMs
usually coupled with GMMs but outperformed by fast-
training deep neural networks. Decision Trees (DTs) and
Random Forests (RF) achieved accuracies of 73.75% and
74.5% respectively on the ESC-10 dataset. However, as
discussed in Section 1 (Chetsanga, MSM-ISM), these
conventional machine learning approaches exhibit low
noise tolerance and poor generalization to unseen data.
Moreover, their reliance on handcrafted features further
highlights the necessity for deep learning-based methods
[12].

Deep learning has revolutionized ESC for not requiring the
manual work on feature engineering and learning
discriminative representations from data [15]. CNN
became a prevailing approach for spectrogram-based ESC
thanks to its ability of automatically learning both
temporal and frequency structures using parameter
sharing, which decreases the degree of manual tuning as
well as computational stress [15]. Piczak (2015) was one
of the pioneers using CNNs for ESC and found substantial
improvement over MFCC-based models, and subsequent
research studied a series of serial, parallel, and hybrid
architectures. Examples of unusual architectures can be
found in Su et al. (2019) using two-stream CNNs with
decision-level fusion (TSCNN-DS) through Dempster-
Shafer theory; Abdoli et al. (2019) with one-dimensional
CNN end-to-end learning from raw audio using fewer
parameters than 2-D spectrogram CNNs; Rajab et al
(2021) which integrates Bayesian optimization with
ensemble learning; Dai et al. (2017) showing that depth as
deep as 34 layers is beneficial for accuracy; and Fang et al.
[13] introducing the RACNN (Resource Adaptive CNN)
accustoming to not overloading hardware, but still
promising accuracy. These CNN breakthroughs set high
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benchmarks for spectrogram graphic inputs and inspired
extensions for sequence learning.

The latest SOTAs exceed pure CNNs to the sequence-aware
and attention models. RNNs which model time
dependencies in sequential audio have been widely used
for acoustic event recognition tasks. The overall
performance of CRNNs are grid-searched automatic
feature learning and training which adopts the
concatenation of the CNN feature representation with
LSTM/GRU libraries for music classification, acoustic
event detection, species-specific vocalization as well as
reports that deep networks can classify urban
soundscapes using waveforms. Deep Belief Neural
Networks (DBNN) were successfully applied by Gencoglu
et al. (2014) to beat the HMM-based, GMM-based, and
shallow-network baselines on ESC. Transformers—whose
original purpose was for NLP—now enable ESC advances
by employing self-attention to sense long-range time-
frequency dependencies. (Audio) Transformers addressed
by our method include AST (Audio Spectrogram
Transformer) pre-trained on AudioSet (95.7% ESC-50),
HTS-AT with Swin-Transformer encoders (97.0% ESC-50),
BEATSs (98.25% ESC-50), CAT using MRMF features, and
CL-Transformer with Patch-Mix and adaptive contrastive
learning (97.75% ESC-50). Related directions are self-
supervised and semi-supervised learning (SSL): ECHO—
semi-supervised with hierarchical ontology guidance—
enhances UrbanSound8K, ESC-10, and ESC-50 by 1-8%j;
contrastive learning acts as augmentation and regularizer
to improve generalization. Ensemble and hybrid models
— stacked CNNs, DCASE 2017 ensembling, two-step CNN
pipelines (DCASE 2020 Task 1la) — further improve
robustness [13]-[15].

Transfer learning (TL) is essential in ESC because datasets
are small and knowledge gained from large source
domains is transferred and adjusted to the target task to
increase prediction performance and save training time.
Common pipelines transform raw audio to log-Mel
spectrograms for pre-trained CNNs (originally trained for
image recognition but transferable in audio). Commonly
used pre-trained models include InceptionV3,
VGG19/VGGish, ResNet, DenseNet, EfficientNet,
MobileNetV2, and others achieving strong ESC results
upon fine-tuning with accuracies up to 97% on
UrbanSound8K using Adam by ResNet50V2 and
DenseNet201 respectively [13], [12].

Adaptive optimization methods further improve training
and deployment, including hyperparameter optimization
(learning rate, epochs, optimizer), Bayesian optimization
with 1D CNN ensembles, and model compression via
pruning and quantization to satisfy edge constraints [12].
The list of progress continues: adaptive depth pruning
(ADP) cuts parameters by >50% at <2% accuracy drop on
ESC-50; hybrid pruning can go beyond 97% size

reductions [9]; quantization leads to sub-500KB models
(DCASE 2020 Task 1b) with competitive performance.
Knowledge Distillation (KD) and Self-Distillation (SD) aim
to compress models by transferring teacher knowledge or
internal representations, usually alongside ADP to restore
accuracy. Methods such as evolutionary algorithms (GA
and PSO), Mixup for overfitting reduction, variable
learning in CL-Transformer to resist noise, and hardware
acceleration using NVIDIA TensorRT and TVM for
inference-time gains on edge devices [9], [12].

However, there are still some gaps even after those
significant achievements. In public datasets as ESC-10 and
ESC-50, data size and diversity are relatively insufficient,
limiting cross-domain generalization; it is inevitable to
collect large-scale samples for the audio classes [13]. The
fusion gains good results but requires better descriptors
under noisy circumstances [13]. Although CNNs and
Transformers-based models are accurate, new or
combined neural architectures may achieve better
performance [13]. Real-time deployment on resource-
limited devices is still a major challenge; even compressed
models may not satisfy end-to-end latency and power
constraints, demanding energy-aware designs and feature
sharing [12]. Pre-trained models, in particular
Transformers, can overfit small ESC datasets, and urban
noise aggravates this problem, highlighting a demand for
more robust models [15]. The absence of evaluation
frameworks undermines fair comparison and assessment
for deployment in resource-constrained settings [12].
Furthermore, with low sampling rates, ultrasonic parts are
often neglected; incorporating ultrasonic sensing in DL
frameworks can improve accuracy [12]. It is worth noting
that the above limitations show the necessity for the
development of ESC systems deployed in the real world,
based on transfer learning and lightweight CNN
architectures, like VGGish.

3. Research Design

This study presents a quantitative, experimental study
conducted in a supervised learning context designed to
tackle ESC (Environmental Sound Classification) issues.
Although the VGGish model-based method utilizes deep
learning, its idea is to take advantage of it. The term for
this type of action is transfer learning since the pre-
trained VGGish model is used, which increases the
accuracy/speed of an ESC system on resource-constraint
hardware (such as edge devices in a smart city or wildlife
sensor) while keeping deployment feasibility. ESC is a
challenging sub-discipline of audio classification and
differs from structured signals (like speech and music):
environmental sounds are semantically inconsistent,
completely random and frequently have low Signal-to-
Noise Ratio (SNR), overlapping acoustic events, amongst
different sources [8]. The main challenge is to identify
computationally efficient and robust ESC models that can
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still predict with high accuracy even when fewer resources
are available and The implementation was done using
MATLAB Online R2025b, establishing the possibility of the
model to be deployed in a CPU-based environment.
constrained by real-world scenarios in smart
infrastructure and environmental monitoring.

3.1 Dataset (ESC-10 - Environmental Sound
Classification)

Experiments conducted were based on the ESC-10, a
dataset created for the extensive Environmental Sound
Classification (ESC) benchmark. ESC-10 was first
introduced by Karol ]. Piczak as a substantially reduced
version of the ESC-50 corpus to learn sound classification
methods. It contains four different environmental sound
classes: dog bark, rain, sea waves, crying baby, clock tick,
sneezes, helicopter, chainsaw, rooster, and fire crackling.
All audio clips have the duration of 5 seconds, with a
sampling rate of 44.1 kHz, saved in mono 16-bit WAV
format. The dataset consists of 400 labeled clips total, with
40 clips per sound category and undergoes five-fold cross-
validation consistent evaluation. The primary intention
behind designing ESC-10 was to provide a compact yet
diverse environmental sound classification benchmark
and allow researchers to evaluate their generalization
capability of sound models with a small amount of data
available. This aspect stresses the recognition of everyday
non-speech, non-music noise and promotes robustness to
background conditions and acoustic texture variation—
both pivotal factors in real-world environmental sound
classification.

Table -1: Dataset Summary - ESC-10

Item Details

Year 2015

Piczak, K. J. (2015). ESC: Dataset for Environmental Sound
Classification. Proceedings of the 23rd ACM International Conference
on Multimedia.

Reference
paper

3.2 Preprocessing & Feature Extraction

Pre-processing and feature extraction are tasks required
to transform raw audio waveforms into two-dimensional
time-frequency representations that are amenable for use
in the CNN-based architectures. Audio files were
resampled to 16 kHz and split into overlapping duration
0.96 s clips with 75% overlap. A Short-Time Fourier
Transform was implemented with 25 ms window, 10 ms
hop, and 512-point FFT and then mapped to 64 Mel bands
to obtain log-Mel spectrograms of size 96 x 64 x 1 - the
VGGish input format. Data augmentation was used not
only to enhance generalization and reduce overfitting but
also for a few other purposes. It was performed on the
waveform level by adding low-amplitude noise and doing
random scaling of the amplitude in the range of 0.8-1.2x.
Also each spectrogram was normalized per clip to
maintain stabilizing. CNN learns from feeded images. Log
Mel spectrograms files were used as input “images” for the
CNN transfer-learning pipeline.

3.3 Model Architecture : Transfer Learning

The modeling phase is centered on a CNN-based transfer
learning configuration that is optimized for accuracy while
also being computationally efficient. In this prototype, the
VGGish model is used as a pre-trained backbone, which
was initially trained on large-scale audio corpora and then

Item Details ) . , .
fine-tuned for the ESC-10 dataset. VGGish’s convolutional
Task Environmental Sound Classification (ESC) layers are employed as a general'purpose feature
extractor that captures hierarchical and translation-
Dog bark; Rain; Sea waves; Crying baby; Clock tick; Sneezing; i i - .
Classes (10) Helicopter; Chainsaw; Rooster; Crackling fire 1nvar.12_1nt _patterns Of l(‘)g Mel .SpeCtrogramS A Compact
classification head is a priori attached to the frozen
Clip length 5 seconds convolutional base, which is composed of a fully connected
bottleneck layer of Batch Normalization, ReLU activation,
s;:::is 400 clips (10 classes x 40 clips) Dropout, and a final fully connected layer of fully
connected layers corresponding to the ESC-10 classes
i followed by the Softmax output. Fine-tuning, in this case,
Sampling 44.1 kHz, mono, 16-bit WAV . y . p g .
rate consisted only of training the new classification head
_ — . _ while leaving the pre-trained convolutional weights
Split 5 x cross-validation folds (no fixed dev/eval split) . .
frozen. This transfer learning framework, as far as I am
. Evaluate algorithms for general environmental sound recognition aware, is an effective means to mitigate the requirement
Design goal using limited data i i
8 for large labeled datasets while also shorting the
- convergence process without sacrificing strong
Source Subset of ESC-50 dataset by Karol J. Piczak (2015) ! . . .. .
generalization in limited ESC data scenarios.
License Creative Commons BY-NC 3.0 (non-commercial use)
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3.4 Optimization and Training Strategy

The adaptive optimization setup described above was
performed to ensure stable fine-tuning and efficient
convergence. The setup above also included an Adam
optimizer with an initial learning rate of 3 x 10 ~* L2
regularization term of 5 x 10 ~*, and a piecewise learning-
rate schedule whereby the rate was decayed by a factor of
0.5 every three epochs. The rest of the components used to
stabilize the training include early stopping with
validation patience equaling 5 and gradient-norm clipping
with L2 norm equalling the rest of the training
parameters. The training was conducted using MATLAB
Online R2025b in a CPU environment to make sure the
results are reproducible with limited hardware. Therefore,
the current prototype did not use top-notch optimization
and compression techniques, such as RMSprop, Adamax,
Bayesian hyperparameter search, adaptive depth-wise
pruning, and knowledge/self-distillation. Such alternatives
will be viewed as future prospects to minimize the size
and latency of a model while maintaining accuracy during
real-time edge deployment.

3.5 Evaluation Setup & Metrics

Model assessment was realized on a properly controlled,
and hence, reproducible environment. Experiments were
performed and trained in MATLAB Online R2025b with
the Audio and Deep Learning Toolboxes for an end-to-end
platform that incorporated preprocessing, feature
extraction, and network training on the ESC-10 dataset.
After splitting the data into 80% train, 20% validation
data, the dataset distribution of classes was perfectly
established. The training was realized with early stopping
and a minibatch size of 128, maintaining stable
convergence on CPU-based resources. Finally,
performance was reported in terms of file-level Accuracy,
Precision, Recall, per-class F1-Score, and a normalized
confusion matrix used to aggregate segment-level
predictions through majority voting, which ensures
consistent file-level evaluation and compares to a
desirable file-level evaluation agnostic to existing ESC
baselines.

Table -2: Experimental Configuration

Item Details
. MATLAB Online (R2025b) - Audio and Deep Learning
Environment
Toolboxes
HP EliteDesk 800 G4 Workstation - Intel Core i7-8700 CPU @
Hardware 3.20 GHz - 16 GB RAM - Windows 10 Enterprise 64-bit (CPU-
only execution)
. STFT - log-Mel spectrogram (96 x 64 x 1) at 16 kHz; per-clip z-
Preprocessing score normalization

Item Details
. Waveform-level: low-amplitude noise injection and random
Augmentation .
volume scaling (0.8 - 1.2x)
Model (TL) Pre-trained VGGish (CNN-based) with custom head: FC-128 +
BN + ReLU + Dropout (0.3) + FC-10 + Softmax
Freeze all VGGish convolutional layers; train new classification
TL Strategy
head only
Adam (Initial LR =3 x 107, L2 = 5 x 10™*); piecewise LR drop
Optimizer (x0.5 every 3 epochs); early stopping; gradient clipping (L2 =
1)
Hyperparameter Manual selection based on ESC baselines (no Bayesian
Tuning optimization used)
Compression Not applied in this prototype (pruning and distillation planned
for future work)
0 ini 0, i i i - .
Validation 80 % training / 20 % validation split on ESC-10; balanced by
class
. File-level Accuracy, Precision, Recall, per-class F1-Score,
Metrics . . .
normalized Confusion Matrix
. All experiments used open-source data (ESC-10) under
Ethics . . .
research license and data privacy standards compliance

Table -3: Implementation Plan for ESC-10 (VGGish
Transfer Learning Prototype)

Stage Objective Key Implementation Steps Outputs / Artifacts
Reproducible Setrng(42) f(.)r repro_ducnblllty; ve_rlfy leed_CPU—based
0 Environment MATLAB Online session; load Audio & environment
Deep Learning Toolboxes. (Online)
Dataset Layout Create audeatastore for ESC-10'folder; Labeled audio file
1 & Labels LabelSource = 'foldernames’; index (10 classes)
countEachLabel.
R ple to 16 kHz; tinto 0.96 s
windows (75 % overlap); STFT (25 ms g )
2 L"gE')l:’if; fgi;“re window, 10 ms hop, FFT = 512, 64 Mel M‘;T': rei‘t‘foy lr‘;gm .
bands); log-scale spectrogram - [96 x 64 x P g
1].
Data Apply waveform-level noise injection (o = Enhanced
3 . 0.005) and random volume scaling (0.8 - |training diversity
Augmentation
1.2x). and robustness
- P TY o - o
Feature Pipeline Spllt. ES(.: 10 into 80 /o.trammg and 20 % Reproducible
o validation; create train/val datastores; . .
4 & Validation y . train/validation
- store segment counts per file for majority [
Split ) pipelines
voting.
Load pre-trained VGGish; remove original
Transfer output layers; add custom head (FC-128 - Fine-tuned
5 Learning BN - ReLU - Dropout 0.3 - FC-10 - VGGish network
Backbone Softmax); freeze all conv layers; train head for ESC-10
only.
Use Adam (InitLR=3 x 107*, L2 =5 x Trained model
Training & 10~*); piecewise LR decay (x 0.5 every 3 P
6 R i ? and training log
Optimization | epochs); batch size = 128; early stopping (netinfo)
(patience = 5); gradient clipping (L2 = 1).
Evaluation i idati .
7 Mot Clzfssnfy v_all(!atlon segments; aggregate by Validation report
etrics file (majority vote); compute Accuracy, and performance
Precision, Recall, per-class F1, macro F1; p
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Stage Objective Key Implementation Steps Outputs / Artifacts
plot normalized Confusion Matrix. table
Save model
Model Saving & (VGGlsh_ESC10_f:dge_com.pact.mat) and Stored welg'hts
8 Reproducibility detailed metrics and evaluation
P (VGGish_ESC10_detailed_results.mat); artifacts
document hyper-parameters.
. Extend to multi-backbone tests
(Optional) (ResNet50V2, MobileNetv2); add SNR Planned
9 Ablation / . experiments for
robustness and compression (ADP, .
Future Work future extensions
KD/SD).
Reporting & Generate training curves, confusion matrix Journal-read
10 eporting figures, and metric tables for IRJET . 4
Visualization L figures and tables
publication.

3.6 Ethical Considerations

All experimentations involve those licenses with respect to
datasets and guidelines relating to data privacy, open-
sourced corpora responsibly used, and ethical
transparency practices for MSC research aligned.

4. Results and Discussion

It should be noted that the proposed VGGish-based
transfer learning model was utilized on the ESC-10 dataset
with the 80:20 train-validation split ratio for the model
training and evaluation sessions. However, all the
implementations were carried out in MATLAB Online
(R2025b) in a CPU-only setting. This successfully
demonstrated that efficient and small deep learning
models could be exercised without a GPU accelerator.

4.1 Quantitative Results

The achieved overall file-level accuracy of the trained
model was 75.0% and the F1 macro 74.34% on the
validation set. These are solid performance results given
the dataset’'s size, short samples, and limited
computational power. Per-class detailed evaluation
confirmed high consistency in most categories, with
crying baby achieving a perfect F1 of 100%. The
helicopter, rain, and sea_waves reached F1 results of
87.5%, 82%, and 87.5%, which may be considered
excellent results. On the other side, sneezing and
crackling_fire obtained F1 results of *53% and =55%. In
these cases, the latter involves short and
impulsive/broadband sounds, and the former has various
transient parts.

Confusion Matrixfor Vahdation Deta
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Fig -1 : Confusion Matrix of Validation Data for ESC-10

The normalized confusion matrix calculated from the
validation dataset is shown in Figure 1. Diagonal ones
correspond to the sound’s accurate ten-class ESC-10
classification. The accuracy was 100% for most classes,
e.g., “crying baby,” “helicopter,” and “sea_waves” = 87%,
and misclassification was more common amongst
seemingly interchangeable categories such as “chainsaw”
and “crackling fire.”.

4.2 Summary of Findings

The experimental results in this work revealed remaining
of proposed VGGish based transfer learning approach
achieved reliable performance in environmental sound

classification tasks despite the relatively limited
computational resources. Obtaining 75.0 % overall
accuracy and 7434 % macro - F1, the model

outperformed classical machine learning approaches like
Decision Trees and Random Forests in the same dataset
while running completely based on CPU in MATLAB
Online. Overall, the experimental results confirm that
establishing a lightweight CNN architecture can be a great
solution to the accuracy - efficiency trade-off, making a
real-time edge deployment without powerful GPUs.
Meanwhile, consistent misclassifications were made
between acoustically similar classes, indicating that
further considerations the incorporation of additional
temporal context or data augmentation could optimize
future model versions.
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5. Conclusion

We presented a transfer learning-based lightweight
environmental sound classification framework
implemented using a pre-trained VGGish model. The
system was designed and trained entirely in MATLAB
Online using a CPU-only environment, demonstrating that
efficient deep learning models can be deployed without
GPU acceleration. The framework we proposed obtained a
75.0 overall accuracy and a 74.34 macro-F1 score on the
ESC-10 dataset, outperforming classical machine-learning
baselines such as Decision Trees and Random Forests.
These results indicate that compact CNN architectures can
provide a suitable trade-off between accuracy and
computational cost, which enables their deployment in
real-time and edge-device scenarios for smart-city and
environmental-monitoring applications. Nevertheless, as a
result of the consistent misunderstanding of classes with
similar acoustics, such as “chainsaw” or “crackling fire,”
we are confident that implementing temporal-context
modeling or even advanced data augmentation techniques
will result in improved performance. Ultimately, we
conclude that transfer-learning-based ESC systems are a
viable cost- and energy-aware method for enabling
intelligent acoustic sensing.
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