
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7

AUTOMATIC TRANSFER OF DATA USING SERVICE-ORIENTED

ARCHITECTURE TO NoSQL DATABASES

Manu Mishra1, Mr. Wasif khan2

1M.Tech, Computer Science and Engineering, SR Institute of Management & Technology, Lucknow, India
2Associate Professor, Computer Science and Engineering, SR Institute of Management & Technology, Lucknow

---***---
Abstract - Since a few years ago, there has been a meteoric
increase in the number of databases that are not genuine
relational databases, which may be described as exponential
growth. No one term accurately describes these kinds of
databases; rather, they can only be characterised by a
collection of qualities that are shared by all of them, such as
the lack of a predefined schema, inherent scalability features,
high performance, data, and so on. NoSQL is the acronym that
has been used to refer to these types of databases. Many
businesses are beginning to see the value of NoSQL databases
and are interested in making the transition to using them. On
the other hand, they struggle to move their data since the
process requires a great deal of research and thought. The
nomenclature and query language used with each kind of
database is unique to that database. These businesses will be
able to effortlessly move to the NoSQL databases of their
choice with the assistance of our innovative automated
migration approach, which makes use of the power of service-
oriented architecture. We make use of web services that
encapsulate some of the most well-known NoSQL databases,
such as MongoDB, Neo4j, and Cassandra, among others. This
allows us to conceal the inner workings of these databases
while still enabling the efficient migration of data with very
little or no prior knowledge of how these databases function.
To demonstrate the viability of the idea, relational data was
successfully moved from the Apache Derby database to the
NoSQL databases MongoDB, Cassandra, Neo4j, and
DynamoDB, respectively. Each vendor represents a unique
NoSQL database type.

Key Words: NoSQL, Service Oriented Architecture,
Cassandra, MongoDB, Neo4j, Amazon

1. INTRODUCTION

Relational databases have been an integral part of many of
our web-based programmes, websites, and apps for quite
some time. This custom has been around for quite some
time. Problems with relational databases include impedance
disparity (the gap between what application developers
need as data and how data is stored on a disc), the inability
to naturally support clusters, and the difficulty in
horizontally scaling as data growth occurs. When there is a
mismatch between what application developers need and
how data is stored on the relational database, a problem
known as the impedance gap arises. NoSQL (which stands
for "not only SQL") databases were coined to indicate that

they did not primarily use the SQL query language, and
eventually many other companies followed suit with their
solutions.

The International Data Corporation estimates that by 2022,
micro-service architectures will be used in the development
of 90% of new applications. Current tendencies were used to
construct these forecasts. When microservice architecture
and the DevOps methodology are used together, the software
may be developed with more speed and adaptability. As a
result, companies may more quickly introduce their digital
goods and services to highly competitive marketplaces.
Businesses are starting to modernise their outdated
monolithic systems by splitting them up into smaller, more
manageable microservices so that they can keep up with the
competition and safeguard their competitive edge. While
academics and engineers have looked at the problem of
migrating monolithic software to a microservice
architecture, not as much attention has been paid to how
databases should change to accommodate this change. This
is a big gap in the knowledge base. Part of the investigation
has gone missing in this area, and it must be pieced back
together as soon as possible. Experts in the field agree,
however, that data management is one of the microservices'
most significant limitations. Microservice discovery within
monolithic programmes and microservice dissection of
source code have been the primary research foci. This topic
has been the focus of a great deal of research. The research
will be focused on these two primary goals. While
transitioning from a monolithic design to a microservice
architecture, there is little to no guidance on how to modify
current data storage to accommodate the new architecture
provided by any of the existing migration approaches. This is
because the revised architecture was not considered during
the development of any migration strategies. The author
believes that, except A. No migration techniques have
investigated the adaption of data storage to micro-service
architecture outside the one proposed by Levcovitz et al.
That's in contrast to A's method. It was proposed by
Levcovitz et al. that micro-services be extracted from large,
centralised enterprise systems. Unlike strategy A, though.
For extracting micro-services from monolith business
systems, this strategy departs from the recommendations of
Levcovitz and others. Contrary to A.'s assertions, Levcovitz
and his group have discovered this to be true.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 8

1.1. NoSQL

Several innovative methods of database administration have
emerged in the last decade. Due to the ever-evolving nature
of information, relational databases have struggled to keep
up with the likes of Google, Amazon, Facebook, and Twitter
since the rise of Web 2.0. Social media and other internet
records are one such example of the kind of data we are
talking about here. These companies have come to this
decision because relational databases simply cannot keep up
with the volume and velocity of information. The sheer
amount of data mined from social media and other online
activity logs simply overwhelms traditional relational
databases. Moreover, the relationship between the items is
not presented straightforwardly by relational databases, and
a significant number of join queries are needed to collect all
of the information that is related to the objects. Keep in mind
that horizontal expansion is not a natural feature of
relational databases. You should keep this in mind. Web 2.0
businesses now almost always employ clusters as their
default backend infrastructure. The integration of a
relational database into the cluster was described as one of
the primary challenges that needed to be met. This was a
major contributor to the success of NoSQL database systems.

1.2. Aggregate Data Modeling

Data in relational databases is often organized into rows
(tuples). No rows may be included inside one another, nor
may a row contain a list of values. Can't have it both ways,
sorry. Both of the alternatives you listed are not possible.
This is because a row can only process a finite amount of
information at once. The use of nested data is crucial in
disciplines like biology, which deals with living things.
Aggregate orientation should be considered as a solution.
The aggregate perspective broadens our view of the data so
that we may examine its underlying structures, rather than
its component records. In this way, the data is more easily
digestible. This finding strongly suggests that nesting could
be a possibility.

From its origins in Domain-Driven Design, the word
"aggregate" is used to describe a collection of interconnected
parts that are often treated as a whole. Research of this kind
is where the term originates. Databases on a cluster are
greatly facilitated by seeing data in aggregates since they are
the natural units for sharding and replication. As a result,
there is more database compatibility. Aggregates are the
most natural method to structure massive datasets, hence
they work well for this purpose. Considered in this view, it
also facilitates the handling of enormous data sets.
Aggregates are easier for programmers to work with than
tuples. The information in many NoSQL databases is
aggregate-oriented [5], but each of these databases has its
unique way of storing this information. MongoDB is a good
example of this type of database.

Over the last several years, the popularity of document
databases known as "MongoDB" has skyrocketed. A
document in MongoDB serves a similar purpose to a row in a
relational database. A collection in MongoDB is the
equivalent of a table in a relational database, just as a
schema is the equivalent of a database and a table is the
equivalent of a collection. Because of its use of replica sets,
the MongoDB database can provide very reliable availability.
The master-slave setup is used for replicating data inside
clusters. Adding new nodes to a graph database has no
impact on the database's functionality, unlike relational
databases. All sorts of enterprises, large and small, have this
need.

Figure 1: Replica Set in MongoDB in a master-slave

configuration

2. SERVICE-ORIENTED ARCHITECTURE

In no way is it a revolutionary idea to place greater
importance on service. It achieves this by using the time-
tested strategy of "split and conquer" and the principle of
"code reuse." Applications built on top of a service-oriented
architecture (SOA) may be seen as a set of interrelated
services. In contrast, these services don't need to be directly
owned by the same corporation, which is a key distinction.
You can't overlook this one bit of information. To this point,
solutions to each issue may be classified into one of two
groups.

Figure 2: Service registry for candidate services

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 9

3. DATA MIGRATION MODEL

With the end aim of creating a migration model in mind, the
approach of using the construction technique known as
Service Oriented Architecture was selected. During the plan's
implementation, a broad range of service options will be
drawn from a common pool.

Figure 3: Relational-NoSQL Migration Model

The algorithm-01 examines the database's structure and
draws a judgement on the presence or absence of a primary
key-foreign key relational link. If the relationship does exist,
then the relevant tables should be joined together and the
resulting dataset should include both the joined and
individual results. If the connection is missing, the findings
should be included in the dataset without any further
processing. A modified JSON string containing this dataset
will be sent over the internet.

4. IMPLEMENTATION OF MIGRATION MODEL

As a proof of concept, we developed a mechanism to move
data from Apache Derby, a relational database, to MongoDB,
Cassandra, Amazon DynamoDB, or Neo4j. The design of this
system was inspired by the structure of the Apache Derby

relational database. To show how well our system performs,
we constructed this demonstration system. Figure 4 is a
visual representation of the system in action and gives
further context for the discussion that follows. Additional
references may be found in [the following] During the actual
implementation, OpenESB version 2.3 was used. This sample
demonstrates the system's "Business Process Enterprise
Logic." To condense the whole meaning of "Business Process
Enterprise Logic." Information from the previous user is
used to request the readDB service, which grants access to
the database. This happens after you have acquired the
information from the previous user. Next up in the
procedure is this step, which follows right after the one
before it. Neo4j, MongoDB, Cassandra, or AmazonDB may all
be used as the underlying database and their respective
insertion services may be used. The ultimate decision rests
with the user. To put it simply, multi-service servers are not
necessary at any time.

Figure-4: Design of migration models BPEL

5. CONCLUSION

Distributed computing, in which information is processed
over a decentralised network, has gained prominence over
the last decade as a promising approach to the creation of
modern online applications. The value of the cloud
computing market has skyrocketed in recent years. Because
DBMSs are in charge of storing and displaying an
application's data, information has become a crucial part of
web-based programmes. It is the goal of this thesis to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 02 | Feb 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 10

provide a framework for designing a system that can migrate
data from traditional relational databases to the most
popular types of non-relational databases. The creation of
such a system will also form the backbone of this thesis. The
second objective of this thesis is to provide a tool for
migrating data from relational to non-relational storage
systems. This research analyses a strategy and approaches
that might help software companies migrate their present
relational databases to NoSQL providers utilising service-
oriented architecture. The University of Washington
conducted the study. Both methods and an overall plan are
detailed in this study. There is an extra level of abstraction
built into Asp. The intention was to facilitate the shift to
NoSQL databases as much as possible. Web services have
been created to examine the schema of relational databases
and implement changes automatically. Through the use of
web services, we were able to provide support for a variety
of NoSQL databases, including MongoDB, Cassandra, Neo4j,
and Amazon DynamoDB; this also allowed for multi-vendor
compatibility. Some of the information that may be found in
these databases includes: Roughly one-fiftieth of all software
applications today are NoSQL systems, and there are over a
hundred distinct organisations across the world that provide
this service.

REFERENCE

1. K.Mehra, Y.Yan and D.Lemure, Automatic data
migration to the cloud in the Sixth International
Workshop on Cloud Data Management (CloudDB
2014)

2. Jing Han, E Haihong, Guan Le, and Jian Du. Survey on
NoSQL database. In Pervasive computing and
applications (ICPCA), 2011 6th international
conference on, IEEE, 2011.

3. P. Howard and C. Potter., Bloor research: Data
migration in the global 2000 - research, forecasts
and survey results

4. Andre Calil and Ronaldo dos Santos Mello,
Simplesql: a relational layer for simpledb In
Advances in Databases and Information Systems,
Springer,2012.

5. Sadalage P.J and Fowler .M, 2013, NoSQL Distilled,
Pearson, p.99-109

6. J. Henrard , M. Hick, P. Thiran , and J. Hainaut .
Strategies for data engineering. In Reverse
Engineering, 2002. Proceedings. Ninth Working
Conference on pages 211220. IEEE, 2002

7. M. A. Jeusfeld and U.A. Johnen. An executable meta-
model for re-engineering database schemas.
Springer, 1994.

8. J. H. Jahnke and J. Wadsack. Varlet: Human-centered
tool support for database reengineering. In Proc. of
Workshop on Software-Reengineering, 1999.

9. A. Maatuk, A. Ali , and N. Rossiter . Relational
database migration: A perspective. In Database and
Expert Systems Applications, pages 676683.
Springer,2008.

10. K. Haller. Towards the industrialization of data
migration: Concepts and patterns for standard
software implementation projects. In Advanced
Information Systems Engineering, pages 6378.
Springer, 2009.

11. B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G.
Weber. Integrated model-based software
development, data access, and data migration. In
Model Driven Engineering Languages and Systems,
pages 382396. Springer, 2005

12. Amazon. Amazon DynamoDB.
“http://docs.aws.amazon.com/amazondynamodb/l
atest/developerguide/”.Retrieved on November
2014.

13. Apache Cassandra.
http://docs.datastax.com/en/cassandra/2.0/cassan
dra/gettingStartedCassandraIntro html. Retrieved
on December 2014.

14. Neo4j graph database.
http://neo4j.com/developer/get-started/.
Retrieved on December 2014.

15. MongoDB. http://docs.mongodb.org/manual/.
Retrieved on June 2014.

16. A. Thakar and A. Szalay. Migrating a (large) science
database to the cloud. In Proceedings of the 19th
ACM International Symposium on High-
Performance Distributed Computing, HPDC 10,
pages 430434, New York, NY, USA, 2010.ACM.

http://docs.datastax.com/en/cassandra/2.0/cassandra/gettingStartedCassandraIntro
http://docs.datastax.com/en/cassandra/2.0/cassandra/gettingStartedCassandraIntro

