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Abstract - Environmental Sound Classification (ESC) is a 
critical computation in the intelligent perception for smart 
environments and environmental monitoring. The objective 
of this paper is to present a light-weight ESC model 
developed using transfer learning on a pre-trained VGGish 
model suitable for real-time inference on CPU-based and 
resource-constrained platforms. The method involves 
converting the raw environmental audio input signals to 
log-Mel spectrograms, fine-tuned using a small 
convolutional head, with the rest of the model backbone 
frozen. Moreover, the model is trained using durability 
expansion approaches such as low-scale amplitude sound 
and arbitrary volume scaling to boost endurance and 
reduce overfitting, respectively. All the scripts were carried 
out in MATLAB Online R2025b on the ESC-10 sub-dataset, 
with the model having an overall accuracy of 75.0% and a 
macro-F1 score of 74.34% on the validation set. Therefore, 
the results showed that transferring the learning-based CNN 
network can strike a pleasant medium between efficiency 
and accuracy; hence such a model can be used in real-time 
without a GPU on the edge or embedded platforms 
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1.INTRODUCTION  
 
Sound is one of the most crucial human senses that 
provide moderation and reality. Environmental sounds, 
such as the rain, car honking, footsteps, or bird chirping, 
are vast sources of contextual information that allow a 
person to understand and engage with their environment. 
In addition to everyday life, sound moderation is essential 
for safety, judgement, and context understanding [1]. 
Moreover, given that sound moderation is critical for 
intelligent behaviour, researchers have long sought to 
develop frameworks that enable machines to 
automatically detect and label the sounds present, similar 
to the human brains’ auditory perception. Thus, the field 
has a long history but has gained a new dynamic due to the 
recent progress in Artificial Intelligence and Machine 
Learning [2]. 
The technology developed based on this idea of 
environmental sound classification has multiple 
applications, including wildlife supervision, traffic and 

general city governance, smart-city infrastructure, and 
public security systems and may also be utilised live in 
emergencies to identify alarms, sirens, or other unusual 
sounds [3]. Additionally, it may be applied live to 
supervise ecosystems, including detecting acoustic 
patterns like animal sounds or chirping birds [4]. 
Most recent progress was made possible due to the 
emergence of deep learning, particularly Convolutional 
Neural Networks (CNNs), which enable models to 
automatically spot features in raw audio signals. Due to 
the CNN’s capacity to capture both spectral and quick 
visual qualities from log-Mel spectrograms, such 
architectures have become the major strategy for ESC 
duties [8]. The VGGish model, which was already trained 
on vast audio recordings, is a model template and a good 
starting point for transfer learning in low-resource 
situations, allowing for light, strong models suitable for 
edge and embedded settings to be readily prepared. 
 

1.2 Problem Statement and Research Gap 
 
Although Environmental Sound Classification (ESC) has 
made substantial advancements, it continues to face 
specific challenges that set it apart from speech and music 
classification tasks. Environmental sounds are often 
irregular in pattern, vary in both duration and intensity, 
and are frequently embedded within background noise 
[13]. 

Earlier methods based on manually engineered features—
such as Mel-Frequency Cepstral Coefficients (MFCCs), 
Chroma features, and spectrogram descriptors—used in 
combination with traditional classifiers like Support 
Vector Machines (SVMs), Gaussian Mixture Models 
(GMMs), and Hidden Markov Models (HMMs), performed 
adequately under controlled conditions. However, these 
approaches generally failed to generalize well in noisy or 
real-world environments [13]. 

The adoption of deep learning has helped overcome 
several of these limitations. Convolutional Neural 
Networks (CNNs), in particular, have shown strong 
performance in automatically extracting spatial and 
spectral features from spectrogram representations, 
especially when used in conjunction with transfer learning 
techniques [9]. 
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Despite this progress, recent Transformer-based models—
such as the Audio Spectrogram Transformer (AST)—have 
achieved even higher accuracy, though at the cost of 
significantly increased computational complexity. This 
makes them less suitable for deployment on edge devices 
like smartphones, IoT sensors, or CPU-only platforms 
where real-time processing is required [12]. 

Additionally, models trained on widely used benchmark 
datasets like ESC-50 or UrbanSound8K often struggle to 
maintain accuracy when applied to real-world audio, 
largely due to the limited diversity and insufficient 
annotation in these datasets [12]. 

These limitations emphasize the need for lightweight, 
efficient, and transferable ESC models that can maintain 
high performance despite restricted computational 
resources. To address this, the development of a VGGish-
based transfer learning framework is proposed, aiming to 
strike a practical balance between accuracy, robustness, 
and deployability in edge-oriented computing 
environments 

2. LITERTAURE REVIEW 

Environmental sound classification (ESC) is a new area of 
research into automatic recognition and classification of 
various environmental acoustic events. In contrast to 
typical studies concentrating on speech and music signals, 
ESC has the basis of identifying heterogeneous sounds 
(e.g., breaking glass, helicopter noise, or crying babies) 
which are dominative sounds in these fields of 
applications like surveillance systems and criminal 
investigations, wildlife monitoring and surveillance, smart 
city solutions, healthcare monitoring, and smart homes. 
ESC is inherently more difficult to solve than speech or 
music classification since environmental sounds are non-
stationary and do not carry structured semantic 
information, acoustic modulations, or invariants such as 
rhythm and melody and usually have low SNR caused by 
microphone placement and many overlapped acoustic 
events which make the exact recognition yet more 
complicated. The environmental sound classification 
process involves several stages such as data collection, 
pre-processing, feature extraction, feature selection, and 
classification, each of which may offer possibilities for 
methodological advancement with respect to performance 
enhancement [20]. 

Early works in ESC worked with handcrafted signal-
processing features using traditional (non-convolutional) 
machine-learning architectures. Before feature extraction, 
data preprocessing including silence detection based on an 
amplitude level, and spectrogram length reduction as well 
as noise reduction based on perceptual filterbanks and 
subspace-based methods. Cepstral, temporal, spectral and 
image-based feature representations are among the range 
of handcrafted features considered. Mel-Frequency 

Cepstral Coefficients (MFCCs) are widely employed in 
studies of music, speech, and environmental sounds; they 
are computed by taking a Fourier transform, mapping 
power to the mel scale, applying logarithm function and a 
discrete cosine transform but can suffer from poor noise 
robustness as well as reductions in performance for short 
window lengths and non-stationary signals such as music 
and sound events thus leading to alternatives being 
proposed including coding-excited linear prediction or 
hybrid feature sets. Spectral flatness and centroid, Chroma 
features, Zero-crossing rate, Linear Predictive Coding, 
Gammatone filters [14] and Gammatone Cepstral 
Coefficients can all be included in the feature space with 
the hope that if there is some structure in a high-
dimensional space we shall discover it. Features can be 
selected based on class separability and compactness of 
representation to reduce computation cost and 
redundancy, i.e., to find a subset that carries most of the 
variation. Classical classifiers consist of linear (SVM-
linear), non-linear (polynomial, radial basis and Gaussian 
kernels) SVMs [13] with both multiclass and one-class 
versions; K-NN algorithmism for urban sounds; HMMs 
usually coupled with GMMs but outperformed by fast-
training deep neural networks. Decision Trees (DTs) and 
Random Forests (RF) achieved accuracies of 73.75% and 
74.5% respectively on the ESC-10 dataset. However, as 
discussed in Section 1 (Chetsanga, MSM-ISM), these 
conventional machine learning approaches exhibit low 
noise tolerance and poor generalization to unseen data. 
Moreover, their reliance on handcrafted features further 
highlights the necessity for deep learning-based methods 
[12]. 

Deep learning has revolutionized ESC for not requiring the 
manual work on feature engineering and learning 
discriminative representations from data [15]. CNN 
became a prevailing approach for spectrogram-based ESC 
thanks to its ability of automatically learning both 
temporal and frequency structures using parameter 
sharing, which decreases the degree of manual tuning as 
well as computational stress [15]. Piczak (2015) was one 
of the pioneers using CNNs for ESC and found substantial 
improvement over MFCC-based models, and subsequent 
research studied a series of serial, parallel, and hybrid 
architectures. Examples of unusual architectures can be 
found in Su et al. (2019) using two-stream CNNs with 
decision-level fusion (TSCNN-DS) through Dempster–
Shafer theory; Abdoli et al. (2019) with one-dimensional 
CNN end-to-end learning from raw audio using fewer 
parameters than 2-D spectrogram CNNs; Rajab et al. 
(2021) which integrates Bayesian optimization with 
ensemble learning; Dai et al. (2017) showing that depth as 
deep as 34 layers is beneficial for accuracy; and Fang et al. 
[13] introducing the RACNN (Resource Adaptive CNN) 
accustoming to not overloading hardware, but still 
promising accuracy. These CNN breakthroughs set high 
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benchmarks for spectrogram graphic inputs and inspired 
extensions for sequence learning. 

The latest SOTAs exceed pure CNNs to the sequence-aware 
and attention models. RNNs which model time 
dependencies in sequential audio have been widely used 
for acoustic event recognition tasks. The overall 
performance of CRNNs are grid-searched automatic 
feature learning and training which adopts the 
concatenation of the CNN feature representation with 
LSTM/GRU libraries for music classification, acoustic 
event detection, species-specific vocalization as well as 
reports that deep networks can classify urban 
soundscapes using waveforms. Deep Belief Neural 
Networks (DBNN) were successfully applied by Gencoglu 
et al. (2014) to beat the HMM-based, GMM-based, and 
shallow-network baselines on ESC. Transformers—whose 
original purpose was for NLP—now enable ESC advances 
by employing self-attention to sense long-range time–
frequency dependencies. (Audio) Transformers addressed 
by our method include AST (Audio Spectrogram 
Transformer) pre-trained on AudioSet (95.7% ESC-50), 
HTS-AT with Swin-Transformer encoders (97.0% ESC-50), 
BEATs (98.25% ESC-50), CAT using MRMF features, and 
CL-Transformer with Patch-Mix and adaptive contrastive 
learning (97.75% ESC-50). Related directions are self-
supervised and semi-supervised learning (SSL): ECHO—
semi-supervised with hierarchical ontology guidance—
enhances UrbanSound8K, ESC-10, and ESC-50 by 1–8%; 
contrastive learning acts as augmentation and regularizer 
to improve generalization. Ensemble and hybrid models 
— stacked CNNs, DCASE 2017 ensembling, two-step CNN 
pipelines (DCASE 2020 Task 1a) — further improve 
robustness [13]–[15]. 

Transfer learning (TL) is essential in ESC because datasets 
are small and knowledge gained from large source 
domains is transferred and adjusted to the target task to 
increase prediction performance and save training time. 
Common pipelines transform raw audio to log-Mel 
spectrograms for pre-trained CNNs (originally trained for 
image recognition but transferable in audio). Commonly 
used pre-trained models include InceptionV3, 
VGG19/VGGish, ResNet, DenseNet, EfficientNet, 
MobileNetV2, and others achieving strong ESC results 
upon fine-tuning with accuracies up to 97% on 
UrbanSound8K using Adam by ResNet50V2 and 
DenseNet201 respectively [13], [12]. 

Adaptive optimization methods further improve training 
and deployment, including hyperparameter optimization 
(learning rate, epochs, optimizer), Bayesian optimization 
with 1D CNN ensembles, and model compression via 
pruning and quantization to satisfy edge constraints [12]. 
The list of progress continues: adaptive depth pruning 
(ADP) cuts parameters by >50% at <2% accuracy drop on 
ESC-50; hybrid pruning can go beyond 97% size 

reductions [9]; quantization leads to sub-500KB models 
(DCASE 2020 Task 1b) with competitive performance. 
Knowledge Distillation (KD) and Self-Distillation (SD) aim 
to compress models by transferring teacher knowledge or 
internal representations, usually alongside ADP to restore 
accuracy. Methods such as evolutionary algorithms (GA 
and PSO), Mixup for overfitting reduction, variable 
learning in CL-Transformer to resist noise, and hardware 
acceleration using NVIDIA TensorRT and TVM for 
inference-time gains on edge devices [9], [12]. 

However, there are still some gaps even after those 
significant achievements. In public datasets as ESC-10 and 
ESC-50, data size and diversity are relatively insufficient, 
limiting cross-domain generalization; it is inevitable to 
collect large-scale samples for the audio classes [13]. The 
fusion gains good results but requires better descriptors 
under noisy circumstances [13]. Although CNNs and 
Transformers-based models are accurate, new or 
combined neural architectures may achieve better 
performance [13]. Real-time deployment on resource-
limited devices is still a major challenge; even compressed 
models may not satisfy end-to-end latency and power 
constraints, demanding energy-aware designs and feature 
sharing [12]. Pre-trained models, in particular 
Transformers, can overfit small ESC datasets, and urban 
noise aggravates this problem, highlighting a demand for 
more robust models [15]. The absence of evaluation 
frameworks undermines fair comparison and assessment 
for deployment in resource-constrained settings [12]. 
Furthermore, with low sampling rates, ultrasonic parts are 
often neglected; incorporating ultrasonic sensing in DL 
frameworks can improve accuracy [12]. It is worth noting 
that the above limitations show the necessity for the 
development of ESC systems deployed in the real world, 
based on transfer learning and lightweight CNN 
architectures, like VGGish. 

3. Research Design 

This study presents a quantitative, experimental study 
conducted in a supervised learning context designed to 
tackle ESC (Environmental Sound Classification) issues. 
Although the VGGish model-based method utilizes deep 
learning, its idea is to take advantage of it. The term for 
this type of action is transfer learning since the pre-
trained VGGish model is used, which increases the 
accuracy/speed of an ESC system on resource-constraint 
hardware (such as edge devices in a smart city or wildlife 
sensor) while keeping deployment feasibility. ESC is a 
challenging sub-discipline of audio classification and 
differs from structured signals (like speech and music): 
environmental sounds are semantically inconsistent, 
completely random and frequently have low Signal-to-
Noise Ratio (SNR), overlapping acoustic events, amongst 
different sources [8]. The main challenge is to identify 
computationally efficient and robust ESC models that can 
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still predict with high accuracy even when fewer resources 
are available and The implementation was done using 
MATLAB Online R2025b, establishing the possibility of the 
model to be deployed in a CPU-based environment. 
constrained by real-world scenarios in smart 
infrastructure and environmental monitoring. 
 

3.1 Dataset (ESC-10 – Environmental Sound 
Classification) 
 
Experiments conducted were based on the ESC-10, a 
dataset created for the extensive Environmental Sound 
Classification (ESC) benchmark. ESC-10 was first 
introduced by Karol J. Piczak as a substantially reduced 
version of the ESC-50 corpus to learn sound classification 
methods. It contains four different environmental sound 
classes: dog bark, rain, sea waves, crying baby, clock tick, 
sneezes, helicopter, chainsaw, rooster, and fire crackling. 
All audio clips have the duration of 5 seconds, with a 
sampling rate of 44.1 kHz, saved in mono 16-bit WAV 
format. The dataset consists of 400 labeled clips total, with 
40 clips per sound category and undergoes five-fold cross-
validation consistent evaluation. The primary intention 
behind designing ESC-10 was to provide a compact yet 
diverse environmental sound classification benchmark 
and allow researchers to evaluate their generalization 
capability of sound models with a small amount of data 
available. This aspect stresses the recognition of everyday 
non-speech, non-music noise and promotes robustness to 
background conditions and acoustic texture variation—
both pivotal factors in real-world environmental sound 
classification. 
 

Table -1: Dataset Summary – ESC-10 
 

Item Details 

Task Environmental Sound Classification (ESC) 

Classes (10) 
Dog bark; Rain; Sea waves; Crying baby; Clock tick; Sneezing; 

Helicopter; Chainsaw; Rooster; Crackling fire 

Clip length 5 seconds 

Total 
samples 

400 clips (10 classes × 40 clips) 

Sampling 
rate 

44.1 kHz, mono, 16-bit WAV 

Split 5 × cross-validation folds (no fixed dev/eval split) 

Design goal 
Evaluate algorithms for general environmental sound recognition 

using limited data 

Source Subset of ESC-50 dataset by Karol J. Piczak (2015) 

License Creative Commons BY-NC 3.0 (non-commercial use) 

Item Details 

Year 2015 

Reference 
paper 

Piczak, K. J. (2015). ESC: Dataset for Environmental Sound 
Classification. Proceedings of the 23rd ACM International Conference 

on Multimedia. 

 

3.2 Preprocessing & Feature Extraction 
 
Pre-processing and feature extraction are tasks required 
to transform raw audio waveforms into two-dimensional 
time–frequency representations that are amenable for use 
in the CNN-based architectures. Audio files were 
resampled to 16 kHz and split into overlapping duration 
0.96 s clips with 75% overlap. A Short-Time Fourier 
Transform was implemented with 25 ms window, 10 ms 
hop, and 512-point FFT and then mapped to 64 Mel bands 
to obtain log-Mel spectrograms of size 96 × 64 × 1 – the 
VGGish input format. Data augmentation was used not 
only to enhance generalization and reduce overfitting but 
also for a few other purposes. It was performed on the 
waveform level by adding low-amplitude noise and doing 
random scaling of the amplitude in the range of 0.8–1.2×. 
Also each spectrogram was normalized per clip to 
maintain stabilizing. CNN learns from feeded images. Log 
Mel spectrograms files were used as input “images” for the 
CNN transfer-learning pipeline. 

 
3.3 Model Architecture : Transfer Learning 
 
The modeling phase is centered on a CNN-based transfer 
learning configuration that is optimized for accuracy while 
also being computationally efficient. In this prototype, the 
VGGish model is used as a pre-trained backbone, which 
was initially trained on large-scale audio corpora and then 
fine-tuned for the ESC-10 dataset. VGGish’s convolutional 
layers are employed as a general-purpose feature 
extractor that captures hierarchical and translation-
invariant patterns of log-Mel spectrograms. A compact 
classification head is à priori attached to the frozen 
convolutional base, which is composed of a fully connected 
bottleneck layer of Batch Normalization, ReLU activation, 
Dropout, and a final fully connected layer of fully 
connected layers corresponding to the ESC-10 classes 
followed by the Softmax output. Fine-tuning, in this case, 
consisted only of training the new classification head 
while leaving the pre-trained convolutional weights 
frozen. This transfer learning framework, as far as I am 
aware, is an effective means to mitigate the requirement 
for large labeled datasets while also shorting the 
convergence process without sacrificing strong 
generalization in limited ESC data scenarios. 
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3.4 Optimization and Training Strategy 
 
The adaptive optimization setup described above was 
performed to ensure stable fine-tuning and efficient 
convergence. The setup above also included an Adam 
optimizer with an initial learning rate of 3 × 10 ⁻⁴, L2 
regularization term of 5 × 10 ⁻⁴, and a piecewise learning-
rate schedule whereby the rate was decayed by a factor of 
0.5 every three epochs. The rest of the components used to 
stabilize the training include early stopping with 
validation patience equaling 5 and gradient-norm clipping 
with L2 norm equalling the rest of the training 
parameters. The training was conducted using MATLAB 
Online R2025b in a CPU environment to make sure the 
results are reproducible with limited hardware. Therefore, 
the current prototype did not use top-notch optimization 
and compression techniques, such as RMSprop, Adamax, 
Bayesian hyperparameter search, adaptive depth-wise 
pruning, and knowledge/self-distillation. Such alternatives 
will be viewed as future prospects to minimize the size 
and latency of a model while maintaining accuracy during 
real-time edge deployment. 

 
3.5 Evaluation Setup & Metrics 
 
Model assessment was realized on a properly controlled, 
and hence, reproducible environment. Experiments were 
performed and trained in MATLAB Online R2025b with 
the Audio and Deep Learning Toolboxes for an end-to-end 
platform that incorporated preprocessing, feature 
extraction, and network training on the ESC-10 dataset. 
After splitting the data into 80% train, 20% validation 
data, the dataset distribution of classes was perfectly 
established. The training was realized with early stopping 
and a minibatch size of 128, maintaining stable 
convergence on CPU-based resources. Finally, 
performance was reported in terms of file-level Accuracy, 
Precision, Recall, per-class F1-Score, and a normalized 
confusion matrix used to aggregate segment-level 
predictions through majority voting, which ensures 
consistent file-level evaluation and compares to a 
desirable file-level evaluation agnostic to existing ESC 
baselines. 

 
Table -2: Experimental Configuration 
 

Item Details 

Environment 
MATLAB Online (R2025b) – Audio and Deep Learning 

Toolboxes 

Hardware 
HP EliteDesk 800 G4 Workstation – Intel Core i7-8700 CPU @ 
3.20 GHz – 16 GB RAM – Windows 10 Enterprise 64-bit (CPU-

only execution) 

Preprocessing 
STFT → log-Mel spectrogram (96 × 64 × 1) at 16 kHz; per-clip z-

score normalization 

Item Details 

Augmentation 
Waveform-level: low-amplitude noise injection and random 

volume scaling (0.8 – 1.2×) 

Model (TL) 
Pre-trained VGGish (CNN-based) with custom head: FC-128 + 

BN + ReLU + Dropout (0.3) + FC-10 + Softmax 

TL Strategy 
Freeze all VGGish convolutional layers; train new classification 

head only 

Optimizer 
Adam (Initial LR = 3 × 10⁻⁴, L2 = 5 × 10⁻⁴); piecewise LR drop 
(×0.5 every 3 epochs); early stopping; gradient clipping (L2 = 

1) 

Hyperparameter 
Tuning 

Manual selection based on ESC baselines (no Bayesian 
optimization used) 

Compression 
Not applied in this prototype (pruning and distillation planned 

for future work) 

Validation 
80 % training / 20 % validation split on ESC-10; balanced by 

class 

Metrics 
File-level Accuracy, Precision, Recall, per-class F1-Score, 

normalized Confusion Matrix 

Ethics 
All experiments used open-source data (ESC-10) under 

research license and data privacy standards compliance 

 

Table -3: Implementation Plan for ESC-10 (VGGish 
Transfer Learning Prototype) 
 

Stage Objective Key Implementation Steps Outputs / Artifacts 

0 
Reproducible 
Environment 

Set rng(42) for reproducibility; verify 
MATLAB Online session; load Audio & 

Deep Learning Toolboxes. 

Fixed CPU-based 
environment 

(Online) 

1 
Dataset Layout 

& Labels 

Create audioDatastore for ESC-10 folder; 
LabelSource = 'foldernames'; 

countEachLabel. 

Labeled audio file 
index (10 classes) 

2 
Log-Mel Feature 

Extraction 

Resample to 16 kHz; segment into 0.96 s 
windows (75 % overlap); STFT (25 ms 
window, 10 ms hop, FFT = 512, 64 Mel 

bands); log-scale spectrogram → [96 × 64 × 
1]. 

CNN-ready log-
Mel spectrograms 

3 
Data 

Augmentation 

Apply waveform-level noise injection (σ = 
0.005) and random volume scaling (0.8 – 

1.2×). 

Enhanced 
training diversity 

and robustness 

4 
Feature Pipeline 

& Validation 
Split 

Split ESC-10 into 80 % training and 20 % 
validation; create train/val datastores; 

store segment counts per file for majority 
voting. 

Reproducible 
train/validation 

pipelines 

5 
Transfer 
Learning 
Backbone 

Load pre-trained VGGish; remove original 
output layers; add custom head (FC-128 → 

BN → ReLU → Dropout 0.3 → FC-10 → 
Softmax); freeze all conv layers; train head 

only. 

Fine-tuned 
VGGish network 

for ESC-10 

6 
Training & 

Optimization 

Use Adam (Init LR = 3 × 10⁻⁴, L2 = 5 × 
10⁻⁴); piecewise LR decay (× 0.5 every 3 
epochs); batch size = 128; early stopping 
(patience = 5); gradient clipping (L2 = 1). 

Trained model 
and training log 

(netInfo) 

7 
Evaluation 

Metrics 
Classify validation segments; aggregate by 

file (majority vote); compute Accuracy, 
Precision, Recall, per-class F1, macro F1; 

Validation report 
and performance 
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Stage Objective Key Implementation Steps Outputs / Artifacts 

plot normalized Confusion Matrix. table 

8 
Model Saving & 
Reproducibility 

Save model 
(VGGish_ESC10_edge_compact.mat) and 

detailed metrics 
(VGGish_ESC10_detailed_results.mat); 

document hyper-parameters. 

Stored weights 
and evaluation 

artifacts 

9 
(Optional) 
Ablation / 

Future Work 

Extend to multi-backbone tests 
(ResNet50V2, MobileNetV2); add SNR 

robustness and compression (ADP, 
KD/SD). 

Planned 
experiments for 

future extensions 

10 
Reporting & 
Visualization 

Generate training curves, confusion matrix 
figures, and metric tables for IRJET 

publication. 

Journal-ready 
figures and tables 

 

3.6  Ethical Considerations 

All experimentations involve those licenses with respect to 
datasets and guidelines relating to data privacy, open-
sourced corpora responsibly used, and ethical 
transparency practices for MSC research aligned. 

4. Results and Discussion 

It should be noted that the proposed VGGish-based 
transfer learning model was utilized on the ESC-10 dataset 
with the 80:20 train-validation split ratio for the model 
training and evaluation sessions. However, all the 
implementations were carried out in MATLAB Online 
(R2025b) in a CPU-only setting. This successfully 
demonstrated that efficient and small deep learning 

models could be exercised without a GPU accelerator. 

4.1 Quantitative Results 

The achieved overall file-level accuracy of the trained 
model was 75.0% and the F1 macro 74.34% on the 
validation set. These are solid performance results given 
the dataset’s size, short samples, and limited 
computational power. Per-class detailed evaluation 
confirmed high consistency in most categories, with 
crying_baby achieving a perfect F1 of 100%. The 
helicopter, rain, and sea_waves reached F1 results of 
87.5%, 82%, and 87.5%, which may be considered 
excellent results. On the other side, sneezing and 
crackling_fire obtained F1 results of ≈53% and ≈55%. In 
these cases, the latter involves short and 
impulsive/broadband sounds, and the former has various 
transient parts. 

 

Fig -1 : Confusion Matrix of Validation Data for ESC-10 

The normalized confusion matrix calculated from the 
validation dataset is shown in Figure 1. Diagonal ones 
correspond to the sound’s accurate ten-class ESC-10 
classification. The accuracy was 100% for most classes, 
e.g., “crying_baby,” “helicopter,” and “sea_waves” ≥ 87%, 
and misclassification was more common amongst 
seemingly interchangeable categories such as “chainsaw” 
and “crackling_fire.” . 

4.2  Summary of Findings 

The experimental results in this work revealed remaining 
of proposed VGGish based transfer learning approach 
achieved reliable performance in environmental sound 
classification tasks despite the relatively limited 
computational resources. Obtaining 75.0 % overall 
accuracy and 74.34 % macro – F1, the model 
outperformed classical machine learning approaches like 
Decision Trees and Random Forests in the same dataset 
while running completely based on CPU in MATLAB 
Online. Overall, the experimental results confirm that 
establishing a lightweight CNN architecture can be a great 
solution to the accuracy – efficiency trade-off, making a 
real–time edge deployment without powerful GPUs. 
Meanwhile, consistent misclassifications were made 
between acoustically similar classes, indicating that 
further considerations the incorporation of additional 
temporal context or data augmentation could optimize 
future model versions. 
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5. Conclusion 

We presented a transfer learning-based lightweight 
environmental sound classification framework 
implemented using a pre-trained VGGish model. The 
system was designed and trained entirely in MATLAB 
Online using a CPU-only environment, demonstrating that 
efficient deep learning models can be deployed without 
GPU acceleration. The framework we proposed obtained a 
75.0 overall accuracy and a 74.34 macro-F1 score on the 
ESC-10 dataset, outperforming classical machine-learning 
baselines such as Decision Trees and Random Forests. 
These results indicate that compact CNN architectures can 
provide a suitable trade-off between accuracy and 
computational cost, which enables their deployment in 
real-time and edge-device scenarios for smart-city and 
environmental-monitoring applications. Nevertheless, as a 
result of the consistent misunderstanding of classes with 
similar acoustics, such as “chainsaw” or “crackling_fire,” 
we are confident that implementing temporal-context 
modeling or even advanced data augmentation techniques 
will result in improved performance. Ultimately, we 
conclude that transfer-learning-based ESC systems are a 
viable cost- and energy-aware method for enabling 
intelligent acoustic sensing. 
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