Volume: 10 Issue: 03 | Mar 2023 www.iriet.net e-ISSN: 2395-0056 p-ISSN: 2395-0072

COMPARATIVE STUDY OF ACTUAL AND CRASHED SCHEDULE OF BUILDING USING MSP

Sanjay Jagadeshwara E¹, Dr. Nagaraj P S²

¹Mtech Student (Construction Technology), University Visvesvaraya College of Engineering, Bangalore University, Bengaluru ²Professor, Civil Engineering Dept. University Visvesvaraya College of Engineering, Bangalore University, Bengaluru **Abstract** - Project management is main stream which overall makes a civil industry worth into existence in accordance with the control on constraints such as time and cost. This paper will mainly help out to differentiate actual and crashed schedule and their behavioral improvements in time according to the relative cost. Microsoft project software is used to enhance the scheduling adding Crashing, Slack time and alternative building material to the work planning activity. Crashing makes a proper inventory behavioral time benefits from the overtime of huge workforce and improvement in the duration of an activity using slack time in software. An alteration with the cost is maintained which helpful in retrogression of overall costs of the project. The main aim is to reduce the improved development period from new time and to meet a specific deadline. The main motivation behind this project is to reduce time using crashing and slack (Time Optimization). For cost optimization alternative building material is used to reduce the cost and making project more well-organized and inexpensive. Key Words: scheduling and crashing, crashing trials, alternative material and techniques, crash ability, cost slope. 1. INTRODUCTION Everyone wants to be more conservative when it comes into time constraint. Shorter duration work should be done giving more profitable results. Many projects have some risk and uncertainties which we not consider it orally but it comes into account when we execute it practically which makes increase in time, cost and over allocation of resources. To Overcome, Planning and Scheduling are done and to have crashed schedule Following Methods are used. Crashing Of an Activity. Crashing Using Microsoft Project. Slack Time. If time is of secondary concern, each activity could be performed at its lowest possible normal cost. If cost is of secondary importance, each activity could be speeded up to be completed in the least crash time. Between these two limits lies the best or optimal solution. However, to find such solution, it requires the consideration of complex collection of concurrent, interrelated, and overlapping activities. In order to counter the unforeseen delays, Project management is the application of knowledge, skill, tools and techniques to

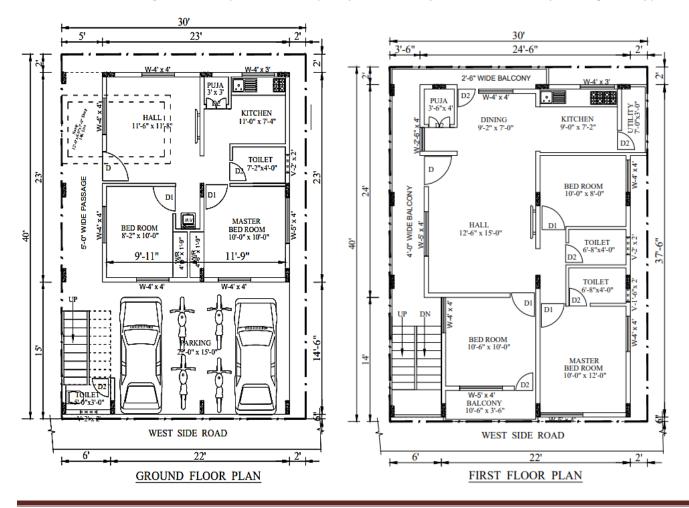
2. METHODOLOGY

using MSP.

- 1. Data Collection.
- 2. Work breakdown structure.
- 3. Maximum duration is applied.
- Adding Resources.
- 5. Assigning Resources.

project activities to meet the project requirements. The primary focus of this research is to compare actual and crashed schedule by enhancing the schedule through Crashing. Slack time and alternative Techniques to the work planning activity

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072


- ☐ Crashing using overtime.
- Slack time for optimization.
- Time & Cost optimization using Alternative Building Material and Techniques.
- Result showing Time and Cost Optimization. 6.
- Comparing actual and crashed schedule of the project.

3. PROJECT CASE STUDY

- The residential project of two floors (G+1) signed by the company for 8 months is completed. Client wanted his project to be completed in short time, accordingly construction was done by the company.
- In my opinion the time schedule of the project to reach client satisfaction can be reduced furthermore and can obtain the biggest profit from this project. So I replanned the project and tried to make a difference to show how to get the maximum profit by crashing.
- The project located in Hulimangala, Bangalore south, and it's about 1200 sqft.

Structure Built up area Ground floor 772.00sqft Parking area 330.00sqft First floor 1102.00sqft

The rate before crashing 2 3,506,362/-, in numbers (Thirty five lakh sixty three thousand sixty two rupees only).

Volume: 10 Issue: 03 | Mar 2023

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

4. PROJECT PLANNING

• Project Planning is a general and most common term in construction management which refers to attain the expected goals and destinations. Planning is the key to bring the expected projects into reality or in existence

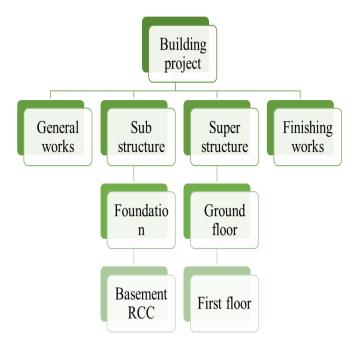


Fig-1 Work breakdown structure:

General works	Substructure	Super structure	
Site handover to contractor	Foundation	Ground floor	Plumbing
Document review & plan formation	Excavation	Column shuttering	Electrification work
site cleaning	PCC for footing	RCC of column up to lintel level	MS work
layout	Reinforcement cutting for footing &plinth beam	Brickwork up to lintel level	Steel railing
	Prepare & pour concrete	Lintel concreting	Water proofing
	Backfilling & compaction	Brickwork up to slab level	Flooring
	Basement RCC	staircase shuttering	Laying of tiles
	RCC of column up to plinth beam	RCC of staircase	external painting
	Plinth beam Shuttering	Centering & shuttering for slab	Door & window fixing
	Casting of Plinth Beam with RCC	Slab beam casting	internal Painting (with D&W painting)
	Ground Soling, Compaction & Flooring	RCC of slab	Glasswork
		de shuttering	Handing over to client

Tahl	e-4.1	Lict	of ac	tiviti	ΔC
I aiji	le-4.1	LISE (UI AL		

Resource Name	Туре	Material Label	Std. Rate	Cost/Use
Type: Work	Work			₹ 6,500.00
Bar bender	Work		₹ 800.00/day	₹ 0.00
Carpenter	Work		₹ 800.00/day	₹ 0.00
centering	Work		₹ 0.00/hr	₹ 6,500.00
Electrician	Work		₹ 800.00/day	₹ 0.00
Engineer	Work		₹ 20,000.00/mon	₹ 0.00
Female coolie	Work		₹ 450.00/day	₹ 0.00
guard	Work		₹ 11,000.00/mon	₹ 0.00
Head mason	Work		₹ 900.00/day	₹ 0.00
Helper	Work		₹ 500.00/day	₹ 0.00
JCB	Work		₹ 700.00/hr	₹ 0.00
Male coolie	Work		₹ 600.00/day	₹ 0.00

Table-4.2 List of resources

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

> Activities cost and crew formation:

Activities		Budget				
	Male coolie (₹ 600/day)	Female coolie (₹450/day)	Head mason (₹ 900/day)	Bar bender (₹800/day)	Carpenter (₹ 800/day)	labor total cost Per day
Site handover to contractor						0
Document review & plan formation						0
site cleaning	3					1800
layout	3					1800
excavation	4					2400
pcc for footing	3	2	2			4500
Reinforcement cutting for footing &plinth beam				4		3200

Activities	Materials						
	PCC (3400/m3)	RCC (4450/m3)	Cement (350/bag)	Sand (950/ton)	Aggregate (700/ton)	material total cost	
Site handover to contractor							
Document review & plan formation							
site cleaning							
layout							
excavation							
pcc for footing	5.87					19958	
Reinforcement cutting for footing &plinth beam							
Prepare & pour concrete		9.13				40628	
Backfilling & compaction							
RCC of column upto plinth beam		2.03				9034	
Plinth beam Shuttering							

Table-4.3 Budget labor total cost

Table-4.4 Budget material total cost

Activities		Budget					
	Plumbing work	Electrical work	Tiles work	Flooring	Door work	Window work	sub contract total cost
Plumbing	112000						112000
Electrification work		132000					132000
MS work							
Steel railing							
Water proofing							
Flooring				190000			190000
Laying of tiles			115000				115000
external painting							
Door & window fixing					104000	68000	172000
internal Painting (with D&W painting)							
glasswork							

Table- 4.5 Budget sub contract total cost

Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

5. SCHEDULING AND CRASHING OF PROJECT

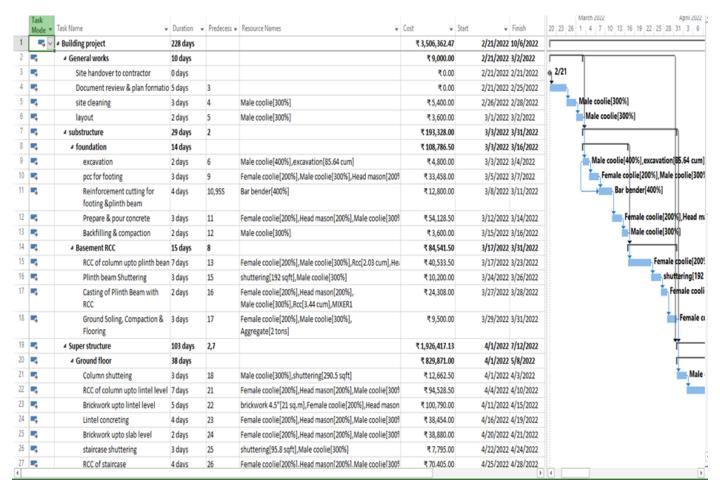


Fig-2 Scheduling with Normal duration

The schedule is a tool or a technic of every project management team which is used and practiced to predict most probable project completion time and thus enabling the in/ on time resources conception which are budgeted on the particular work.

☐ The normal duration of the project is 228days

e-ISSN: 2395-0056

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

5.1 DURATION CRASHING

Ŧ	ŧ.

Activities	no of	Actual	no of	Crashed	Centering & shuttering for slab	1	3 days	2	2 days
	crew	duration	crew	duration	Slab beam casting	1	2 days	2	1 day
Building project		228 days		145 days	RCC of slab	1	4 days	2	3 days
General works		10 days		7 days	De shuttering	1	1 day	2	1 day
Site handover to contractor		0 days		0 days	First floor		40 days		27 day
Document review & plan		5 days		5 days	Column shuttering	1	3 days	2	2 day
formation					RCC of column up to lintel level	1	7 days	2	4 day
site cleaning	1	3 days	2	1 day	brickwork up to lintel level	1	6 days	2	4 day
layout	1	2 days	2	1 day	lintel concreting	1	4 days	2	3 day
substructure		29 days		18 days	Brickwork up to slab level	1	3 days	2	2 day
foundation		14 days		9 days	staircase shuttering	1	3 days	2	2 day
excavation	1	2 days	2	1 day	RCC of staircase	1	4 days	2	3 day
pcc for footing	1	3 days	2	2 days	Centering & shuttering for beam	1	3 days	2	2 day
Reinforcement cutting for footing	1	•	2	3 days	& slab				
	1	4 days	2	3 days	Slab beam casting	1	2 days	2	1 day
&plinth beam					RCC of slab	1	4 days	2	3 day
Prepare & pour concrete	1	3 days	2	2 days	DE shuttering	1	1 day	2	1 day
Backfilling & compaction	1	2 days	2	1 day	Parapet wall	1	3 days	2	2 day
Basement RCC		15 days		9 days	plastering external(incl,PW)	1	12 days	2	8 day
RCC of column up to plinth beam	1	7 days	2	4 days	plastering internal	1	10 days	2	6 day
Plinth beam Shuttering	1	3 days	2	2 days	Finishing works		86 days		52 da
Casting of Plinth Beam with RCC	1	2 days	2	1 day	Plumbing	1	7 days	2	4 day
Ground Soling, Compaction &	1	3 days	2	2 days	Electrification work	1	7 days	2	4 day
Flooring					MS work	1	8 days	2	5 day
Super structure		103 days		68 days	Steel railing	1	5 days	2	3 day
Ground floor		38 days		25 days	Water proofing	1	4 days	2	3 day
Column shuttering	1	3 days	2	2 days	Flooring	1	12 days	2	7 day
RCC of column up to lintel level	1	7 days	2	4 days	Laying of tiles	1	8 days	2	5 day
Brickwork up to lintel level	1	5 days	2	3 days	external painting	1	10 days	2	6 day
Lintel concreting	1	4 days	2	3 days	Door & window fixing	1	12 days	2	7 day
Brickwork up to slab level	1	2 days	2	1 day	internal Painting (with D&W	1	7 days	2	4 day
•				•	painting)				
staircase shuttering	1	3 days	2	2 days	glasswork	1	5 days	2	3 day
RCC of staircase	1	4 days	2	3 days	Handing over to client	1	1 day	2	1 day

Table-5.1.1 duration crashing

Example: PCC for footing

To finish this activity, the crew should be formed from 7 Labors, PCC & mixer. So, we assumed to have 1 crew with budget total cost / day = 4500 rupees. We found that this crew with 100% productivity will finish the required amount of work in 3 days.

Total labor cost = $4500 \times 3 = 13500$ rupees.

Material cost (PCC & mixer) = 19958 rupees.

Therefore total amount required for this activity is **33458 rupees**.

Crashing; now we assumed we have 2 crews but we found that if the one crew give productivity of 100%, the two crews won't get a completion rate by 200% due to crowdedness and the lack of supervisors and other considerations .So we assumed that if we have 2 crew the productivity will increase by 160% to 170% So this activity will be finished in 2 days with a total cost of **37958 rupees**

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

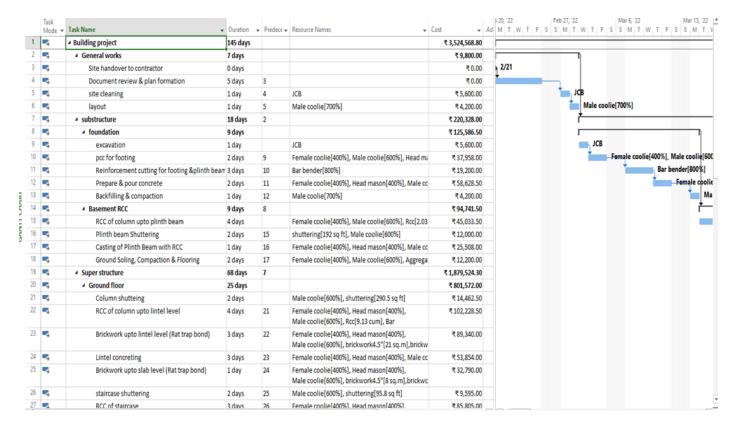


Fig-3 Scheduling with crashed duration

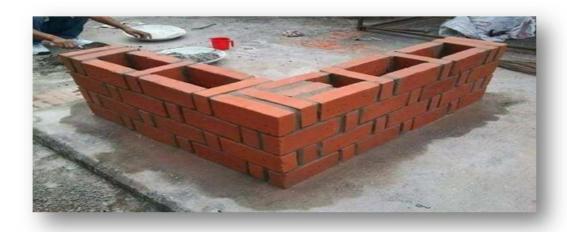
The main approaches for crashing of an activity in Microsoft project is:

- 1. Apportioning additional resources to the project which makes easy way for crashing of an activity.
- 2. Overtime allocated to the resources mainly human resource.
- 3. Hiring additional resources.
- 4. For Early completion extra payments.

5.2 ALTERNATIVE BUILDING MATERIAL AND TECHNIQUE

Alternate material and technique not only crash the time but also cuts down the overall cost

Rat trap bond


Rat trap bond is a cavity wall construction and leads to reduction in the quantity of bricks required for masonry work By adopting this method of bonding of brick masonry compared to traditional English/Flemish bond masonry, it is possible to reduce in the material cost of bricks by 25% and 10% to 15% in the masonry cost.

The cavity in red trap bond provides effective thermal and sound insulation.

Volume: 10 Issue: 03 | Mar 2023

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Plank & Joist Roofing System

- ☐ Precast RCC Plank and Joist is a system which consists of two types of precast structural elements Plank (which is like a small component of a bigger roof slab) and Joist. After placing precast elements ,in-situ concrete is placed to give flat surface
- ☐ The technology can prove economical if the number of planks and joists are more- such as in the case of a 2 or 3 storied buildings.
- Cost Overall cost reduction by 15-20% because of reduction in steel consumption and because of faster roof construction once the walls are complete. It doesn't require any material for shuttering during construction.
- ☐ Time- Saves construction time the slab can be ready in 2-3 days as compared to at least 14-21 days for a conventional RCC slab
- Quality -Centralized production provides a better, durable and consistent quality roof as compared to the quality of conventional RCC roofs in mountain regions

❖ Polycarbonate glass

- Polycarbonate is a material which contains a group of carbonates in their chemically build structure. Polycarbonate is mainly as similar to a conventional transparent glass but inflexible as plastic. Polycarbonate glass is easily installed, cut and easily available in ribbed single sheet or flat twin-wall thicknesses.
- Use of polycarbonate sheet is much lesser than the cost of toughened glass. Polycarbonate sheet is light weight, good fire resistant, provide UV protection and has high impact resistance.

Volume: 10 Issue: 03 | Mar 2023

www.irjet.net

5.2 PROJECT CRASHING METHOD

- The Project Crashing method was used to find the optimum duration and minimum cost of the project. The procedure for shortening project duration can be summarized in the following steps:
- Draw the project network diagram.
- CPM calculations and identify the critical path, use normal durations and costs for all activities.
- Compute the cost slope for each activity from the following equation: cost slope = crash cost normal cost / normal duration crash duration
- Start by shortening the activity duration on the critical path which has the least cost slope and not been shortened to its crash duration.
- Reduce the duration of the critical activities with least cost slope until its crash duration is reached or until the critical path changes..
- The cost increase due to activity shortening is calculated as the cost slope multiplied by the time of time units shortened
- Continue until no further shortening is possible, and then the crash point is reached.
- This is the project direct-cost / time relationship. By adding the project indirect cost to this curve to obtain the project time / cost curve. This curve gives the optimum duration and minimum cost.

Fig-4 Network Diagram

e-ISSN: 2395-0056

p-ISSN: 2395-0072

www.irjet.net

Volume: 10 Issue: 03 | Mar 2023

Task Name	Actual	Actual cost	Crashed	crashed Cost	Crash	cost
	duration		duration		ability	slope
Building project	228 days	₹ 3,506,362.47	145 days	₹ 3,524,568.80		
General works	10 days	₹ 9,000.00	7 days	₹ 9,800.00		
Site handover to	0 days	₹ 0.00	0 days	₹ 0.00	0	0
contractor						
Document review	5 days	₹ 0.00	5 days	₹ 0.00	0	0
& plan formation						
site cleaning	3 days	₹ 5,400.00	1 day	₹ 5,600.00	2	100
layout	2 days	₹ 3,600.00	1 day	₹ 4,200.00	1	600
substructure	29 days	₹ 193,328.00	18 days	₹ 220,328.00		
foundation	14 days	₹ 108,786.50	9 days	₹ 125,586.50		
excavation	2 days	₹ 4,800.00	1 day	₹ 5,600.00	1	800
pcc for footing	3 days	₹ 33,458.00	2 days	₹ 37,958.00	1	4500
Reinforcement	4 days	₹ 12,800.00	3 days	₹ 19,200.00	1	6400
cutting for footing						
&plinth beam						
Prepare &	3 days	₹ 54,128.50	2 days	₹ 58,628.50	1	4500
pour concrete						
Backfilling &	2 days	₹ 3,600.00	1 day	₹ 4,200.00	1	600
compaction						
Basement RCC	15 days	₹ 84,541.50	9 days	₹ 94,741.50		
RCC of column	7 days	₹ 40,533.50	4 days	₹ 45,033.50	3	1500
upto plinth beam						
Plinth beam	3 days	₹ 10,200.00	2 days	₹ 12,000.00	1	1800
Shuttering						
Casting of	2 days	₹ 24,308.00	1 day	₹ 25,508.00	1	1200
Plinth Beam with						
RCC						

Table-5.3.1 Crash ability & cost slope

5.3.1 DIRECT AND INDIRECT COST

> Direct cost: Normal cost which will be assigned on to a selected work package or project activity

Direct cost = 3506362 rupees

> Indirect cost: Cost that can't be related to any particular work package or project activity

Engineer = 20000/month

Supervisor = 18000/month

Guard = 11000/month

So if we estimate the total supervisory salaries in Month will be = 49000 rupees.

Indirect cost per day = 1633.33 rupees

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET) Volume: 10 Issue: 03 | Mar 2023 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

5.3.2 CRASHING TRIALS

Trial NO.	DURATIONCRASHING	DIRECT COST	INDIRECT COST	TOTAL COST
1	227	3470887	370766	3841653
2	226	3435412	369132	3804544
3	225	3414628	367499	3782127
4	224	3393844	365866	3759710
5	222	3375155	362599	3737754
6	221	3368055	360965	3729020
7	220	3361965	359331	3721296
8	218	3350515	356064	3706579
9	217	3346120	354430	3700550
10	215	3341652	351163	3692815
11	213	3341852	347896	3689748
12	212	3342452	346262	3688714
13	211	3343052	344628	3687680
14	208	3345152	339728	3684880
15	207	3345952	338094	3684046
16	205	3347752	334827	3682579
17	200	3352352	326660	3679012
18	196	3356552	320126	3676678
19	191	3361952	311959	3393911
20	190	3363152	310325	3673477
21	187	3366752	305425	3672177
22	186	3368102	303791	3671893
23	183	3372302	298891	3671193
24	180	3376802	293992	3670794
25	177	3382101	289092	3671193
26	176	3383901	287458	3671359
27	175	3385701	285824	3671525
28	174	3387501	284190	3671691
29	173	3389301	282556	3671857
30	172	3391101	280922	3672023
31	169	3397467	276022	3673489
32	165	3406467	269488	3675955
33	162	3414166	264588	3678754
34	159	3421865	259688	3681553
35	158	3424565	258054	3682619
36	157	3428765	256420	3685185
37	156	3433265	254786	3688051

Volume: 10 Issue: 03 | Mar 2023 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

38	155	3437765	253152	3890917
39	151	3455765	246618	3902383
40	150	3460565	244984	3705549
41	149	3466965	243350	3710315
42	148	3482365	241716	3724081
43	147	3497765	240082	3737847
44	146	3513165	238448	3751613
45	145	3528565	236815	3765380

Table-5.3.2 Crashing trials

Indirect cost of the project = 228*1633.33 = 372400 rupees

6. RESULT AND DISCUSSION

☐ Result for Time Optimization

- The duration which is conventionally observed is 228 days which is being decreased by crashing and with the help of slack time. The approximately reduced duration is 145 days.
- Majorly for optimizing time the methodology extra human resources are used and work easily without any hectic situations.
- The time optimization is also depending on how well a contractor organizes his work schedule with a proper utilization of material, machineries and human resource

 $Fig-5\ Comparison\ of\ actual\ time\ and\ crashed\ time\ of\ the\ project$

☐ Result For Cost Optimization

- Project cost optimization is done by using the alternative building oriented materials which readily cut down the cost
 of the project but also satisfies owner with an economical result.
- So for alternative building material an insulated structural toughened glass is replaced by polycarbonate glass, regular brick masonry is replaced by Rat trap bond technique and regular RCC of slab is replaced by Plank and joist roofing system, which cuts the cost of the project.

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

The cost of polycarbonate sheet is 2650/ sqm which is considerably very much less compared to toughened glass which is 22400/sqm and by rat trap bond and plank joist roofing system cost reduced up to 30% for each replaced activity.

The cost of the project is 23878761, by applying crashing and by applying the alternative material cost the overall cost of the building is reduced by 23761401

Fig-6 Comparison of actual cost and crashed cost of the project

7. **CONCLUSION**

- From the results we can make two comparative conclusions:
 - 1) Comparison of actual time and crashed time of the project.
 - 2) Comparison of actual cost and crashed cost of the project.
- From project crashing we can conclude that
- 1) Project crashing cost and indirect cost have inverse relationship.
- 2) Indirect cost increases as project duration increases.
- 3) Crashing cost are highest when the project is shortened, to overcome this we have used alternate materials and techniques.
- This project concludes that any relative construction project mainly depends on the Time and Cost constraints which gives a proper economical weightage to any project.
- A proper planning and scheduling will also make a huge difference in construction project considering the labor management
- Proper management, interpersonal management, technical management, and the use of technology in building projects may all help to reduce delays.
- Client wanted his project to be completed faster, company can still reduce the time to reach client satisfaction and he didn't obtain the biggest profit from this project. So, after completion of the project, crashing is done to make a difference and show how to get the maximum profit from it.
- Addition of human resources and alternative building materials like toughened glass is replaced by polycarbonate glass, regular brick masonry is replaced by Rat trap bond technique and regular RCC of slab is replaced by Plank and joist roofing system, which cuts the time as well as cost of the project.

e-ISSN: 2395-0056 Volume: 10 Issue: 03 | Mar 2023 www.irjet.net p-ISSN: 2395-0072

> As a result, the total duration of project was 228 days and it was reduced to 145 days using crashing and also cost of 2117360 was decreased from the actual cost.

REFERENCES

- 1. Komesh Sahu and Meena Sahu (2014),Cost and time and also minimum project duration using alternative method, International review of applied engineering research, vol-4, no 5, pp, 403-412
- 2. Bhushan V.Tatar and Prof.Rahul S.patil (2016), Time and cost optimization techniques in construction project management,
- 3. Shifat Ahmed et.al (2016), Minimize time and cost for Successful completion of a Large scale project. Planning, scheduling and delay analysis case study Rathod Rajshekhar Gopal (2016)
- 4. AkashLanke and D.Venkateswarlu (2016), DesignCost & Time Analysis of Precast & RCC Building. Comparative Study Of Time-cost Optimization Dileep kumar reddy and Venkatavara Prasad(2018)
- 5. Float Time Reduction Potential In Construction Project And Its Impact Shubhendra KumarMishra and Sarthak Singh Rajput.(2020)
- 6. To Study Advanced Project Planning And Scheduling-case Study Mr. Gunjal Kartikeyan and Mr. Rohit Gholap (2021)

BIOGRAPHIES

Sanjay jagadeshwara.E Received B.E (civil engineering) Acharya institute From technology & pursuing M-tech (construction technology) in University visvesvaraya college of engineering, Bangalore university

Dr. Nagaraj P S Professor, Civil Engineering Dept. University Visvesvaraya College of Engineering, Bangalore University