

RURAL ROAD DESIGN ENHANCEMENT USING CIVIL 3D

Chinmay B R¹, Deepak T S², Mohammed Fuzail³, Rakshitha S⁴, Thanup N T⁵

¹²³⁴Diploma In Civil Engineering, Adichunchanagiri Polytechnic, Chikkamagalur, Karnataka, India ⁵Head of Department, Department of Civil Engineering, Adichunchanagiri Polytechnic, Chikkamagalur, Karnataka, India

maia

Abstract- Efficiently designing rural roads is crucial for the Indian road network, despite their lower traffic volume. Ensuring the safety of commuters requires proper road design. Developing these roads, which constitute a significant portion of the overall road network, will contribute to the country's overall development. In this research paper, we utilized Civil 3D software to design a 600-meter road, generating outputs such as tabular columns for curves, profile sections, and road alignment. The objective of this work is to demonstrate the user-friendly nature of Civil 3D in rural road design. By improving transportation infrastructure nationwide, the economic activities of the country will be greatly enhanced

Key Words: AutoCAD Civil 3D, Geometric Design, Total Station

1. INTRODUCTION

The geometric design of roads is crucial as it involves determining the dimensions and visible features of the road. This design plays a critical role in establishing the requirements for drivers and vehicles, with a focus on efficiency and safety. Elements such as cross-sections, sight distance, intersections, vertical alignment, and horizontal alignment are key considerations in geometric design. Implementing proper geometric design significantly contributes to reducing accidents and their severity. The primary objective is to achieve optimal traffic operation efficiency and ensure maximum safety while being costeffective. This paper demonstrates a typical road design using AutoCAD Civil 3D, a software tool that offers time and energy-saving capabilities. By utilizing 3D modeling, challenges in road design, particularly in computing cut and fill volumes, can be effectively addressed. AutoCAD Civil 3D enables more efficient and accurate volume calculations, enhancing overall design precision.

2. SURVEYING AND DATA COLLECTION

Prior to commencing the design of the project road, a survey was conducted to gather essential information. This survey included activities such as location study, reconnaissance, preliminary survey, final location survey, map study, and reconnaissance survey. Using a total station, survey points were acquired at the project site situated in Beekanahalli, Chikkamagalur.

Figure 1- Satelite image of a selected area of the project

E	5 -					
F	ile Ho	ome Inse	rt Page La	yout Forr	nulas Da	ata R
Pa	Clipboa	it oppy ~ ormat Painte ard	r Galibri B I	→ 1 U → I III Font	- St if you	A A -
	T COSSIDEL	- DAIA LOS	5 Some read	a la	e lost il you	Suve an
A1		·	XV	f_x 1		
	А	В	С	D	E	F
1	1	100	0 2000	100		
2	2	2 1001.38	5 1997.792	99.767		
3	3	3 1001.02	5 1997.339	99.736		
4	4	1000.69	7 1996.653	99.723		
5	5	5 1000.33	7 1995.774	99.713		
6	e	5 1002.34	9 1997.795	99.712		
7	7	7 1002.53	5 1998.299	99.71		
8	8	3 1003.11	2 1999.075	99.48		
9	9	1006.8	3 1997.928	99.353		
10	10	1006.15	6 1997.048	99.507		
11	11	1005.51	9 1996.057	99.555		
12	12	2 1004.98	3 1995.118	99.529		
13	13	3 1004.38	8 1993.842	99.522		
14	14	1007.59	3 1990.705	99.277		
15	15	5 1008.38	8 1992.125	99.444		
16	16	5 1008.86	5 1993.275	99.436		
17	17	1009.61	7 1994.368	99.439		
18	18	3 1010.4	5 1995.458	99.163		
19	19	9 1017.97	5 1990.123	99.302		
20	20	0 1017.26	3 1989.39	99.379		
21	21	1016.25	3 1988.196	99.361		
22	22	2 1015.3	2 1986.907	99.401		
23	23	3 1014.86	2 1986.175	99.344		
24	24	1020.98	8 1983.076	99.322		
25	25	5 1021.69	1 1984.232	99.247		
26	26	5 1022.58	2 1985.328	99.34		
27	27	7 1023.48	1 1986.55	99.515		

Figure 2- Co-ordinates of total station

3. DESIGN CRITERIA

The following design criteria based on the Geometric design standards manual (IRC: SP: 20 – 2002) were assigned to the horizontal geometry of the center line and the profile and cross-section of the roadway.

- I. Design speed = 80 km/h
- II. Super elevation rate = max 5%
- III. Coefficient of Friction = 0.15
- IV. Minimum K for sag curves = 21
- V. Minimum K for crest curves = 15
- VI. Roadway width = 3.75 m
- VII. Carriageway width = 1.875 m
- VIII. Shoulder width = 1.000 m

4. Methodology

Although AutoCAD Civil 3D initially requires some effort, with repeated practice and training, it becomes easier to use. Becoming proficient in this technique requires dedication and a willingness to invest time in learning and perfecting the software. The following flow chart provides an overview of the general process involved in reviewing AutoCAD Civil 3D designs.

Figure 3 - Flow chart of Autocad Civil 3D

The survey points are imported with a compatible file format such as CSV, TXT, or LAND XML files. Using this survey points surface were created which represents terrain or ground model, an alignment has been created on the surface, and existing and proposed profile are created With the help of various tools inside Civil 3D cross-section, assembly, corridors were created. The below figures show the design procedure;

Figure 4 - Import Points File

Figure 5 – surface creation

Figure 6 - Profile creation

Figure 7 - Corridor Creation

Figure 8 - Assembly Creation

Figure 9 - Object Viewer

5. Output of the design

Table-1 Contour Table

Contours Table					
Number	Minimum Elevation	Maximum Elevation			
1	98.264	99.322			
2	99.322	99.767			
3	99.767	102.452			
4	102.452	11(),249			

Table-2 Direction Table

	Directions Table					
Number	Minimum Direction	Maximum Direction	Color			
1	NO* 52' 59"E	N57°28'07"E				
2	N57°28'07"E	S51° 59' 17"E				
3	S51° 59' 17"E	S23° 50' 47"W				
4	S23° 50' 47"W	S52°20'27"W				
5	S52° 20' 27"W	S63° 17' 36"W				
6	S63° 47' 36"W	S73° 54' 57"W				
7	S73° 54' 57"W	N83° 17' 24"W				
8	N83° 17' 24"W	N2° 13' 19"W				

Table-3 Elavtion Table

Elevations Table						
Number	Minimum Elevation	Maximum Elevation	Area	Color		
1	98.26	99.12	334.48			
2	99.12	99.32	486.42			
3	99.32	99.47	480.13			
4	99.47	99.77	696.65			
5	99.77	101.44	3798.66			
6	101.44	102.45	3218.72			
7	102.45	103.41	5802.03			
8	103.41	110.25	16864.41			

Table-4 Slope Table

Slopes Table						
Number	Minimum Slope	Maximum Slope	Area	Color		
1	0.46%	3.30%	8170.29			
2	3.30%	4.88%	16420.66			
3	4.88%	6.11%	3029.23			
4	6.11%	7.70%	755.95			
5	7.70%	10.70%	1409.57			
6	10.70%	13.99%	1212.02			
7	13.99%	20.67%	431.86			
8	20.67%	130.73%	251.93			

Table-5 Slope Arrows Table

Slope Arrows Table					
Number	Minimum Slope	Maximum Slope	Color		
1	0.46%	3.30%			
2	3.30%	1.88%			
3	4.88%	6.11%			
4	6.11%	7.70%			
5	7.70%	10.70%			
6	10.70%	13.99%			
7	13.99%	20.67%			
8	20.67%	130.73%			

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 10 Issue: 06 | Jun 2023www.irjet.netp-ISSN: 2395-0072

Table-6 watershed table

			Watersheds	Table		
ID	Туре	Drains Into	Description	Segment Display	Area Display	Area
1	Boundary point		Description 1		0.48sq.m	0.48
2	Boundary point		Description 2		0.21sq.m	0.21
3	Boundary point		Description 3		677.59sq.m	677.59
4	Boundary point		Description 4		1.15sq.m	1.15
5	Bouncary point		Description 5		22561.14sq.m	22561.14
6	Bouncary point		Description 6		156.56sq.m	156.56
7	Boundary segment		Description 7		1.31sq.m	1.31
8	Boundary segment		Description 8		8.57sq.m	8.57
9	Boundary segment		Description 9		7.58sq.m	7.58
10	Boundary segment		Description 10		8.70sq.m	8.70
11	Boundary segment		Description 11		10.58sq.m	10.58
12	Boundary segment		Description 12		167.63sq.m	167.63
13	Boundary segment		Description 13		39.55sq.m	39.55
14	Boundary segment		Description 14		307.45sq.m	307.45
15	Boundary segment		Description 15		1220.83sq.m	1220.83
16	Boundary segment		Description 16		37.97sq.m	37.97
17	Boundary segment		Description 17		55.18sq.m	55.18
18	Boundary segment		Description 18		171.33sq.m	171.33
19	Depression	3	Description 19		108.51sq.m	108.51
20	Depression	21	Description 20		252.88sq.m	252.88
21	Depression	20	Description 21		875.42sq.m	875.42
22	Depression		Description 22		550.14sq.m	550.14
23	Multi-drain	20, 21	Description 23		14.09sq.m	14.09
24	Multi-drain	14, 21	Description 24		602.81sq.m	602.81
25	Multi-drain	5, 22	Description 25		430.32sq.m	430.32
26	Multi-drain	5, 25, 26	Description 26		2233.05sq.m	2233.05
27	Multi-drain	18, 26	Description 27		1180.50sq.m	1180.50

6. CONCLUSIONS

The geometry of the road is in accordance with IRC and all safety measures are considered. Horizontal alignment, vertical profile, cross-section, and superelevation was calculated and implemented. To streamline the design process and to save time AutoCAD Civil 3D has been found to be an efficient tool. The capability of AutoCAD Civil 3D offers a greater advantage for manual design, with its user-friendly interface designers can work in three-dimensional roadway design. Hence from this study, it has been proved that Civil 3D is a highly effective tool for highway geometric design.

REFERENCES

- [1] Hong S, and Oguchi S-2005 "Evaluation of Highway Geometric Design and Analysis of Actual Operating Speed" Journal of the Eastern Asia Society for Transportation Studies, 1048-1061.
- [2] S.A. Raji, A. Zava, K. Jirgba, A.B. Osunkunle- June 2017, "Geometric Design of a Highway Using

AutoCAD Civil 3d", Journal of Multidisciplinary Engineering Science and Technology (JMEST), Volume 4, Issue 6.

- [3] IRC: 38-1988. "Guidelines for design of horizontal curve".
- [4] IRC-SP: 73-2015. "Manual for Specification and Standards for two lining of Highways with Paved Shoulder"
- [5] IRC SP 23 "Vertical Curves for Highways."
- [6] Reddy M.S., et.al, (2019), "Geometric Design of Highways by Using Civil 3D", International Journal of Management, Technology, and Engineering, Volume 9, Issue 1, January, PP: 2943-2951.

BIOGRAPHIES

Deepak T S Diploma In Civil Engineering Adichunchanagiri Polytechnic Chikkamaggaluru-577102

Mohammed Fuzail Diploma in Civil Engineering Adichunchanagiri Polytechnic Chikkamagaluru-577102

Chinmay B R Diploma In Civil Engineering Adichunchanagiri Polytechnic Chikkamagaluru-577102

Rakshitha S Diploma In Civil Engineering Adichunchanagiri Polytechnic Chikkamagaluru-577102

Mr. Thanup N T HOD Dept. of Civil Engineering Adichunchanagiri Polytechnic Chikkamagaluru-577102