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Abstract - The issue of balancing trade-offs between 
project duration and associated costs can be effectively 
addressed through the implementation of the linear 
optimization methodology. It’s important to consider that 
this particular approach solely focuses on the monetary 
aspects. During our study, we decided to analyze the 
influence of financing variability within the scheduling 
process. To achieve this, we used chance-constrained 
programming (CCP) allowing us to estimate the coefficient 
of variation for financing feasibility at a desired confidence 
level. Evaluating uncertainty involves calculating CV within 
a specified confidence level.  In order to understand its effect, 
an objective function along with a set of constraints is used.  
An effective way to find direct costs. The utilization of Excel 
Solver helps in successfully completing the study. To better 
comprehend how financing variability impacts our study, 
two scenarios were taken during our analysis. 
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1. INTRODUCTION 
 
In the early stages of construction projects, it is important 
to formulate a plan and estimate the time required for 
completion as well as the projected expenses. This process, 
commonly referred to as "time and cost estimation of the 
project," is crucial in order to achieve efficiency from 
beginning to end. By accurately estimating these factors, it 
becomes possible to implement effective planning 
strategies and maintain concise control over costs. [1] 

Accomplishing a construction project successfully is truly a 
challenging endeavor. As it requires careful planning and 
precise execution. Regrettably, unforeseen circumstances 
frequently lead to modifications in time and cost estimates 
even when plans are carefully formulated. 

As deviations emerge in the project, obtaining adequate 
financing presents a critical task, resulting in the 
suspension of operations until securing necessary funds-
thus causing delays and hindering momentum. As such, it 
often proves impractical to limit potential divergences 
entirely; instead, ensuring ready access to supplementary 

funding becomes imperative for effectively handling 
unanticipated expenses. 

Chance-constrained programming (CCP) is an optimization 
technique that can provide valuable insights into how to 
handle the variability of financing. By incorporating the 
probability of events into the optimization equation CCP 
enables a more precise estimation of potential outcomes. 
This programming approach serves as a powerful tool for 
evaluating the risks based on the desired confidence level. 
[1] 

According to our model. The optimal solution is 
determined to have a risk level of 15%. Based on statistics 
there is an 85% probability of fulfilling the constraints and 
only a 15% chance of breaching them. As a result. It can be 
assumed that the solutions presented in this study have a 
commendable success rate of complying with constraints 
approximately 85% of the time. 

This study aims to develop a comprehensive mathematical 
model that considers various network Precedence 
relationships as well as the financing variability within a 
project. 

2. LITERATURE REVIEW 

In the realm of construction project management striking 
an effective equilibrium between time and cost holds 
significant importance. To tackle conventional time cost 
problems associated with these projects. Various 
mathematical models exist alongside diverse approaches 
like heuristics and metaheuristics. Modern advancements 
in machine learning and artificial intelligence have also 
opened up avenues for addressing these challenges 
effectively. 

Two broad groups of mathematical programming models 
are used to address the time-cost tradeoff problem in 
various ways. One group utilizes linear programming (LP) 
models, as seen in studies conducted by researchers such 
as Meyer and Shaffer [2] . Another approach involves 
integer programming (IP), demonstrated by Liuet al.'s 
combined LP/IP hybrid method that establishes both lower 
bounds and exact solutions for project time-cost 
relationships through LP and IP techniques respectively 
[3]. Butcher's dynamic programming-based approach is 
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another perspective worth mentioning here[3]. 
Furthermore, Reda and Carr [4]present a mixed integer 
programming solution in their study. Senouci and Adeli 
[5] take a holistic approach by integrating resource-
constrained scheduling, resource leveling, and project total 
cost minimization in their mathematical model. 
Conversely, Yang [1]'s chance-constrained programming 
method incorporates funding variability into LP techniques 
without considering uncertainties of project activities or 
duration. Additionally, Khalaf et al. [6] introduce a cost-
effective strategy focusing on stretching non-critical 
activities within the available maximum budget by 
crashing all relevant activities simultaneously in the 
project network. To maximize savings from this approach, 
they leverage Linear Programming (LP) technique and 
fully utilize slack in various non-critical paths within the 
network. The cost savings achieved through the LP model 
are then subtracted from the initial cost of crashing all 
activities to calculate the final project cost. 

Various computational optimization techniques using 
artificial intelligence have been presented to address time 
cost tradeoff problems. For instance, genetic algorithms 
have been employed by Senouci and Eldin [7] to develop 
a model for resource scheduling that considers precedence 
relationships, resource leveling, and resource-constrained 
scheduling. Similarly. Zheng et al. [8] proposed a genetic 
algorithm-based multi-objective approach to optimize both 
total time and total cost simultaneously.  

In addition to genetic algorithms, Elbeltagi et al. [9] 
utilized five evolutionary-based optimization algorithms, 
namely Genetic Algorithm, Memetic Algorithm, Particle 
Swarm, Ant Colony, and Shuffled Frog Leaping. Similarly. 
Abbasnia et al. [10] applied the Fuzzy logic theory along 
with a genetic algorithm as an optimizer for time cost 
tradeoff.  

Previous studies in this domain primarily aimed at 
minimizing cost (direct or total project cost) while 
considering precedence constraints between activities and 
other factors such as resource leveling and constrained 
resource scheduling [11] [5] [7]. However, Yang [1] 
identified funding variability as another important 
constraint in this context.  

To address these various constraints comprehensively in 
the context of time cost optimization (TCO) this paper 
introduces a new mathematical model that incorporates all 
precedence relationships, and financing variability of 
project duration. 

This paper is based on paper Yang [1],author used CCP for 
quantifying effect of cost uncertainty with some probability 
in funding variability 

 

3. RESEARCH GAPS 

Even though project delays, cost overruns, and other 
challenges are central to all types of projects. There is a 
noticeable gap in evaluating these issues. Despite 
numerous studies on construction project management. 
There has been limited investigation into the impact of 
funding fluctuations on time cost trade-offs. Considering 
that external financing often has a significant influence on 
budgets and timelines. It is crucial to have a thorough 
understanding of these dynamics.  

4. RESEARCH METHODOLOGY 

Chance constrained Programming (CCP) was originally 
uncovered by Charnes, Cooper, and Symmonds during the 
1950s as a means of optimizing financial planning [12] 
[13]. In this study, the CCP approach is used to address 
time-cost trade-off problems. When confronted with 
decision-making in uncertain scenarios. The utilization of 
Chance constrained Programming (CCP) can offer a highly 
efficient solution. 

CCP mathematical formulation requires the introduction of 
random variables and a linear program in order to achieve 
this goal. An objective function is developed with 
constraints that aim to optimize within specified maximum 
and minimum bounds. 

This equation for linear optimization is taken from: [14] 

Equation 1 

Maximize j 
 

Subject to: 
Equation 2 

Pr(       
Where, decision variable, i=constraint, cij= coefficient for jth 
variable in ith constraint, aij= left hand coefficient for jth 
variable in the ith constraint, bi =right hand coefficient for 
the ith constraint, αi =prescribed confidence level 
(probability level) The level of certainty to fulfill the 
constraint should be beyond or equal to the specified αi ,in 
some choice of xj. 

The previous equation can be rewritten as follows: 
Equation 3 

Pr(  
Estimating the mean and standard deviation for bi : 
Equation 4 

 
The mean of bi and standard deviation of bi = mbi and σbi 
respectively. It was assumed that the right-hand side of the 
equation and bi both follow a standard normal distribution. 
Assume bi is distributed normally, the right-hand side of 
inequality must follow standard normal distribution. For 
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standard normal distribution Mean=0, standard 
deviation=1. 
 
Equation 5 
 
(bi-mbi)/σbi =Zαi 

= inverse of the cumulative standardized normal 
distribution. 
 
Thus, from Eq. 5th  and Eq. 4th  , this equation is obtained: 
Equation 6 

 
 
After converting the original stochastic constraint to the 
deterministic equivalent, the following equation is 
obtained: [14].  
 
Equation 7 

 
Where 1-αi inverse of the cumulative standardized normal 
distribution is evaluated at probability 1-αi. [14] 
Equation 8 

 
 
5. MODEL FORMATION 
 
This is the objective function that will be used for 
minimizing the direct cost of the project: 

 

Constraints: 
In order to restrict the possible solution range, chance 
constraints impose requirements on both outcome 
probabilities and acceptable limits for variables. This 
involves establishing minimum and maximum values for 
each relevant variable, thereby reducing computation 
times while ensuring that solutions fall within 
predetermined numerical ranges.  
The financing constraint is expressed in terms of financing 
variability. Consider the available financing in a 
deterministic form. 

 
Available financing refers to the total amount of financing 
that can be obtained from different sources. This assertion 
is supported by the central limit theorem, which states that 
"when multiple random variables are combined, the 

resulting distribution will be approximately normal, 
regardless of whether the individual distributions of the 
contributing variables are normally distributed or not." 
This principle holds true for both continuous and discrete 
random variables, as well as for distributions that are 
skewed or symmetric. [12] 
Thus, the financing constraint can be stated as follows: 
 

) 
 
Rather than using the standard deviation, utilize the 
coefficient of variation (CVAF), the equation will be as 
follows:- 

 
 

Where  and are the mean and standard 
deviation of available financing for a project, respectively:-  
  

 
 

It was assumed that at the Confidence level (α= 85%) the 

financial constraint must be satisfied. 

Z1-αi=Z1-0.85=Z0.15= -1.44 
 
It was carefully observed by the project planner that 
variability in financing will be 10% so he assigned CVAF to 
be 10% :-   
 

 

 

The presence of instability or unpredictability in financing 
indicates that there may be a direct correlation with 
reduced output on the right-hand side of the mentioned 
Equation. Consequently, it is highly likely that project 
timelines may become longer, and there could be an 
overall increase in measures aimed at minimizing exposure 
to potential economic hazards. 
Similarly for 15 % CVAF (15% financing variability) 
 

 

Solver constraints: 
 To achieve cost reduction when there is variability in 
financing or time, or both, it is essential to optimize the 
cost towards the desired point within a specific time 
duration. 
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Crashed duration (weeks crashed) <= maximum crashing 
allowed The activity cannot be exceeded beyond its 
crashing limit, thereby preventing any further crashing. In 
order to manage the duration of the project, an additional 
constraint has been imposed. As a result, the crashed 
duration can now be controlled by manually inputting the 
desired project duration. 
Due date < = project duration 
The due date is the duration till the project to be crashed. 
 
Start and finish relationship: 
Early Start = Early finish value from last predecessor, Early 
Finish = Early start + Activity duration  
LS = LF – Activity duration, LF = minimum value of LS from 
immediate successor 
Slack/float = It can be defined as the difference between 
the earliest and latest, start or finish time. 
Slack/float= EF – ES or LF – LS 
 

6.  Solving Procedure: 
 

The optimization is done by means of Excel solver; four 
scenarios are adopted: - 

 Traditional time-cost trade-off 
 Traditional time-cost trade off with 10% and 15% 

Financing variability 
 

Figure 1: Flowchart of working 

 
7. Numerical Example 
 

A numerical example is taken to analyze the working and 
performance of this model. The case study consists of eight 
activities, three-time estimates under normal and crash 
conditions, and the most likely time estimates which are 
given for the direct cost of the activity. An indirect cost of 
INR 2000 per week is considered in this example  [12]. 
 

Figure 2: A Numerical Example 
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crashing 
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week

A C,E 4 5 12 6 14000 2 3 4 3 50000 3 12000

B D 3 3 3 3 9000 1 2 3 2 12000 1 3000

C A D 2 4 6 4 16000 1 2 3 2 36000 2 10000

D B,C F,H 3 4 11 5 11000 2 3 4 3 41000 2 15000

E A G 1 2 3 2 8000 1 1 1 1 12000 1 4000

F D G 2 4 6 4 10000 2 3 4 3 26000 1 16000

G E,F 1 3 5 3 13000 1 1 1 1 41000 2 14000

H D 2 5 8 5 12000 2 3 4 3 39000 2 13500  
 

Minimize  

Minimize = project cost without crashing + 
12000TEA+ 3000TEB+ 10000TEC+ 15000TED+ 4000TEE-

+16000TEF+14000TEG+ 13500TEH 

 
8. Solving Scenario 
 
Two scenarios have been investigated with the objective 
of fully comprehending the impacts of financial fluctuation: 
 
A. In the first scenario, the applied traditional time cost 

trade-off method resulted in a direct cost of INR93000 
for a duration of 20 weeks. 
 

B. In the second scenario two alternatives were pursued. 
The initial one (2a) involved a 10% variability in 
financing (CVAF) generating a direct cost of 
INR108645. Alternative (2b) introduced a higher 
degree of uncertainty at 15% variability in financing 
(CVAF) resulting in a direct cost of INR118623 for both 
scenarios with duration being maintained at 20 weeks. 

 
9. Analysis of Result 
 

Table 1: Direct cost of considered scenarios 

Scenario 1 2a 2b

Weeeks

20 93000 108644 118623

19 103000 120327 131377

18 113000 132010 144132

17 127000 148364 161989

16 141000 164720 179846

15 159000 185747 202806

14 177000 206775 225765
 

 
For comparing scenario 2a and 2b, which correspond to 
10% and 15% financing variability respectively, let's take 
an example cost of INR132010. This cost is associated with 
scenario 2a, and it takes 18 weeks of time to complete. 
When the same cost is considered for scenario 2b, which is 
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15% financing variability, it takes 18.95 weeks of time to 
complete. It has been observed that alterations in funding 
can impact the duration of finishing a project despite fixed 
expenditures. Take scenario 2a; for example: with a time 
limit of 16 weeks and costs standing at INR164720. 
Conversely, in scenario 2b with an identical deadline of 16 
weeks; expenses total up to INR179846.It can be stated 
that even a slight escalation of financing variability (by as 
little as 5%) can create significant results such as a 
lengthier duration (a rise of approximately 5.27%) for 
completing the project and an increased overall expense 
(about 9%) if kept on schedule. 
 
Time-Cost Curve 

 
 Now fix the project deadline at 17 weeks the necessary 

direct cost will be INR 127000, INR148364, and 
INR161989, for scenario 1, scenario 2a, and scenario 
2b, respectively. The overall percentage increase from 
traditional time-cost scenarios amounts to 16.82%, 
27.55%,  

 At direct cost INR177000, the project can be completed 
in 14 weeks, 15.42 weeks, 16.15 weeks, for scenario 1, 
scenario 2a, and 2b, the overall amount of percentages 
that indicate an increase in relation to the 1st scenario 
are 10.14%, 15.35%. 

 
Figure 3: Time-direct cost curve 

 
 

Total project calculations: 

Table 2: Cost after including Indirect Cost 

Weeks

Indirect cost Total project 

cost for Simple 

TCO

Total project 

cost for 10% 

Financing 

Variability

Total 

project cost 

for 15% 

Financing 

Variability

20 40000 133000 148644 158623

19 38000 141000 158327 169377

18 36000 149000 168010 180132

17 34000 161000 182364 195989

16 32000 173000 196720 211846

15 30000 189000 215747 232806

14 28000 205000 234775 253765  

Table 3: comparing a Total Cost 

Weeks

Total project 

cost for Simple 

TCO

Total project cost 

for 10% Financing 

Variability

Total project cost 

for 15% Financing 

Variability

20 158623

19.78 161000

19 158327 169377

18.72 161000

18 168010 180132

17.44 189000

17 161000 182364 195989

16.53 189000

16 196720

15 189000

14  
 
For example, the total expense of INR205000 is estimated 
from the traditional time cost scenario, if financing 
variability of 10% occurs in the project, then the estimated 
completion time will be 15.56 weeks instead of 14 weeks. 
Similarly evaluating all scenarios, it can be concluded that 
there are various timelines for completing of project 
available within an allocated budget. 

10. Conclusion 

The scope of this research involves constructing a time-
cost trade-off model that takes into consideration the 
fluctuations in financing. By presenting this simplified 
model, decision-makers can gain valuable. 

In order to grasp the interrelation between cost and time 
effectively, it is imperative to investigate the time cost 
curve for each scenario. A prime example would be that 
raising the coefficient of variation for funding by 
approximately 10 to 15% results in a corresponding 
increment in direct costs by roughly about 9%. 

Subsequently drawing diverse conclusions becomes 
possible through this analysis. 

This model suggests that if the cost remains fixed, there 
will be an increase in time. Similarly, if time is fixed, there 
will be an increase in cost. 

Now, this model gives choice to the client for the 
completion of the project with respect to time and finance. 

This particular model offers the option to address different 
confidence levels, such as 99%, 95%, 90%, 80%, and 75%. 
It also allows for a range of variations, including 2.5%, 5%, 
10%, 15%, and 20%. These variations are significant in 
understanding and evaluating the impact on both delays 
and expenses. 
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