
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1113

HDL implementation for real-time image properties adjustments

Sri Lakshmi [1], Mery Lavanya [2], Nikhilesh Mohan [3], Naga Pavan [4], Kavya Reddy [5]

1Associate Professor, Dept. Electronics & Communication Engineering, SR Gudlavalleru Engineering College,
Gudlavalleru, Andhra Pradesh, India.

2,3,4,5Undergraduate Students in, Dept. Electronics & Communication Engineering, SR Gudlavalleru Engineering
College, Gudlavalleru, Andhra Pradesh, India.

---***---
Abstract -

Real-time image processing demands high performance that
surpasses the capacity of conventional software-based
techniques. This paper explores the utilization of Field-
Programmable Gate Arrays (FPGAs) with Verilog HDL to
achieve hardware-accelerated image enhancement. Verilog
implementation for fundamental image processing operations,
including thresholding, contrast adjustment, brightness
manipulation, and inversion is being implemented. These
operations are fulfilled by performing logical operations on
the pixels of the subject image. Compared to software-based
approaches, this hardware design offers significant speed
advantages due to the parallel processing capabilities of
FPGAs. This approach is particularly well-suited for real-time

applications where immediate image processing is critical.

Key Words: Image Processing, Verilog HDL, Image
Operations

1. INTRODUCTION

The ever-increasing demand for high-performance digital
signal processing (DSP) applications necessitates the search
for efficient scheduling methods. Hardware design languages
(HDLs) have emerged as a powerful tool for hardware
designers, offering a unique blend of simulation capabilities
and real-world hardware implementation [1]. This paper
explores the benefits of HDLs, particularly their ability to
carefully simulate and test digital circuits, also and
incorporates important timing considerations how this
functionality translates seamlessly into the DSP field,
enabling designers to optimize productivity and maintain
hardware availability. In addition, the paper explores the use
of Field-Programmable Gate Arrays (FPGAs) in conjunction
with HDLs. Using conventional HDLs and traditionally
configured, FPGAs provide a flexible, cost-effective hardware
platform for implementing DSP algorithms [2]. Verilog HDL
and Very High-Speed Integrated Circuits (VHSIC) HDL, the
two primary HDLs used for FPGA design, will be covered
along with their key characteristics and how they help to
streamline the DSP design process.

1.1 Image Enhancement Operations

Image enhancement remains a cornerstone of digital image
processing, providing significant value in two key application

areas. First, it enhances human understanding by improving
the interpretation and clarity of visual information in images.
Second, it optimizes image data representation for efficient
storage, transmission, or tailored use in automated machine
perception systems. The basic principle behind any
enhancement method is to generate a demonstrably superior
result compared to the original image, specifically catering to
the requirements of a particular application [3].

There are two main image enhancement methods: spatial
domain and frequency domain methods. [4,5] Spatial domain
methods directly manipulate the pixels within an image
plane, leveraging the image's inherent pixel structure.
Frequency domain methods, on the other hand, utilize
mathematical transforms to induce enhancements within the
image's frequency domain using techniques like the Fourier
transform. Some of the earliest and most effective spatial
domain techniques involve adjustments to an image's
brightness, contrast, or color. These adjustments are often
employed to address limitations encountered during image
acquisition. For instance, image processing can increase the
overall brightness of a target object, revealing previously
obscured details, or magnify subtle variations in contrast,
allowing for clearer interpretation. As established in various
studies, each pixel value is determined solely by its
corresponding value at the same position within the image,
independent of its neighbors. A function is applied to map
the original pixel values to their enhanced counterparts, with
functions operating independently of image coordinates
being classified as global or homogeneous operations.

1.2 Significance of FPGA

This paper addresses the limitations of software-based
image processing, MATLAB especially its struggle to achieve
real-time performance due to sequential processing. Field-
Programmable Gate Arrays (FPGAs) are used and
programmed with Verilog HDL to overcome this constraint
and obtain the actual evolution time of the image. [6] An
alternative approach I being put forward as FPGAs provide
greater efficiency by implementing parallel hardware
operations, resulting in significant performance gains
compared to traditional software approaches Furthermore,
Verilog HDL optimization also provides a potentially cost-
effective solution. This research paves the way for significant
advances in real-time imaging, opening the doors for
applications in critical areas such as medical imaging,

autonomous vehicles and security systems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1114

2. Point Operations

Point functions provide a powerful way to manipulate
individual pixel values in an image. [7] This operation
modifies the characteristics of individual pixels without
affecting the size, form, or local relationships between
adjacent pixels of the image as a whole. The new value of
each pixel, denoted by a = I (u, v), is determined by its initial
value, a = I (u, v), at the same location. This independence
from the surrounding pixels allows for precise control of
individual intensities. Each pixel in the image (represented
by coordinates (u, v)) has a function, f(a), applied to it in
order to convert the original values to their improved
counterparts.

a' ← f (a) I' (u, v) ← f (I (u, v))

Equation 1: Point operations for the proposed approach

From the above Equation 1, f () is a function that represents
the coordinates of the image, the operation is classified as
global or unitary. Common examples of such homogeneous
point operations include optimized intensity conversion
("curve"), image quantization (or "posterization"), global
thresholding, gamma correction, and various color
conversions

3. Previous Work

Image conversions often introduce quality degradation. To
counteract this, image enhancement techniques are
employed to improve visual quality. These techniques
include contrast stretching, brightness control, inversion,
thresholding, and more. While both software and hardware
implementations exist for image enhancement, hardware
offers superior performance. This project focuses on utilizing
a reconfigurable hardware system, specifically Field-
Programmable Gate Arrays (FPGAs), to achieve real-time
image enhancement. This approach leverages Hardware
Description Languages (HDLs) for programming, offering a
novel technique within the digital system design domain
using Very-Large-Scale Integration (VLSI) [1].

Field-programmable gate arrays (FPGAs) have emerged as a
powerful platform for real-time image processing. Compared
to programmable digital signal processors (DSPs), FPGAs
offer much higher performance due to their application-
specific hardware implementation. This work delves into
image enhancement algorithms implemented on FPGAs,
focusing on techniques such as brightness control, contrast
propagation, negative transformation, thresholding, filtering
and more. The program uses the System Generator tool in
MATLAB to develop a modular image algorithm platform.
This platform facilitates the development and
implementation of image processing algorithms on FPGAs.
After installing the algorithms on the Spartan-3E
development board, subsequent experiments are conducted
to evaluate the impact on display image quality and resource

consumption. This experiment is expected to show the
superiority of System Generator for FPGA algorithm design,
highlighting its great processing power in real-time image
processing tasks [2].

4. Approach

Bitmap image format has been utilized for this process. BMP
is a simple, uncompressed format developed by Microsoft. It
produces very huge file sizes since it stores every pixel in the
image without any compression. BMP can be useful for
storing raw image data for further processing or in
situations where preserving every detail is crucial.

Fig. 1: Block Diagram of the suggested methodology

Although Verilog provides a powerful file format, its primary
functionality is limited to ASCII characters. This presents a
challenge when working with common models such as BMP,
which cannot be directly read by Xilinx software. To
overcome this limitation, as an alternative approach to
image preprocessing in MATLAB. Here, as shown in the Fig.
1, the BMP file is converted from its original format to a
standard hex file containing only the necessary information:
RGB vectors for each pixel.

4.1 Image Data

An image's red, green, and blue (RGB) elements are stored in
different memory blocks. These memory blocks can be
implemented using either external memory chips or internal
memory built into the processing unit, depending on factors
like cost and processing speed. To access the color
information for a specific pixel, the code reads data from a
designated memory address for each color channel. The
value retrieved from this address corresponds to the
intensity of that color component for that particular pixel.
The original image is as shown in the Fig. 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1115

Fig. 2: Original Image

5. Results

5.1 YUV Conversion

Weighted sum of the red, green, and blue components for
each color (red, green, blue) of the output YUV image is
performed. These weights are specific to the YUV conversion
and determine how each color contributes to the luminance
(brightness) and chrominance (color) information. These are
then added with offset value 128 and then divided by 256 for
scaling. An additional offset (16 or 128) is added to the final
values to ensure the output falls within the expected range
for YUV components. Fig. 3 represents the YUV converted
image.

Fig. 3: YUV converted image

5.2 Image Inversion

Intensity of the pixel is calculated by summing its red, green,
and blue components. Assuming that the original color
values range from 0 (darkest) to 255 (brightest), the code
then inverts each color by subtracting the intensity from the
maximum value (255). This basically makes the color detail
float on the color, making bright areas appear darker, and
vice versa. Finally, the converted colors are stored back into
the pixel’s data, possibly for use in updating the image. This
operation can aid in edge detection. Fig. 4 shows the
inverted image for the give original input.

Fig. 4: Inverted Image

5.3 Threshold Operation

Conditional thresholding operation within an image
processing framework is implemented by calculating
average pixel intensity and comparing it to a predefined
threshold. If the average intensity exceeds the threshold, the
pixel is set to white (maximum intensity = 255) for all color
channels (red, green, blue). Conversely, if the intensity falls
below the threshold, the pixel is set to black (minimum
intensity = 0). Fig. 5 represents threshold converted image.

Fig. 5: Result for Threshold Operation

5.4 Contrast Adjustment

A pixel's average RGB value is first compared to a
predetermined threshold value. Each color channel is
brightened by the code if the average intensity is higher than

the threshold. To prevent overflow and maintain valid color
value, the code checks if the temporary value exceeds the
maximum intensity (255). If it does, the color value is set to
the maximum value (255). Otherwise, the adjusted intensity
from the temporary variable is assigned back to the value.
Conversely, if the average intensity falls below the threshold,
the code performs a darkening operation by subtracting the
same fixed value (Value) from the original intensity of each
color channel and storing the result in temporary variables.
This could be used for improving image quality and for
better analysis. The image after contrast adjustments is
shown in Fig. 6.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1116

Fig. 6: Result for Contrast Adjustment

5.5 HSV Conversion

The image's color scheme is now HSV (hue, saturation,
value) instead of RGB (red, green, and blue). The RGB values
of a pixel are extracted and find the most dominant (highest
intensity) and least dominant (lowest intensity) colors. Hue
is calculated based on the primary color and the contrast
between color components.

Fig. 7: Result for HSV Conversion

Saturation reflects color purity and is determined by the
change in intensity relative to maximum intensity. Finally,
value represents the brightness, and is set to the maximum
intensity as shown in Fig. 7.

5.6 Brightness Manipulation

Intensity values of each color (red, green, and blue) are
retrieved from the memory. This value is then incremented
by adding a default constant. The process ensures that the
final value does not exceed a maximum limit (255). If the
combination pushes the temporary value beyond this limit, it
is lowered back to the maximum value to remove invalid
character data. Otherwise, the incremented value is used as
the final output. Decrementing of the value is performed for
brightness degradation with similar steps as enhancement.

Fig. 8: Brightness enhanced Image

Fig. 9: Brightness degraded image

5.7 Gray Level Slicing

Changing pixel intensity based on a specific brightness range
is called gray level slicing. The average intensity is calculated
by combining its red, green, and blue values. If the average
intensity falls within a specific range (based on
requirement), the code sets all those color values (red, green,
and blue) to their maximum value (typically 255), effectively
making the pixel white. Otherwise, the original color values
are left as they are. This method selectively brightens pixels
within a certain intensity range. For the result which is
shown in Fig. 10, the pixels in between 50 and 90 will
become 255(white) and remaining will be as it is.

Fig. 10: Result for Gray level slicing

5.8 Grayscale Image

Obtained by calculating weighted sum of the red, green, and
blue components. The selection of these weights is intended
to mimic the sensitivity of the human eye to various hues.
Later divided by 256 to scale the value down to gray scale
intensity range. The resulting weighted average represents
the grayscale intensity of the pixel. By setting all color
channels to the same value, the pixel loses its color

information and becomes a shade of gray. This could be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1117

used to create artistic effects as shown in Fig. 11 and modify
image for specific purposes.

Fig. 11: Grayscale Image

6. Power Analysis

With the image transferred to memory, the processed data
containing RGB components is now saved as a hex file and is
converted into a bmp file to acquire the output image.
Power analysis in circuit design, especially with Field-
Programmable Gate Arrays (FPGAs) from Xilinx, is the
process of determining how much power the digital circuit
will use in the design stage. Utilizing software that examines
the hardware description—which is frequently written in
Verilog—and takes into account variables like operation
frequency and logic gate usage, this assessment is
accomplished. A truly efficient system sets a balance
between high performance and low energy usage.

So, the power observed after performing the above
operation were obtained as shown in the Fig. 12.

Fig. 12: Power Supply Summary

6.1 Device Utilization and Timing Summary:

The percentage of resources, such as logic components and
memory blocks, used by the design on the selected device is
disclosed in the Device Utilization report. This aids in
determining whether the gadget can manage the
incorporated functions. Timing Summary analyzes the
timing properties, examines flip-flop data setup and hold
times, clock frequencies, and signal delays in logic routes.
The operations are represented in the below order
respectively.

1. Brightness enhancement operation
2. Brightness degradation operation
3. Invert operation
4. Threshold operation

5. Contrast operation
6. Gray level slicing operation
7. HSV conversion operation
8. Gray scale operation
9. YUV conversion operation

Table 1: Timing and Device Utilization Summary

 1 2 3 4 5 6 7 8 9

Slice Logic Utilization

Numbe
r of

Slice
Registe

rs

0% 0% 0% 0% 0% 0% 0
%

0% 0%

Numbe
r of

Slice
LUTs

0% 0% 0% 0% 0% 0% 3
%

0% 0%

Numbe
r used

as Logic

0% 0% 0% 0% 0% 0% 3
%

0% 0%

Slice Logic Distribution

Numbe
r of LUT

Flip
Flop
pairs
used

12
7

12
4

13
7

11
3

22
6

13
9

63
50

94 16
0

Numbe
r with

an
unused

Flip
Flop

59
%

58
%

73
%

74
%

76
%

62
%

99
%

70
%

67
%

Numbe
r with

an
unused

LUT

7% 8% 7% 8% 4% 7% 0
%

10
%

17
%

Numbe
r of
fully
used

LUT-FF
pairs

33
%

33
%

18
%

16
%

18
%

30
%

0
%

19
%

15
%

Numbe
r of

unique
control

sets

4 4 4 4 7 4 6 4 4

IO Utilization

Numbe
r of IOs

25 25 25 25 25 25 25 25 25

Numbe 4% 4% 4% 4% 4% 4% 4 4% 4%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1118

r of
bonded

IOBs

%

Specific Feature Utilization

Numbe
r of

Block
RAM/FI

FO

38
%

38
%

38
%

38
%

38
%

38
%

38
%

38
%

38
%

Numbe
r using
Block
RAM
only

28
8

28
8

28
8

28
8

28
8

28
8

28
8

28
8

28
8

Numbe
r of

BUFG/
BUFGC
TRLs

3% 3% 3% 3% 3% 3% 3
%

3% 3%

Numbe
r of

DSP48E
1s

 0
%

0% 0%

Timing Summary

Min
Period(

ns)

2.1
86

2.1
94

4.3
32

3.3
19

5.8
60

3.9
31

51
.5
82

5.8
44

7.0
54

Max
frequen

cy
(MHz)

45
7.4
98

45
5.8
30

23
0.8
67

30
1.3
32

17
0.6
57

25
4.3
95

19
.3
87

17
1.1
30

14
1.7
66

7. Conclusion

This project successfully implemented a versatile graphics
module using Verilog HDL. The design was simulated and
synthesized, demonstrating its functionality. Image
enhancement techniques like, YUV transformation, image
transformation, HSV transformation, and grayscale
transformation are studied and practically performed and
the results are observed. By visually comparing original and
processed images, the effect of these techniques on image
information has been demonstrated.

This work establishes a foundation for future investigations
into the broad application of HDL in signal processing
modeling. In a future study, additional hardware process
simulations will be examined to better evaluate the benefits
of this approach. The increasingly robust digital computer
aided design (CAD) tools not only offer new development
solutions but also open the door to entirely new applications.

REFERENCES

[1] Mahavir Singh, Gitanjali Pandove, “An Implementation of
Image Enhancement on Real Time Configurablse system
using HDL" published in International Journal of
Advanced Research in Electronics and Communication
engineering volume 7, issue 3, March 2018

[2] Kalyani A. Dakre, “A Review on Image Enhancement
using Hardware co-simulation for Biomedical
Application" presented International Journal of
Advanced Research in Computer Engineering &
Technology (IJARCET) Volume 3 Issue 12, December
2014.

[3] M. B. Veena, R. Deodurg, V. Shrinidhi and S. Soundarya,
"Design of Optimized CNN for Image Processing using
Verilog," 2023 4th IEEE Global Conference for
Advancement in Technology (GCAT), Bangalore, India,
2023.

[4] Ilham Majid Rabbani, Tito Waluyo Purboyo, “Image
Enhancement analysis using various Image Processing
Techniques”, International Journal of Applied
Engineering Research, volume 13, Number 2, 2018

[5] R. C. Gonzalez, R. E. Woods – “Digital Image Processing”,
Prentice Hall, ISBN 0-13-094659-8, pp. 1-142, 2002.

[6] R. G. Poola, L. P.L and S. S. Yellampalli, "Design of
Matlab/Simulink-based Edge Detection operators and
hardware implementation on ZYNQ FPGA," 2023 Second
International Conference on Electrical, Electronics,
Information and Communication Technologies
(ICEEICT), Trichirappalli, India, 2023.

[7] Dr. Sagar Patel, Krinesh Patel, Keval Patel and Chaitanya
Patel, "Image Enhancement on FPGA using Verilog"
published in International Journal of Technical
Innovation in Modern Engineering &Science (IJTIMES)
Impact Factor: 5.22 (SJIF-2017), e-ISSN: 2455-2585
Volume 5, Issue 03, March-2019

[8] Priyanka S. Chikkali, K. Prabhushetty - “FPGA based
Image Edge Detector and Segmentation”, International
Journal of Advanced Engineering Sciences and
Technologies, vol. no. 9, issue no.2, pp187- 192, ISSN
2230-7818, 2011.

[9] Hasnae El Khoukhi, My Abdelouahed Sabri,
“Comparative study Between HDLs Simulation and
MATLAB for Image Processing” International
Conference on intelligent Systems and Computer Vision
(ISCV), IEEE, April 2018

[10] Zhaochao Shi, Hui Wu, Weiming Mao, Jing Wang, Chao
Zhang, “Implementation of An Automatic Image
Enhancement Algorithm for Contrast Stretching on
FPGA” Published in 2020 IEEE 9th Joint International

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1119

Information Technology and Artificial Intelligence
Conference, December 2020

[11] Muhammed Yildirim, Ahmet Cinar, “Simultaneously
Realization of Image Enhancement Techniques on Real-
Time FPGA”, 2019 International Artificial Intelligence
and Data Processing Symposium (IDAP), IEEE,
September 2019

[12] Avra Ghosh, Sangita Roy, Sheli Sinha Chaudhuri,
“Hardware Implementation of Image Dehazing
Mechanism using Verilog HDL and Parallel DCP”, 2020
IEEE Applied Signal Processing Conference (ASPCON),
December 2020

[13] Chaitra, Nithya Priya, Pragna, Spoorthy, “Enhancement
of Image using Verilog & MATLAB”, International
Research Journal of Modernization in Engineering
Technology and Science, e-ISSN: 2582-5208, vol.no. 05,
issue no.07, July 2023

