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Abstract - This paper delves into the realm of deep 
learning techniques applied to the segmentation of brain 
structures in MRI scans, with a specific focus on automating 
the distinction between healthy and tumor regions. Utilizing 
the U-Net architecture and various deep learning models, 
this study investigates the utilization of convolutional 
neural networks (CNNs) and transfer learning to elevate 
segmentation accuracy and expedite the process. The Brain 
Tumor Segmentation (BraTS) dataset serves as the primary 
resource for training and evaluating the models. The 
research encompasses data preprocessing, model training 
involving optimized hyperparameters, and comprehensive 
evaluation metrics.The outcomes manifest the remarkable 
superiority of deep learning models, particularly the fine-
tuned U-Net, when compared to manual segmentation 
methods, both in terms of precision and efficiency. The final 
model exhibits a notable enhancement in the detection of 
tumor regions, thereby contributing to more prompt and 
precise diagnostic procedures. This work forms a 
cornerstone for future advancements in the realm of 
medical imaging and automated diagnostic tools, with 
direct implications for enhancing patient care and 
facilitating treatment planning in the fields of neurology 
and oncology. This paper not only represents a 
technological milestone in the realm of medical imaging 
analysis but also opens avenues for comprehensive tumor 
characterization, potentially facilitating personalized 
treatment strategies. It underscores the pivotal role and 
effectiveness of integrating advanced AI techniques into 
medical diagnostics, marking a significant stride toward the 
fusion of technology and healthcare, ultimately leading to 
improved patient outcomes.  
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1.INTRODUCTION  
 
The brain MRI scan segmentation process enables 
physicians to identify various parts of the brain of 
individuals. Brain segmentation is often used to analyze 
and distinguish healthy and unhealthy parts as well as 
detect detrimental signs of old age. However, this process 
requires experts in analyzing and segmenting the brain 
accurately and may take a long time when a pattern must 

be established in multiple scans through manual 
processing. In such cases, computer vision and machine 
learning techniques can be employed to not only speed up 
the process but also increase segmentation/detection 
accuracy. Medical diagnostics has also been aided by such 
techniques. In this research work, we will analyze various 
deep learning-based techniques to provide an automated 
MRI scan segmentation tool that is not only accurate but 
also feasible for speedy processing. Transfer learning 
techniques will be explored to quickly compare the 
performance of the well-established deep learning 
architectures proposed by the experts for similar tasks. 
Based upon the findings, a unique or incremental solution 
will be proposed. Standard medical imaging datasets will 
be used to analyze the performance. But before starting, 
the computer vision and segmentation must be defined 
and how they work using deep learning. 
 

An integral aspect of brain MRI scan segmentation is the 
precise identification of brain tumors. Brain tumor 
segmentation plays a crucial role in the medical field, as 
early and accurate detection of tumors is critical for 
effective treatment planning and improved patient 
outcomes. Tumors in the brain can vary greatly in size, 
shape, and location, making their detection challenging yet 
vital. Misidentification or late detection of these tumors 
can lead to severe consequences, including rapid disease 
progression and reduced treatment options. By focusing 
on brain tumor segmentation, this research aims to 
contribute significantly to the early diagnosis and 
management of brain tumors. Utilizing advanced deep 
learning techniques in this domain not only promises 
greater accuracy in segmentation but also ensures a 
quicker turnaround in diagnostic procedures, thereby 
potentially improving the survival rates and quality of life 
for patients afflicted with brain tumors 
 

1.1 Computer Vision and Image Segmentation 
 

Image segmentation is a commonly used technique in 
digital image processing and analysis to partition an image 
into multiple parts or regions often based on the 
characteristics of the pixels in the image [1]. Over the years, 
image segmentation has been used in many areas such as 
medical imaging, scene analysis for autonomous vehicles, 
object detection and tracking, etc. An example of the 
application of image segmentation in the domain of 
medical imaging is shown in Fig- 1. 
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Machine learning is often used for segmentation of 
images. In recent years, deep learning-based approaches 
employing specialized neural networks commonly known 
as convolutional neural networks (CNNs) have 
outperformed many conventional methods for image 
segmentation. A CNN is composed of many layers stacked 
in a particular fashion to achieve a specific task learned 
with the help of data and ground truth. In the case of 
segmentation, the output of a CNN is an image where each 
pixel is assigned a desired class label as shown in Figure 
1.2. 

 

 
Segmentation is of high importance in neuroimaging, 

and although clinical segmentation is a gold standard in 
terms of accuracy, it requires experts in neuroanatomy, 
which means that it requires time, effort, and cost [2]. For 
these reasons, automated segmentation methods have 
been proposed as a fast and reproducible alternative 
solution. As mentioned earlier, modern automation of 
segmentation is done by using artificial intelligence, 
specifically using Convolutional Neural Network (CNN) 
which learns directly from data. Modern automation will 
enable us to efficiently exploit every brain scan for 
scientific and research purposes instead of leaving it in the 
archives [3-4]. With the availability of computing power 
and storage capacity, we are able to scan and process 
millions of samples contrary to tens or hundreds in a 
clinical environment. Therefore, there is a clear need for a 
fast, accurate, and reproducible automated method for 
segmentation of brain scans of any contrast and resolution 
and that can adapt to a wide range of patients [5-6]. 

Finally, complete content and organizational editing 
before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

1.2 Problem Statement 
 

 The manual examination of MRI brain scans by medical 
experts, although meticulous, is time-consuming and can 
lead to extended diagnosis periods. The challenge is 
amplified when distinguishing between healthy tissue and 
non-healthy (tumor) parts, where precision is critical for 
effective diagnosis and treatment planning. Furthermore, 
manual analysis limits the ability to rapidly process large 
volumes of scans, which is essential in research and 
clinical settings. Therefore, this research emphasizes the 
need for an automated brain MRI scan segmentation tool. 
Such a tool aims to efficiently differentiate between 
healthy and non-healthy (tumor) regions in the brain. By 
leveraging deep learning techniques, this project seeks to 
develop a solution that not only accelerates the 
segmentation process but also maintains, or potentially 
improves, the accuracy compared to traditional manual 
methods. This approach aims to expedite diagnosis and 
enhance the capacity for handling a larger number of 
cases, ultimately contributing to better patient outcomes 
in the field of neurology and oncology. 

 

2. RESEARCH METHODOLGY 
 
In this chapter will cover BraTS dataset used in the 
experiment, and how the processing is done to get the data 
for training stage, and a definition of what the UNet 
network is and what it serves. In conclusion, we talked 
about the testing mechanism that was done for this 
structure. 
 

2.1 Brain MRI Dataset 
 
The BraTS (Brain Tumor Segmentation) dataset stands as a 
cornerstone in the realm of medical image analysis, 
specifically tailored for the challenging task of brain tumor 
segmentation within magnetic resonance imaging (MRI) 
scans. Developed to foster advancements in algorithmic 
approaches for automated and semi-automated 
segmentation, BraTS has become a pivotal benchmark 
dataset in the field.[10] There are different modalities of 
medical scan, such as Computed Tomography (CT), 
Positron Emission Tomography(PET) and Magnetic 
Resonance imaging (MRI). The BraTS uses the MRI due to 
the clarity of tissues and tumors in the medical images.[9] 
As shown in the Fig-3  below. 
 
 
 
 
 

Fig- 2: Medical Imaging 

Fig- 2: Deep-learning Segmentation. 
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Researchers and developers can access the BraTS dataset 
for research and development purposes through the Center 
for Biomedical Image Computing and Analytics (CBICA) at 
the University of Pennsylvania[10]. This combination of 
resources offers a comprehensive platform for global 
researchers, facilitating significant advancements in 
medical imaging and diagnostic methodologies. 
 

2.1.1 MRI Scan 

Brain MRI primarily relies on a magnetic field, in contrast 
to CT scans and other methods that utilize radiation. It is 
effective in identifying brain tissue swelling, infections, and 
tumors, making the resulting MRI images crucial for 
analyzing various types of brain abnormalities. In the brain 
MRI procedure, large magnets generate a magnetic field 
that ranges from 0.2 Tesla (T) to 7 Tesla (average 1.5 
Tesla). The term 'Tesla' here refers to the unit of 
measurement for magnetic field strength. One Tesla 
represents a very strong magnetic field. The subject 
undergoing the MRI is placed inside this strong magnetic 
field, and the excited hydrogen atoms in the body – due to 
the high water content – emit radio frequencies. These 
frequencies are captured within the large enclosed area of 
the MRI scanner, allowing for detailed imaging. The 
procedure to get an MRI scan is depicted in Fig-4 

 
 
 
 
 
 
 
 

While taking an MRI scan of the patient, the machine will 
output four different medical images depending on the 
frequency and time , namely: T1,T2,T2c and Flair  [9]. 
o T1: This type has a small echo and repetition time 

(Nice image contrast) [9] 
o T2: It has a long time of echo and repetition time but 

slow image acquisition.[9] 
o T1c: Same as T1, but a contrast agent is applied to 

enhance the contrast.  
o Flair: Used to nullify the signal from the fluid. 

2.1.2 BraTS 2017 dataset 
 
The BraTS is collected from multiple institutions, providing 
a diverse set of cases and variations. Dataset contains 4 
classes, from which the types of tumors are classified as 
Necrosis, Edema, Non-enhancing and enhancing.[11]  
 

 
Fig- 5: Glioma Tumor Types 

Each MRI scan in the BraTS dataset is manually annotated 
by expert radiologists to provide ground truth 
segmentation masks for different tumor sub-regions. These 
sub-regions typically include the necrotic core, edema, 
enhancing tumor, and the non-enhancing tumor.[11] The 
dataset contains 750 4D cases, and its size is 
240x240x155x4 which means that the number of images 
for each case is 620, detailed below: -  
 

o 240x240: Single image size. 
o 155: Number of slices. 
o 4: type of image {T1, T1c, T2 and Flair}. 

 

 

Fig- 6: Single Case Details- Brats 

The BraTS dataset is divided into 484 labeled cases for 
training (80%) and 289 cases for testing (20%). As shown 
in the summary table below: -  

Fig- 3: Medical image Modalities 

Fig- 4: MRI Process 
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Table -1: BraTS2017 Dataset summary 
 
 

 

2.2 Preprocessing 
 
The pre-processing stage is a crucial component in the 
development of robust algorithms for brain tumor 
segmentation using the BraTS (Brain Tumor Segmentation) 
dataset. Pre-processing tasks aim to enhance the quality 
and consistency of the data, address variations in imaging 
characteristics, and prepare the dataset for effective 
training and evaluation. The following are key pre-
processing steps commonly applied to the BraTS dataset. 
During the preprocessing process, two important stages 
pass: preparing data, then applying Channel Wise 
PreProcess, as shown in the Fig-7  below. 
 

 
 

Fig- 7: Preprocessing Chart 

2.2.1 Preparing Data 
 
In the data preparation phase for the BraTS (Brain Tumor 
Segmentation) dataset, the process begins with the 
organization and preparation of MRI scan images and their 
corresponding labels. The initial step involves identifying 
and arranging the volumetric images and labels into 
appropriate categories. This organization is crucial to 
ensure that each image is correctly matched with its 

corresponding label, which is essential for accurate 
segmentation and analysis. 
 
The next key step is the refinement of these images. This 
involves focusing on the relevant areas of the brain and the 
tumor by eliminating unnecessary background elements. 
Such refinement is vital as it helps in isolating the brain 
structures and tumors, making them more prominent for 
the subsequent analysis. This step is particularly important 
as it enhances the clarity and focus of the images, ensuring 
that the analysis is concentrated on the most relevant parts 
of the scans. Finally, the prepared data is systematically 
arranged into training, test, and validation sets. This 
segregation is fundamental for the effective training and 
evaluation of any segmentation models developed using 
this dataset. The training set is used to train the model, the 
validation set helps in tuning the model parameters, and 
the test set is crucial for evaluating the model’s 
performance. Overall, this meticulous approach to data 
preparation is essential for ensuring the quality and 
reliability of the dataset. It sets a strong foundation for the 
further steps in the research process, enabling more 
accurate and effective analysis of brain tumors using the 
BraTS dataset. 
 

2.2.1 ChannelWisePreProcess. 
 
In the next phase of data preparation, the MRI scans from 
the BraTS dataset undergo a crucial normalization process. 
This process is applied channel-wise to each modality of 
the MRI scans. Normalization is an essential step in image 
processing, especially in medical imaging, as it helps to 
standardize the data, making it more uniform and easier to 
analyze. 
 
The normalization procedure involves two main steps. 
First, for each channel of the MRI scan, the mean value of 
the pixel intensities within the cropped brain region is 
calculated and subtracted from each pixel. This step 
centers the data around zero. Following this, each pixel 
value is divided by the standard deviation of the pixel 
intensities in the cropped area. This scaling ensures that 
the data has a consistent variance, which is critical for 
many analytical methods. 
 
To further refine the data, any outliers in pixel values are 
adjusted to fall within a pre-defined range. This clamping of 
values helps in mitigating the effects of extreme values 
which can skew analysis. Once these steps are completed, 
the pixel values are rescaled to fit within a standardized 
range, typically between 0 and 1. This rescaling is 
beneficial for various deep learning models which are often 
sensitive to the scale of input data. 
 
After normalization, the dataset is divided into three parts: 
training, validation, and testing sets. This division is 
typically done in a manner where a majority of the data, 

BraTS2017 Dataset Summary 

Number of Total Cases 750 

Number of Training Cases 484(80%) 

Number of Testing Cases 289(20%) 

Total Number of MR Images 465,000 

Modalities for Each Case 4 {T1, T1c, T2, FLAIR} 

MR Pixel Resolution 240x240 

MR Image in each Modality 155 

Total MR for Each Case 620 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 11 | Nov 2023              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 624 
 

around 82%, is used for training the models, about 6% for 
validating the model's performance during the training 
process, and the remaining 12% for testing the model's 
effectiveness on unseen data. 
 
Finally, the processed and normalized data is saved in a 
format suitable for further analysis and model training. 
This step ensures that the data is readily available in a 
structured form for the subsequent stages of the research. 
 

2.3 UNet Network [12] 

 
Convolutional networks are often used to classify images 
by giving them one label that represents the whole image. 
But in tasks like biomedical image processing, it's 
important to know the label for each tiny part of the image 
(Localization), called pixels. Getting lots of training images 
for biomedical tasks is usually hard. So, Ciresan and others 
came up with a way. They trained a network to figure out 
the label for each pixel by looking at a small area (patch) 
around that pixel in a sliding-window setup. [12] 
 

 
Training the U-Net architecture for biomedical image 
segmentation tasks is a detailed process that involves 
teaching the network to classify each pixel of an image. 
This pixel-level classification is crucial for accurately 
identifying and segmenting regions of interest, such as 
tumors or organs, in medical images. The training process 
typically involves the following steps: 
 

Data Preparation: The network is trained on a set 
of labeled images, where each pixel is categorized, for 
instance, as part of a tumor or healthy tissue. These labels 
serve as the ground truth for training the network. 

 
Patch-Based Training: Given the challenge of 

obtaining a large number of biomedical training images, U-
Net often employs a patch-based approach. This method 
involves training on small regions or patches extracted 

around each pixel, which helps the network learn from a 
limited dataset by focusing on local features and contexts. 

 
Loss Function: The choice of a loss function is 

critical in training U-Net. For biomedical image 
segmentation, the Dice Coefficient Loss is commonly used. 
This loss function is particularly suited for dealing with the 
class imbalance often found in medical images, where the 
region of interest (like a tumor) occupies a much smaller 
portion of the image compared to the background. The Dice 
Coefficient Loss is formulated to maximize the overlap 
between the predicted segmentation and the actual ground 
truth, making it a robust choice for this task. 

 
Network Training: The training involves feeding 

the network with batches of these patches and adjusting 
the network weights based on the loss calculated from the 
predictions. The network learns to classify each pixel 
accurately through this iterative process of prediction and 
adjustment using backpropagation. 

 
Iterative Optimization: This training is 

conducted over multiple iterations, known as epochs, 
where the network continually improves its ability to 
segment the images accurately. 

 
U-Net's design, with its contracting and expansive paths 
and skip connections, enables it to capture both the context 
and fine details required for precise pixel-level 
segmentation. The model's ability to be trained effectively 
on relatively smaller datasets while producing accurate 
segmentation results has made it a preferred choice in 
various biomedical image segmentation applications. 
 

2.3.1 Contracting Path (Encoder) 
 
This part of the network consists of convolutional and 
pooling layers, which reduce the spatial resolution while 
increasing the number of channels. This helps in extracting 
features and capturing context.[12] 

 
2.3.2 Expansive Path (Decoder) 
 
The expansive path involves upsampling and 
concatenation operations, which gradually increase the 
spatial resolution while reducing the number of channels. 
This helps in precise localization.[12] 

 
2.3.3 Bottleneck 
 
The bottleneck connects the contracting and expansive 
paths and acts as a bridge between the two. It is often a 
simple convolutional layer.[12] 
 
 
 

Fig- 8: UNet Architecture 
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2.3.4 Skip Connections. 
 
Skip connections, also known as residual connections, 
connect the corresponding layers in the contracting and 
expansive paths. These connections enable the network to 
retain high-resolution information during the upsampling 
process.[12] 
 
U-Net is particularly popular in biomedical image 
segmentation tasks, such as segmenting organs or tumors 
in medical images. Its ability to handle relatively small 
datasets and produce accurate segmentation results has 
contributed to its widespread adoption in various 
applications beyond medical imaging. [12] 
 

2.4 Evaluation. 
 
Evaluation is a critical aspect of assessing the performance 
of a semantic segmentation model. In this section, we delve 
into the metrics used to quantify the accuracy of the UNet 
network in segmenting brain tumor images. The evaluation 
metrics include Global Accuracy, Mean Accuracy, Mean 
Intersection over Union (Mean IoU), and Weighted 
Intersection over Union (Weighted IoU). These metrics 
offer a comprehensive understanding of the model's ability 
to classify pixels into different classes, considering both 
overall and class-specific performance.[13] 
 

2.4.1 Global Accuracy 
 
Global Accuracy is the percentage of correctly classified 
pixels over the entire image dataset. Global Accuracy is 
calculated in the following formula: -[13] 
 

 

Global Accuracy provides an overall measure of how well 
the model is performing, but it might not be sufficient in 
the presence of class imbalance.[13] 
 

2.4.2 Mean Accuracy 
 
Mean Accuracy is the average accuracy for each class and 
then averages these values.[13] 
 

Where N is the number of classes = 2  

Mean Accuracy gives a more nuanced view of accuracy, 
considering the accuracy for each class individually.[13] 

 

 

2.4.3 Mean Intersection over Union 

Mean Intersection over Union (mIoU) is computed by first 
calculating the Intersection over Union (IoU) for each 
semantic class. Intersection over Union (IoU), also known 
as the Jaccard index, is the most popular evaluation metric 
for tasks such as segmentation, object detection and 
tracking. Object detection consists of two sub-tasks: 
localization, which is determining the location of an object 
in an image, and classification, which is assigning a class to 
that object.[14] 

 Mean IoU measures the average of the Intersection over 
Union (IoU) for each class.[5] 
 

Where N is the number of classes = 2  

Mean IoU considers both false positives and false negatives, 
providing a more comprehensive measure of segmentation 
accuracy. [13] 
 

2.4.4 Weighted intersection over Union  
 
Weighted Intersection over Union (Weighted IoU): 
Weighted IoU is an extension of Mean IoU that considers 
class imbalance by assigning different weights to different 
classes.[13] 
 

Where N is the number of classes = 2  

Weighted IoU useful when there is a significant imbalance 
in the number of pixels belonging to different classes.[13] 
These metrics collectively provide a detailed evaluation of 
the model's segmentation performance, considering both 
overall accuracy and class-specific performance. The 
Weighted IoU is particularly valuable when there are 
imbalances in the distribution of different classes.[13] 
 

3. RESULT AND DISCUSSION 
 
This chapter will cover the experiments and discuss the 
results. As is known, research experiments related to 
artificial intelligence depend on changing the 
hyperparameter after designing the methodology and 
recording the results. This iterative process is aimed at 
enhancing accuracy and evaluating the efficacy of the 
model structure. We have four metrics to evaluate the 
success of the model, as mentioned in the previous chapter, 
Global Accueracy, Mean Accuracy, Mean IoU and Weighted 
IoU. Before delving into the specifics of the experiments 
conducted, it's crucial to understand the general 
mechanism of training in neural networks, particularly in 
the context of image segmentation tasks. 
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Training Mechanism Overview: Neural networks, like the 
U-Net used in our experiments, are designed to learn the 
correspondence between input images and their 
corresponding labels. In the case of image segmentation, 
the input is the image, and the label is the segmentation 
map of the image, which indicates the category of each 
pixel (e.g., tumor or non-tumor). The network learns this 
correspondence through a process known as 
backpropagation. 
 
Backpropagation Process: During training, the network 
makes predictions based on its current state (the weights 
of the neurons). These predictions are compared against 
the actual labels, and the difference (error) is calculated. 
Backpropagation is then used to propagate this error back 
through the network, allowing it to adjust its weights in a 
way that reduces the error in subsequent predictions. This 
process is repeated iteratively over many cycles, known as 
epochs, gradually improving the network's ability to 
accurately predict the labels from the images. 
 
Role of Hyperparameters: In addition to the weights of 
the network, which are learned during training, there are 
hyperparameters that need to be set before the training 
begins. Hyperparameters are not learned from the data but 
are set by the experimenter and have a significant impact 
on the performance of the network. These include the 
patch size, mini-batch size, encoder depth, number of 
epochs, learning rate, etc. Selecting the right set of 
hyperparameters is crucial, as they govern various aspects 
of the training process and the network's architecture. 
 
Hyperparameter Tuning Through Experimentation: 
The optimal values for these hyperparameters are not 
known in advance and are usually found through 
experimentation.  
 
This involves training the network multiple times with 
different sets of hyperparameters, evaluating its 
performance each time, and then selecting the set of 
hyperparameters that yields the best results. 
 
The training of a neural network for image segmentation is 
a complex process that involves learning the weights of the 
network through backpropagation and carefully selecting 
the hyperparameters that guide this training. This process 
is essential for the network to effectively learn the 
correspondence between images and their segmentation 
labels. After choosing the UNet and BraTS Dataset, now we 
must change the hyperparameter and verify the results, so 
the experiment passes through these stages: - 
 

1. Determine Hyperparameters 
2. Determine number of Epochs and Learning Rate 
3. Training the Model with 484 cases 
4. Testing the Model with 155 cases 
5. Validation Procedures 

6. Results Documentation and the initiation of a new 
experimental cycle by returning to step 1. 

 
The hyperparameters that we will change during each 
experiment are:   
 
•  Patch Size: Refers to the dimensions (width and height) 
of a small, rectangular subset of an image. 
 
•  Patch per Image: Indicates the number of non-
overlapping or overlapping patches extracted from a single 
image. 
 
•  Mini-Batch Size: The number of examples (data points 
or samples) used in one iteration of training a neural 
network. 
 
•  Encoder Depth: The number of layers in the encoder 
part of a neural network architecture 
 
•  Epoch: Single pass through the entire training dataset 
during the training of a machine learning model 
 
•  Learning Rate: Determines the size of the steps taken 
during the optimization process of training model 
 
The testing phase included a dynamic showcase of the 
model's real-time predictions alongside the actual 
outcomes. Numerous experiments were conducted in 
pursuit of optimal results, and in this chapter, we 
meticulously examine the most noteworthy findings 
derived from these endeavors. 
 

3.1  Experiment1 and Discussion (Default Configuration) 
 
In this experiment, the default parameters were set as the 
starting point, and we started improving. 
 

Table -2: Ex1 Hyperparameters 
 

Hyperparameter Value 
Patch size [128 128] 
Patch per image 2 
Mini batch size 100 
Encoder depth 3 
Number of epoch 5 
Learning rate 0.0001 
 
Results of Evaluation: - 
 

Table -3: Ex1 Result 
 

Global 
Accuracy 

Mean 
Accuracy 

Mean IoU Weighted 
IoU 

99.6% 95.6% 87.2% 99.2% 
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The default configuration showcases impressive 
performance, with both high global accuracy and Weighted 
IoU. It indicates that the model is well-tuned with the 
initially chosen hyperparameters, providing a solid 
baseline. But we noticed that Mean IoU did not give the 
high result that the rest of the evaluations gave. Mean IoU 
is a metric that measures the overlap between the 
predicted segmentation and the ground truth, providing an 
indication of how well the model is delineating the 
boundaries of the segmented regions. 
 

3.2 Experiment2 and Discussion (Changing patch size) 
 
In this experiment, I changed the patch size, and analyzed 
the results. I experimented with increasing the patch size, 
then decreasing it while keeping the other 
hyperparameters constant. 
 

Table -4: Ex2 Hyperparameters 
 

Hyperparameter Value 
Patch size [176 176] 
Patch per image 2 
Mini batch size 100 
Encoder depth 3 
Number of epoch 5 
Learning rate 0.0001 
 
Results of Evaluation: - 
 

Table -5: Ex2 Result 
 

Global 
Accuracy 

Mean 
Accuracy 

Mean IoU Weighted 
IoU 

99.8% 94.5% 87.4% 99.6% 

 
While changing the patch size, I found that the best way to 
achieve our goal, which is to increase accuracy, is to 
increase the patch size. I increased it to 176x176 because 
there is a condition that the patch size must be a multiple 
of 2^(Encoder Depth). I noticed that all results improved 
slightly, but the Mean Accuracy declined. But the 
conclusion in this experiment is that increasing the patch 
size will be suitable for our goal, unlike decreasing it. 
 

3.3 Experiment3 and Discussion (Changing patch per 

image) 
 
In this experiment, I increased the Patch per Image, and 
analyzed the results. I experimented with increasing the 
Patch per Image, then decreasing it while keeping the other 
hyperparameters constant. 
 
 
 
 

Table -6: Ex3 Hyperparameters 
 

Hyperparameter Value 
Patch size [176 176] 
Patch per image 4 
Mini batch size 100 
Encoder depth 3 
Number of epoch 5 
Learning rate 0.0001 
 
Results of Evaluation: - 
 

Table -7 Ex3 Result 
 

Global 
Accuracy 

Mean 
Accuracy 

Mean IoU Weighted 
IoU 

99.8% 93.6% 87.7% 99.6% 

 
After increasing the number of patches per image, no 
noticeable improvement was observed in the four 
evaluations. On the contrary, the Mean Accuracy decreased 
by approximately 1%. From this experiment, we concluded 
that the previous number of patches for each image, which 
is 2, is appropriate. 
 

3.4 Experiment4 and Discussion (Maximize Encoder 

Depth & Patch Size) 
 
After the success of experiment No. 2, which is increasing 
the patch size, in this experiment we will set the largest 
value for the Encoder Depth and Patch size. We have a 
limit, which is the original image size, which is [240 240], 
and the patch size restrictions are: - 
 
1- It must be a multiple of 2^(Encoder Depth). 
2- It must not exceed the size of the original image 
Based on these restrictions, the maximum value we can set 
for the Encoder Depth is 6 
The only value we are allowed to set for the patch size is 
[192 192] 
 

Table -8: Ex4 Hyperparameters 
 

Hyperparameter Value 
Patch size [192 192] 
Patch per image 2 
Mini batch size 100 
Encoder depth 6 
Number of epoch 5 
Learning rate 0.0001 
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Results of Evaluation: - 
 

Table -9 Ex4 Result 
 

Global 
Accuracy 

Mean 
Accuracy 

Mean IoU Weighted 
IoU 

99.85% 95.1% 89.9% 99.7% 

 
The results from this experiment were highly encouraging, 
showing significant improvements across all evaluation 
metrics, including Global Accuracy, Mean Accuracy, Mean 
IoU, and Weighted IoU. Notably, there was a marked 
increase in the Mean IoU, a metric that had not shown as 
much improvement in previous experiments. This suggests 
that increasing both the encoder depth and the patch size 
positively impacts the model's accuracy. Therefore, the 
experiment concludes that maximizing these 
hyperparameters is effective in enhancing the model's 
segmentation accuracy. 
 

3.5 Experiment5 and Discussion (Increasing number of 

epoch) 
 
After the amazing result in the fourth experiment, 
increasing the number of Epochs will lead to an increase in 
training time, but will improve the results. In this 
experiment, I increased the number of Epochs to 50. 
 

Table -10: Ex5 Hyperparameters 
 

Hyperparameter Value 
Patch size [192 192] 
Patch per image 2 
Mini batch size 100 
Encoder depth 6 
Number of epoch 50 
Learning rate 0.0001 
 
Results of Evaluation: - 
 

Table -11 Ex5 Result 
 

Global 
Accuracy 

Mean 
Accuracy 

Mean IoU Weighted 
IoU 

99.9% 96% 91.3% 99.8% 

 
Even after increasing the number of Epochs, the 
improvement was amazing compared to the fourth 
experiment. Of course, training the model took 10 times the 
time it took in the fourth experiment, but the 
improvements we obtained were worth it, and the table 
below shows the differences between the default model 
and the improved model (the fifth experiment). 
 
 
 

Table -12: Models compression 
 
Evaluation Default Model 

(Ex1) 
Improved 
Model (Ex5) 

Enhancemen
t % 

Global Accuracy 99.6% 99.9% 0.3% 

Mean Accuracy 95.6% 96% 0.4% 

Mean IoU 87.2% 91.3% 4.7% 

Weighted IoU 99.3% 99.8% 0.5% 

 
As shown in the table above, there was a noticeable 
improvement in the Mean IoU, it improved by 4%, and the 
other evaluations all improved slightly. Of course, as the 
Epoch increases, the training time increases, but training 
the model takes place only once. In medical applications 
the accuracy factor is a very important factor compared to 
the training time. 
 

4. CONCLUSIONS 
 
This research marks a significant stride in leveraging 
technology to enhance global health standards. Through 
the development of a robust automated tool for 
segmenting brain MRI scans using the U-Net architecture, 
we have demonstrated how advanced deep learning 
techniques can be effectively applied in medical 
diagnostics. The U-Net network, fine-tuned with specific 
hyperparameters, exhibited substantial accuracy gains in 
differentiating between tumor and non-tumor regions in 
brain images. 
 
The quick and accurate diagnosis of tumors, as facilitated 
by this research, is a crucial step towards timely and 
effective treatment. Automated diagnosis tools like the one 
developed here play a pivotal role in healthcare, offering 
advantages in speed, accuracy, cost-effectiveness, and 
widespread availability. As medical imaging technology 
continues to evolve, such automation will be integral to 
ensuring prompt and precise diagnoses, ultimately 
enhancing patient care and advancing medical research. 
Looking forward, there is potential for deeper exploration 
in this field. Future work could use the same dataset for 
more detailed segmentation and localization of specific 
types of brain tumors, such as Necrosis, Edema, 
Enhancing, and Non-enhancing tumors. This advancement 
would not only refine the segmentation process but also 
aid in providing more detailed insights for targeted 
medical treatments. 
 
In conclusion, this research underscores the 
transformative impact of integrating technology in 
medical fields. It highlights how tools like the U-Net 
network can revolutionize the diagnosis and treatment 
process, ultimately raising the standard of global health. 
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