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Abstract - The Indian Himalayan Region (IHR), due to its 
topography, geography, and active tectonics, a rough 
mountain zone, is among the most vulnerable zones to the 
landslip danger. The most cutting-edge and accurate ways for 
creating a landslip susceptibility model (LSM) are advanced 
statistical techniques. The goal of the current work was to use 
advanced statistical techniques to analyze and evaluate the 
updated landslip susceptibility for East District in the NE 
Himalayas of Sikkim, India. The spatiotemporal landslip 
inventory for the years are produced using literature surveys, 
historical satellite imageries and on-site observations. Slope, 
aspect, elevation, curvature, plane curvature, profile 
curvature, topographic wetness index (TWI), lithology, 
distance to faults, distance to streams, distance to roads, 
normalized difference vegetation index (NDVI), rainfall, 
drainage density and land use/ land cover (LULC) are some of 
the topographic, environmental, geologic, and anthropogenic 
factors that were included in the spatial database. These LCFs 
were chosen to study the area's periodic landslip vulnerability. 
An inventory of 151 landslides from historical published 
records, field visits and Imagery interpretations, respectively, 
were used in the experimental design. Information Value 
Model (IVM), was used to evaluate the vulnerability to 
landslides as determined by fifteen LCFs. The goal of the study 
is to help in reducing the number of fatalities and possible 
economic harm caused by the region's frequent slope 
instabilities. It is expected that the application of statistical 
algorithms would assist relevant authorities and 
organizations in properly planning for and managing the 
region's landslip threat. 
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1.Introduction  
 
The most significant geo-environmental risk that is seen in 
mountainous terrains across the world and poses a serious 
danger to infrastructure and human life is landslides. 
Landslides are one of the main risks brought on by natural 
events like earthquakes and rains, as well as human 
activities like road construction and urbanisation that may 
result in slope collapses. Almost 9% of all-natural disasters 
globally include landslides. Large-scale slope failures have 

been caused by recent big earthquakes that have occurred in 
China (1999), Kashmir (2005), China (2008, 2010, 2013), 
Sikkim (2011), Nepal (2015), New Zealand (2016), Japan 
(2018), etc. Numerous people were killed, injured, and 
infrastructure was damaged, particularly since the road 
networks were disrupted, as a result of these disastrous 
occurrences. 1.3% of fatalities of all-natural disasters died 
through landslides, with Asia accounting for around 54% of 
these landslides. In recent years, landslides have accelerated 
in both wealthy and underdeveloped nations due to rapid 
urbanisation and development [65]. Many fatalities 
worldwide are caused by natural occurrences like 
earthquake-induced landslides [27,28,38,45,58]. The 
majority of the landslides take place in regions with active 
tectonics, uneven topography, and high rates of 
precipitation. The geographic distribution and intensity of 
landslides are influenced by topographic features, lithology, 
geomorphology, land use, and land cover [3]. The Himalayan 
mountain region's population and infrastructure are always 
under risk due to mass migrations. Due to the predominately 
mountainous topography of the NE Himalaya, landslip 
activity is seen as a severe issue that threatens both 
infrastructure and habitation. Thousands of landslides 
occurred in Indian Himalayan Region (IHR) and its adjoining 
areas as a result of the catastrophic 2005 & 2011 earthquake 
in Kashmir and Sikkim [44,59]. Massive landslides, rock 
avalanches, and other slope collapses that occur often have 
caused severe casualties and significant infrastructure 
damage [9,5,44,46]. There have been many studies done in 
the past to identify the distribution of landslides, field data 
collecting techniques, inventory development, and 
geographic distribution analysis [7,6,36,44,57] as well as to 
understand the mechanics, distribution, and evolution of 
earthquake-triggered landslides. The territory has been 
divided into several susceptible zones using the 
methodologies of landslip susceptibility, including 
knowledge-based, statistical, deterministic, probabilistic, and 
machine learning (ML) [5,26,33]. An efficient method for 
preventing and reducing landslides across a large territory is 
land-slide susceptibility assessment. It is one of the most 
helpful informational resources for decision-makers and aids 
experts in lowering the danger to life and property. In recent 
years, a number of methods for assessing landslide 
susceptibility have been created, all of which are based on 
the idea that future mass movements may be predicted by 
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looking at the relationship between previous landslides and 
the elements that influenced them [31,12]. There are several 
ways to create a landslip susceptibility map (LSM) based on 
various formulations, but statistical approaches and machine 
learning are the most popular ones [23,35,47,55]. For the 
detection, categorization, and evaluation of landslides, 
satellite remote sensing (RS) and geographic information 
systems (GIS) are extensively used. Recent years have seen 
an increase in the use of freely available moderate resolution 
satellite data, such as that from Sentinels and Landsat 8.  

Landslides in the area have previously been accurately 
identified using LISS Imageries of high resolutions [41]. The 
aid of data on topography and environmental characteristics 
has posed a boon to data- and knowledge-driven statistical 
models, which have dominated the LSM field recently [32]. 
Numerous statistical techniques for LSM have been 
anticipated and effectively used to aid in the analysis of 
landslip distribution patterns and the processes that create 
them as a result of recent advancements in geospatial 
technology [42]. LSM are quickly converting from statistical 
and knowledge-driven learning to advanced statistical 
approaches with more precision and accuracy. LSM has been 
employed to handle the global mapping of landslip risk 
because of its magnificence.  

Around the world, landslip mapping has been done in a 
variety of ways, but they all have the same objectives. 
Numerous models and approaches are now being proposed 
at both the local and regional levels to predict the spatial 
distribution of landslides. While optimum LSM is of growing 
interest to land geoscientists, many of them are 
concentrating on a statistical and knowledge-based model 
for landslip predictions, such as [2,36,51]. Recently, 
researchers are working upon advanced statistical models 
due to their usefulness and excellent accuracy. The precision 
of traditional statistical techniques for LSM make them 
successful. The most efficient statistical techniques are 
considered to be Information Value Model (IVM), Statistical 
index (SI), frequency ratio (FR) and certainty factor (CF). The 
effectiveness of each of the landslide causative factors on the 
incidence of landslides is assessed using these 
methodologies, which are commonly used data-driven 
approaches. In order to reduce the probability of landslides 
occurring, it is helpful to examine regionally scaled landslide 
risks and their numerous affecting factors. Thousands of 
landslides occurred in Eastern Himalayas as a result of the 
anthropogenic and tectonic factors. Numerous studies have 
been done in different parts of Indian Himalayan Region 
(IHR) and the areas surrounding it that were damaged by the 
tectonic causes in order to characterise landslides and 
determine their vulnerability [37]. The objective of the 
current work is to analyse the spatio-temporal LSM using 
advanced statistical techniques that are more reliable and 
stable. The aim of this study is to apply cutting-edge 
advanced statistical methods to forecast the spatiotemporal 
vulnerability of landslides. In the district of East Sikkim, NE 
Himalayas of India, the current study's particular goal is to 

construct and access landslip susceptibility models about 
their impacting cause utilising temporal data from historical 
records, field visits and satellite Imageries. Further 
evaluation of the sensitivity and risk maps for landslip 
mitigation and the use of disaster reduction methods in the 
area might be done using susceptibility maps.  

2. Study area 
 
The study area geographically lies in the NE Himalayas of 
India, which covers an area of 964 square kilometers with a 
population of 0.16 million situated. In the East District, 679 
square kilometers, or 71.17 percent of the district's total land 
area (964 square kilometers), are covered by forests. Of the 
overall geographic area, very dense forest takes up 162 
square km, dense forest takes up 396 square km, and open 
forest takes up 121 square km. Hill, valley, and slope are the 
three main physiographic units. Teesta, Rangpo Chhu, and 
Dik Chhu are the three main drainage systems in the East 
District. Elevation range from 246 m to 4625 m (Fig. 1). Mean 
average temperatures ranges between 22℃ to 36℃ in 
summer, while minus 04℃ to 07℃ in winter, with annual 
precipitation of 100–900 mm (Source : IMD data)  (Fig.2). The 
lithostatic units in the area are Kanchenjunga gneiss, 
Darjeeling gneiss, Chungthang schists and gneiss, Lingtse 
granite gneiss, and the Daling group of rocks, which includes 
phyllite, slates, quartzites, and schist of Pre-Cambrian age, are 
the five geological units found in the district (Source : GSI 
Report, 2020) . Alluvium quaternary deposits periodically 
form along streams and rivers. Numerous fractures, faults, 
joints, folds, and other structural anomalies have formed in 
the rocks found in the district as a result of various structural 
disturbances. Geological formations in the area show 
prominent lineaments that run in the N-S, E-W, NE-SW, ENE-
WSW, and NW-SE directions. 

 

Fig -1: Geographical location of the study area. 
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Fig -2: Annual Precipitation of the study area (Source: 

IMD,2020). 

 
3. Materials and Methods 
 

3.1. Data collection  
 
The data sources used to create the landslip inventory and 
LCFs are shown in Table 01. Using LISS IV Sensor 
(Resourcesat Satellite) Images, Google Earth Images, 
Toposheets and field investigations based on the criterion of 
loss of vegetation and disruptions in forest canopy, the 
landslides in the research region were interpreted and 
mapped. Using supervised classification in Exelis ENVI 
version 5.3, a land-use/land-cover map was created using 
LISS IV satellite images. 
 

The National Remote Sensing Centre (NRSC) 
provided the temporal images of LISS IV(5.8 m resolution) 
with a cloud cover of 2.10%. To extract the topographic 
variables for the research region, a 2.5 m resolution, digital 
elevation model (DEM) based on CartoDEM  was employed. 
To determine the lithological and tectonic properties of the 
region, geological maps obtained from the Geological Survey 
of India (GSI) were used. Using a handheld Global 
Positioning System (GPS) and GLONASS receiver with a field 
survey precision of 5 meters (m), the landslip inventory was 
cross-verified. 

 
In the field, landslides' physical qualities and 

features such as length and slope angle are measured using 
laser distance. ArcGIS 10.8 (Esri Inc.) was used to map, 
digitize, and analyze the data that was collected from various 
sources. Fig. 3 depicts the methodological flow chart used to 
accomplish the study's predetermined goal. 

 
 
 
 
 
 
 

 

Fig -3: Schematic diagram showing the landslide 
susceptibility map development 

 
3.2. Landslide inventory 
 
The use of a sustainable landslip inventory requires precise, 
high-quality data from a geospatial record in conjunction 
with a reconnaissance survey based on fieldwork (Fig. 5 
a,b,c,d,e,f,g&h). A crucial step in comprehending and 
analyzing the comparison between a landslip and the 
governing variables that determine landslip susceptibility 
and hazard mapping is the identification and development of 
landslip inventory[25,13]. By mapping with on-site visits, 
remote sensing methods, and examining temporal satellite 
pictures, the temporal landslides were updated. 
 
In order to interpret and update the landslide inventories in 
the study area, remote sensing data from Google Earth and 
RESOURCESAT satellite imageries from 2010, 2015 and 2020 
were used. These data are very useful in identifying those 
landslides present in the hilly or mountainous areas that are 
not accessible through the field survey. For the purpose of 
recognizing mass migration, the destruction of natural 
vegetation is employed as a fundamental criterion. 

 Following landslide detection using RESOURCESAT, 
temporal landslide inventory of several years were created, 
encompassing 151 landslides that covered 9.939 km2 
respectively (Fig. 4 a & b). To create the IVM models, samples 
from the 2010, 2015, and 2020 inventories of landslides and 
non-landslides were used. Each landslip inventory is 
randomly split into two groups (training and testing) based 
on the percentage of samples, with a ratio of 70%:30%.  

Each year's inventory contains 70% samples of landslides 
and non-landslides that are used as training samples, while 
the remaining 30% are samples that are used for testing. This 
method yields the best results since the non-land sliding area 
is chosen on a low-angled slope area where the likelihood of 
land sliding is extremely low. After preparing the datasets, 
LSMs were created using the weighted overlay tool pack in 
Arc GIS 10.8 . 
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S. No. Parameters/Thematic 

maps 

Data Type 

in GIS 

Tools/formulae 

used in GIS 

Scale/Resolution Source 

1. Landslide inventory Polygon Visual interpretation 

and Digitization 

5.8 m IRS P6 LISS4, Field 

visits, Bhukosh ,GSI 

2 Rainfall Grid Inverse Distance 

Weighting (IDW) 

interpolation 

4 Km×4 Km India Meteorological 

Department  

(IMD),Gangtok 

3. Slope Gradient Grid Spatial Analyst 2.5 m × 2.5 m Cartosat DEM 

4. Slope Aspect Grid Spatial Analyst 2.5 m × 2.5 m Cartosat DEM 

5. Elevation Grid Spatial Analyst 2.5 m × 2.5 m Cartosat DEM 

6. Geology Polygon Digitization 1:250,000 Geological map from 

Geological Survey of 

India(GSI) 

7. Soil Polygon Digitization 1:50,000 National Bureau of Soil 

Survey and Land Use 

Planning (NBSSLUP) 

8. Normalized Difference 

Vegetation Index (NDVI) 

Grid Image Analysis using 

following formula: 

 

5.8 m × 5.8 m IRS P6 LISS4 

9. Topographic Wetness 

Index (TWI) 

Grid Hydrology tool using 

following formula: 

 

2.5 m × 2.5 m Cartosat DEM  

10. Roads Polyline Digitization 1:50,000 Toposheet, Google 

Earth, Bhukosh ,GSI 

11. Proximity from roads Polygon Multi ring Buffer 

Analysis 

1:50,000 SOI Toposheets 

12. Drainage Polyline Hydrology 2.5 m × 2.5 m Cartosat DEM  

13. Drainage Proximity Polygon Multi ring Buffer 

Analysis 

1:50,000  

SOI Toposheets 

14 Landslide Susceptibility 

Map 

Grid Information 

Value Method 

(IVM) 

10 m × 10 m Landslide causative 

factors 

 
Table -1: List of the data sources used to compute the landslide inventory and landslide causative factors.
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Fig -4: Map showing (a)Landslide Polygon Inventory & 
(b)Landslide Trigger points  

 
3.3. Landslide causative factors 

Numerous LCFs, such as topographical, geological, 
environmental, and anthropogenic factors, interact to affect 
slope failure [15,19]. The likelihood of a mass movement was 
assessed by the link between landslip activity and influencing 
factors. There are fifteen LCFs in this study, including NDVI, 
landuse/land cover, slope gradient, aspect, elevation, 
curvature, profile curvature, plan curvature, Rainfall, 
Drainage density, TWI, and lithology {Figs. 6 (a-o)}. 

3.3.1. Slope gradient 

The slope gradient is the main reason for landslides [63].It 
affects the stress   distribution   in   the    slope,    the    
weathering    layer,    and    the    run off from the slope's 
surface (Fig. 6b). The reason why steep slopes collapse more 
frequently than moderate slopes may be attributed to 
restriction pressures [28] According to [51], the slope area 
was derived from a DEM with a 2.5 m resolution and 
categorized into seven classes: 0 - 15, 15 - 20, 20 - 30, 30 -40, 
Above > 40. 

3.3.2. Aspect  

Due to the slope's aspect (Fig. 6m), which causes melting of 
the snow and water infiltration, increased freezing and 
thawing, and mass movement, the aspect is a key influencing 
element. In a certain area, landslides usually occur in a 
particular direction [54]. Using ArcGIS 10.8, the aspect was 
reclassified into eight classes after being generated from the 
DEM. 

 

 

 

 

 

 

 

 

 

Fig -5: Photographs during field investigation (a) Affected 
houses due to Pachey Slide (b) debris flow at Qu Khola 

Slide (c) Teen taal Slide (d) Devasted vegetation (e) 
Vulnerable settlements in the Valley (f) Kit Golai Slide 
(g)Vulnerable road construction (h) Fragile lithology. 

3.3.3. Elevation  

The elevation (Fig. 6a) plays a significant role in the 
geographical distribution of landslides used for landslide 
susceptibility studies [17,36].Elevation has a major impact on 
slope failure and has a considerable impact on regional 
features [22]. The research area's elevation varies from 246 
m to 4625 m, and an elevation map was created using DEM 
and the reclassification tool in ArcGIS 10.8.  

 

(a) (b) 
(a) (b) 

(c) (d) 

(e) (f) 

(g)

c 
(h) 
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Fig -6: Map showing (a)Elevation  (b)Slope angle  (c) Plan 
curvature (d)Drainage Proximity  (e)Drainage density  

(f)Landuse/Landcover  (g)Road Proximity (h)TWI  (i)NDVI 
(j)Rainfall  (k)Seismotectonic (l)Curvature  (m)Slope 

aspect  (n)Lithology  (o)Profile curvature 

3.3.4. Curvature  

The slope's curvature is another way to express the slope's 
geometry, and it plays a crucial role in the occurrence of 
landslides [43] (Fig. 6l).Maggioni, [40]states that curves with 
negative values are concave and those with positive values 
are convex. The slope surface's curves and curvature value 
both rise at the same time.  

 

 

3.3.5. Plan curvature  

Plan curvature, often referred to as the curvature of the slope 
surface in a horizontal surface or the line of elevation on a 
topographical map (Fig. 6c), is what determines how the 
water will move in its flowing trajectory. Positive values 
imply that the cell's side surfaces are convex, whilst negative 
values imply that the side surfaces are concave. A surface 
with a zero value, on the other hand, is regarded as linear or 
flat. 

3.3.6. Profile curvature  

Profile curvature is described as having a high slope angle in 
the direction of the slope surface (Fig. 6o). The trajectory of 
water is also influenced by the profile curvature [48,66] The 
surface of the cell is assumed to be convex upwards by a 
negative number and concave by a positive number. If the 
value is 0, the surface is flat. The acceleration or slowdown of 
flow through a surface is influenced by profile curvature. 

3.3.7. Topographic wetness analysis (TWI)  

The TWI is a significant contributor to the mass movement's 
causes. The TWI identified the region of accumulation of 
water flow, which is commonly connected to saturated land, 
both intermittently and permanently (Fig. 6h). The hydrology 
and raster calculator tool in ArcGIS 10.8 were used to create a 
DEM with a spatial resolution of 2.5 m [29] 

3.3.8. Lithology  

The local lithology (Fig. 6n) has a significant impact on the 
likelihood of mass movement. Lithology is regarded as a well-
known criterion that significantly influences the physical 
characteristics of surface and subsurface materials and plays 
a significant role in the slope failure process [35]. The 
majority of slope failures occurred in weak, unstable, or 
brittle lithological units. The variance in slope surface 
instability is also influenced by the differences between 
different lithological units [1]  

3.3.9. Distance to faults  

When the faults are active, they have a significant impact on 
the distribution of mass movement (Fig. 6k). The majority of 
slope collapses are impacted by the proximity to faults 
caused by rock and surface structure cracking [7] ArcGIS 
software was used to calculate the distance from the faults 
using the buffer tool.  

3.3.10. NDVI  

According to [52], NDVI is a significant environmental 
influencing element (Fig. 6i). The plant density on the slope 
surface is measured using the NDVI. It is widely 
acknowledged that the addition of grasses and roots plays a 
significant part in the strength of the soil. An NDVI map was 
produced using multispectral Resourcesat satellite data to 
show the location and density of surface vegetation. 

3.3.11. Rainfall  

The rainfall map of East district is prepared using rainfall 
data from India Meteorological Department (IMD) website 
having resolution of 4km×4Km. The rainfall data of last 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 
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twenty years since 2000 to 2020 is downloaded for monsoon 
months (May to September) and averaged [53].The thematic 
layer of rainfall is prepared using averaged data with the help 
of the interpolation method of IDW in ArcGIS (Fig.6j). 

3.3.12. Drainage density  

The density of drainage is a significant signal of the linear 
scale of the element in stream eroding topography and is 
specified as the total stream length of all orders and drainage 
areas and may indicate the channel spacing closeness [18]; 
[49]. Drainage density is critical as it leads to mass wasting 
and slope failure. The drainage density in the study area is 
divided into nine classes up to 335 km2. In the ArcGIS 
software drainage density map with the help of data from 
Cartosat DEM is prepared (Fig.6e) 

3.3.13. Landuse/Landcover  

Environmentally regulated elements are thought to play a 
significant role in the likelihood of landslides. Another crucial 
environmental regulated influencing factor of the landslip 
that avoids surface soil deterioration is the area's LU/LC (Fig. 
6f). Land cover is a key determining factor for slope failure 
since the mass movement is based on the kind of land. The 
land use/landcover model was calculated using Resourcesat 
images with 2% cloud cover. Exiles ENVI software was used 
to categorize the picture into several landuse groups (such as 
forest, barren, grass land, water bodies, and urban land) after 
performing supervised classification with an accuracy of  85.1 
percent. 

3.3.14. Distance from drainage  

Distance to drainage (Fig. 6d) is determined as a significant 
influencing parameter in the slope failure because the 
proximity to a water body in a region increases the likelihood 
of a slope failure by increasing fluid pore pressure and slope 
toe erosion [20,50]. Due to the rugged topography, which was 
extracted using Cartosat DEM and then reclassified in Arc GIS 
10.8, the research area includes a substantial drainage 
network.  

3.3.15. Distance from roads  

Anthropogenic influences are those that are brought on by 
human action, such as road construction, mining or removing 
vegetation. One of the key considerations is the distance from 
the road (Fig. 6g), since most landslides occur owing to the 
influence of the road network, which has a similar effect to 
the closeness of drainage in steep terrain [64]. The roads 
were digitalized using Google Earth and topographical maps. 
The road network was divided into many buffers, which were 
subsequently reclassified using the reclassify tool in ArcGIS 
10.8.  

 

 

 

 

 

3.4. Information Value Model (IVM) 

The information value model is a statistical approach to 
predict an event based on the parameter relation and the 
event. This is an approach focused on the frequency of the 
landslide occurrence in the Landslide Causing Spatial Factor 
distribution across the study area[11,10] . It is an indirect 
statistical method and can be used to determine the spatial 
relation between the likelihood of landslide occurrence and 
the conditioning factors [21]. The likelihood of landslides is 
determined in this model by the factor information value [39] 
.The efficiency of this model depends on the variables 
between the landslide conditioning factors and the landslide 
distribution [61]. In order to determine the weights of the 
predictor, the ratio of landslide density in each class of a 
causal factor to landslide density in the total area should be 
calculated [14]. The weight measurement equation is given 
below:  

Landslide Density within a factor class 
  Landslide Density within the study area 

 
=ln  𝑁𝑝(𝑆𝑖)/𝑁𝑝𝑖𝑥(𝑁𝑖) 
         Σ𝑁𝑝𝑖𝑥(𝑆𝑖)/Σ𝑁𝑝𝑖𝑥(𝑁𝑖) 

 

where, Wt = Weight of a factor class; ln = natural logarithm; 
Npix(Si) = Number of pixels of landslide within class i; 
Npix(Ni) = Number of pixels of class i; ΣNpix(Si) = Number of 
pixels of landslide within the whole study area; ΣNpix(Ni) = 
Number of pixels of the whole study area. 

The natural logarithm is used to give negative weights when 
the landslide density is less than average, and when it is more 
than average positive weights are assigned. The positive 
weight (Wt) is the direct connection between landslide and 
landslide predictor factor and the existence of landslide 
predictors. For each class of causative variables, the weight 
value was calculated by the above equation. A weighted value 
was added for the landslide susceptibility index (LSI) of each 
pixel to produce a map for landslide susceptibility. 

LSI=𝐴𝑆𝑃𝑤𝑡+𝑆𝐿𝑃𝑤𝑡+𝐶𝑈𝑅𝑤𝑡+𝐷𝑁𝐷𝑤𝑡+𝐿𝐺𝑌𝑤𝑡+𝐿𝑈𝐿𝑤𝑡+𝑁𝐷𝑉𝑤𝑡
+𝐸𝐿𝑉𝑤𝑡+𝐿𝑁𝐷𝑤𝑡+𝐺𝑀𝑃𝑤𝑡+𝑆𝐿𝑇𝑤𝑡 

Where ASPwt is the weight of aspect, SLPwt is the weight of 
slope, CURwt is the weight of curvature, DNDwt is the weight 
of drainage density, LGYwt is the weight of lithology, LULwt is 
the weight of land use and land cover, NDVwt is the weight of 
NDVI, ELVwt is the weight of elevation LNDwt is the weight of 
lineament density, GMPwt is the weight of geomorphology 
and SLTwt is the weight of soil type. The negative and 
positive weighted values represent the interaction of an 
irrelevant and significant element with an occurrence of the 
landslide[12].The landslide-susceptibility map is 
subsequently combined with the landslide training and the 
testing raster. Dividing LSI into three areas based upon its 
steepness, which include a high susceptibility zone, a 
moderate susceptibility zone and a low susceptibility zone, 
intensity of landslide susceptibility is measured.(Table 2). 

 

Wt =ln 
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Table -2: Weightage table of causative factors of landslide and corresponding IV Wt. 
 

Causative 
factors 

Class Class % Landslide % IV Wt. 

SLOPE ANGLE 

0-15 16.32842235 2.440077166 1.900878 

15-20 10.47852403 3.463676324 1.106997 

20-30 27.91272562 17.84427551 0.4474 

30-40 25.72418149 32.70848565 -0.2402 

40-90 19.55614651 43.54348535 -0.80047 

SLOPE ASPECT 

NORTH (0-22.5) 9.817483531 1.794381656 1.699504 

NORTH EAST (22.5-67.5) 10.1795097 6.456955101 0.455219 

EAST (67.5-112.5) 11.39699628 13.84589635 -0.19464 

SOUTH EAST (112.5-157.5) 12.69987768 21.11679777 -0.50848 

SOUTH (157.5-202.5) 12.17322552 19.49330961 -0.47083 

SOUTH WEST (202.5-247.5) 12.54464949 19.41402912 -0.4367 

WEST (247.5-292.5) 10.86736385 10.6332749 0.021776 

NORTH WEST (292.5-337.5) 10.29112874 4.953268558 0.731235 

NORTH (337.5-360) 10.02976522 2.292086927 1.476094 

ELEVATION 

0-1000 6.516448503 13.37466317 -0.71903 

1000-2000 18.45161233 15.37540288 0.182383 

2000-3000 15.98802483 19.27913489 -0.18718 

3000-4000 15.48094483 34.66510506 -0.80612 

4000-5000 23.10091308 17.13661741 0.298655 

5000-6000 18.61663863 0.169076595 4.701459 

6000-7000 1.723727865 0 0 

7000-8000 0.121689935 0 0 

GEOLOGY 

Gondwana Group 1.682519383 0 0 

Permafrost Area 32.67324754 27.73722628 0.163781 

Tso Lhamo Formation 0.16785229 0 0 

Everest Limestone 0.709375749 0 0 

Central Crystalline 39.08960115 54.01459854 -0.3234 

Everest Pelite 2.236032292 0 0 

Tourmaline Granite 0.635440812 0 0 

Chungthang Formation 4.208296699 6.569343066 -0.44536 

Lingtse Gneiss 2.413875789 2.919708029 -0.19025 

Daling Group 16.18375829 8.759124088 0.613912 

LULC 

Built up area 1.068244006 1.778515532 -0.50976 

Forest 33.68697275 50.08299739 -0.39657 

Agricultural land 2.954938857 3.248755039 -0.09479 

Waterbody 2.654194351 2.857481622 -0.0738 

Grassland 9.578374622 11.27578848 -0.16315 

Barren land 30.18828376 18.8285511 0.47208 

Snow/Glaciers 19.86899165 11.92791084 0.510279 

LITHOLOGY 

BANDED MIGMATITE, GARNET BT GNEISS,MICA 
SCHIST 

41.18118278 57.34265734 -0.33106 

BASIC INTRUSIVES 0.010013418 0 0 

BIOTITE GNEISS 3.582800953 0 0 

BIOTITE QUARTZITE 0.026034887 0 0 
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BOULDER BED,FOSSILIFEROUS LIMESTONE and 
SANDSTONE 

1.303747021 0 0 

BOULDER SLATE,CONGLOMERATE,PHYLLITE 0.214287145 0.699300699 -1.18276 

CALC GRANULITE WITH /WITHOUT QUARTZITE 1.706286424 1.398601399 0.198847 

CALC SILICATE ROCK 0.809084173 2.097902098 -0.95279 

CHLORITE SERICITE SCHIST AND QUARTZITE 16.95071396 19.58041958 -0.14422 

DOLIMITIC QUARTZITE, CHERT, PHYLLITE, SLATE 0.468627961 0 0 

FOSSILIFEROUS LIMESTONE WITH QUARTZITE 0.45661186 0 0 

GARNET, KYANITE,SILLIMANITE,BIOTITE SCHIST 0.368493782 0.699300699 -0.64066 

META GREYWACKE 0.096128813 0 0 

MYLONITIC GRANITE GNEISS 1.528047584 0.699300699 0.781665 

PHYLLITE QUARTZITE 0.202271043 0 0 

PYRITIFEROUS SLATE AND PHYLLITE 0.080107344 0 0 

QUARTZ ARENITE 0.102136863 0 0 

QUARTZ ARENITE, BLACK SLATE, CHERTY 
PHYLLITE 

0.268359602 0 0 

QUARTZITE 1.514028799 0.699300699 0.772449 

QUARTZITE,MICA SCHIST, GNEISS,CALCGRANULITE 2.200949272 0.699300699 1.146563 

SANDSTONE, SHALE 0.198265676 0 0 

SANDSTONE,SHALE WITH MINOR COAL 0.961288126 0.699300699 0.318193 

TOURMALINE GRANITE 0.552740673 1.398601399 -0.92834 

UNMAPPED 24.98548054 13.98601399 0.580237 

VARIEGATED CLAY, SAND AND PEBBLE 0.232311297 0 0 

NDVI 

-0.99 1.220382936 0.322750049 1.330042 

0 - 0.2 2.620573599 42.95365528 -2.79673 

0.2 - 0.4 15.10630829 40.47942058 -0.98568 

0.4 - 0.6 42.69477715 14.30767379 1.093281 

0.6 - 1 38.35795802 1.936500295 2.98608 

RAINFALL 

< 100 mm 15.15975664 15.32258065 -0.01068 

100-200 mm 15.75003022 18.5483871 -0.16354 

200-300 mm 36.4579556 15.32258065 0.866832 

300-400 mm 21.62657641 31.4516129 -0.37453 

> 400 mm 11.00568113 19.35483871 -0.56453 

DRAINAGE 
DENSITY 

0-22 34.32853862 17.74193548 0.660046 

23-43 20.46617511 13.70967742 0.400672 

44-65 20.02498086 29.83870968 -0.39883 

66-87 13.14920021 25.80645161 -0.67426 

88-110 6.591724082 6.451612903 0.021485 

111-130 3.918368991 6.451612903 -0.49865 

131-150 1.041540755 0 0 

151-170 0.328377453 0 0 
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171-200 0.15109392 0 0 

TWI 

-4.1 31.57720433 36.76821564 -0.1522 

-1.4 34.32563839 31.14792456 0.097145 

-1.7 17.85050556 16.33206982 0.088901 

-2.4 7.816076813 7.599794094 0.028062 

-2.5 3.873006957 3.645467734 0.060547 

1.1 - 4.5 3.923311075 3.776498666 0.038139 

4.5 - 14.1 0.63425688 0.730029482 -0.14063 

ROAD 
PROXIMITY 

< 100 m 4.706306451 4.794520548 -0.01857 

100 -200 m 3.606833156 3.424657534 0.051829 

200 - 300 m 3.012036128 2.739726027 0.094758 

300 - 400 m 2.577453788 4.794520548 -0.62067 

400 - 500 m 2.409228366 4.794520548 -0.68817 

> 500 m 83.68814211 79.45205479 0.051944 

DRAINAGE 
PROXIMITY 

< 100 m 7.194112236 4 0.586969 

100 -200 m 6.053357866 4 0.414319 

200 - 300 m 5.795768169 8 -0.32231 

300 - 400 m 4.894204232 0 0 

400 - 500 m 5.170193192 12 -0.842 

> 500 m 70.89236431 72 -0.0155 

4. Results and discussion 

4.1. Landslide susceptibility models 

Utilizing values assigned to the LCFs, and landslide inventory 
of several years (2010, 2015, and 2020) the susceptibility 
models for the research region was created using ArcGIS 10.8 
and unique, extremely accurate advanced statistical 
techniques. The resulting LSMs depict the likelihood of 
landslides in a "low to high" range, with low denoting a 
region that is safe from mass movement activity and high 
denoting a likelihood that landslides would occur (Fig. 7). 
LSM is calculated using the Information Value wt. coefficients 
and corresponding classes and landslide variation of LCFs. 
Each dataset identifies regions that are vulnerable to mass 
movement activities in a little to somewhat varied manner. 
Additionally, the LSM is divided into three zones (Low, 
Moderate, High) to help identify areas that may be at high 
risk of experiencing landslides. Figure 7 displays the IVM-
LSM. To determine, the highest likelihood of a landslip 
occurrence is along a fault, LSMs classified as high 
susceptibility zones. The majority of the area's roadways 
have moderate to high grades and are located between 1000 
and 1500 meters above sea level. The area occupied by these 
sensitive zones on basis of landslide inventory of various 
years is depicted in Fig. 7. The slope gradient and area's 
lithology, such as fragile phyllite and schists, are effective 
LCFs among all other LCFs for landslip activity in the years 
2010, 2015, and 2020. This is demonstrated by the 
Information Value weight coefficient. According to the 
updated, the LR susceptibility model predicts a very high 
susceptible zone of 109.68 km2, Moderate susceptible zone of 
492.95 km2 and low susceptible zone of 361.37 km2 out of 
total 964 km2 of the research region (Fig.8,9 & Table. 03). 

 

Fig -7: Landslide Susceptibility Map using IVM Model of 
the study area 
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LSM of East District indicates that 37.49% of the total district 
area is classified into low landslide susceptibility, while 
51.14% area have moderate landslide susceptibility. 11.38% 
of the total district’s area have high landslide susceptibility 
(Table 03). East District is found to have high landslide 
susceptibility which is confirmed by field visits and 
secondary sources. The output landslide susceptibility map of 
Study area (Fig.7) based on Information Value method is 
classified into three susceptible categories as Low, Medium, 
High. Percentage area in each class is calculated.(Table 03) 

Table -3: Classification of landslide susceptibility of East 
district, Sikkim 

  
 

DISTRICT 

 

LANDSLIDE 

SUSCEPTIBILITY 

CLASS 

 

AREA % 

 

AREA ( IN 

SQ. KMS ) 

 LOW 37.48 361.37 

EAST SIKKIM MEDIUM 51.14 492.95 

 HIGH 11.38 109.68 

  

 The analysis of IVM susceptibility model indicate that the 
region is susceptible to landslip activity is growing in a very 
high susceptible zone over the various years’ worth of data. 
Our findings are consistent with Costanzo et al.'s [15] 
assertion that topographic conditions have a substantial 
impact on the occurrence of landslides. Our findings support 
those Riaz et al.[51], Pham et al.[52], Ikram et al.[35], and 
Ahmed et al[2], that lithological units and slope gradient are 
the most significant LCFs.  

 

Fig -8: Landslide Susceptibility percentage variation in the 
research region 

 
Using the advanced statistical model i.e. Information Value 
Model (IVM) it is discovered that the most significant LCFs 
are Elevation, distance to drainage, NDVI, curvature, and 
rainfall. These findings proved that the significance of major 
LCFs varies depending on the geography and models used. 
For the current study fifteen landslide conditioning factors, 
i.e., slope aspect, slope gradient, elevation, Lithology, land use 
and land cover (LULC), rainfall, Curvature, Plan curvature, 
Profile curvature, normalized difference vegetation index 
(NDVI), Geology, Road Proximity, Drainage Proximity 
Drainage density, and total wetness index were analyzed in 

the remote sensing (RS) and geographic information system 
(GIS) environment. The thematic layers for the same has been 
prepared which is further used to prepare the Landslide 
Susceptibility Map of the study area. For the validation of 
LSM, it is compared with landslide inventory map. It is 
observed that eastern part of the district is classified into 
high and very high landslide susceptibility class which is in 
agreement with the landslide inventory map. Landslide 
inventory map also suggests that majority of the landslides 
are observed in the eastern part of the district. 

 Fig -9: Landslide Susceptibility area variation in the 
research region 

5. Conclusion 

This study used temporal landslide inventories for the 
District East Sikkim in the NE Himalayas of India to apply 
advanced statistical technique to determine the susceptibility 
zones of landslides and estimate the likelihood of landslide 
activity. The East Sikkim district has experienced significant 
economic losses as a result of the landslip activity, including 
damage to communities, infrastructure, and roadways. To 
create IVM-LSM and determine the causes of landslides in the 
area, the study used spatiotemporal landslide inventories 
(2010, 2015, and 2020) with fifteen causative elements, 
including topographic, geological, environmental, and 
anthropogenic variables. The LSM showed that the rainfall, 
slope and lithological (i.e., fragile Phyllite, Schists) control in 
the proximity of faults considerably regulate the landslip 
activities in the research region. The most trustworthy IVM-
based LSM study datasets from the years 2010, 2015, and 
2020 showed that the area has a very highly sensitive zone 
that is continually expanding. It was determined that IVM 
models are workable by the validation using statistical 
measures and in agreement with the landslide inventories of 
various years. The findings also imply that IVM-LSMs are 
more trustworthy and authentic. It is recommended that 
advance statistical models be used as the preferred models 
for predicting landslides in the study region. This study 
establishes that since the region is highly susceptible in 
nature, so as to predict, the updated LSM Modelling has to be 
done to evaluate the effectiveness LSM in this particular area. 
In our present study landslide susceptible zonation mapping 
is done. Almost all the landslides have been reported in the 
rainy season. The study shows that land use/land cover, 
rainfall, slope, drainage density, structure and lithology play 
an important role in landslide triggering. The ranking of the 
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conditioning factors based on the present analysis and the 
landslide hazard index is highest for rainfall followed by 
structures, lithology, slope, LU/LC and drainage density. The 
total study area is divided into three susceptible zones i.e. 
low, medium and high susceptible zones comprising of 
37.49%, 51.14% and 11.38% and 361.37 km2, 492.95 km2 

and109.68 km2 in East district (Fig. 8 & 9) .  

The methodology described here for landslide susceptible 
mapping includes generating thematic information layers, 
developing an appropriate numerical rating system, 
integrating spatial data and validating outcomes. It is 
analyzed that GIS application is extremely helpful for the 
generation of thematic information and their spatial data 
analysis, involving complex tasks. The numerical rating 
system enables to enhance performance assessment and 
optimization. Since the contributing variables to the landslide 
differ from region to region, however this rating may not 
apply to other areas of the Himalayas. To create temporal 
landslide inventory for recursive landslide hazard 
assessment, historical landslide data from a variety of sources 
can be used. Finally, the knowledge from this study's findings 
will help urban planners, disaster management authorities, 
and other decision-makers choose safe building sites and 
identify regions that are prone to landslides. In order to 
prevent infrastructure development in landslip risk locations, 
more practice with landslip risk assessment studies might be 
conducted to build risk maps. 
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