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Abstract - Natural language processing (NLP) is an 

upcoming field that encompasses computer science 
alone with artificial intelligence (AI) along with spoken 
language and is used to carry out a diverse range of 
applications such as sentimental analysis, speech 
recognition, content categorization, and analysis, to 
name a few. One of the domains where NLP can aid the 
educational system is a comprehensive question 
generator that can form unbiased questions from a given 
subject matter, which is otherwise a tedious and time-
consuming task for instructors. Our proposed work 
focuses on developing an automatic question generator 
(AQG) using NLP that can generate a set of questions 
from a given paragraph of text. The approach used is 
test-to-text transformer-based transfer (T5) learning 
models, which can emphasize the critical points of a 
sentence and the language structure to generate 
questions without the creator inputting profound 
grammar rules. The proposed system can also assist 
students in learning and then test their understanding.  

Keywords - T5 Text-to-Text Transfer Transformer, 
Question Generation, Natural Language Processing, 
UniLM-Unified Pre-training for Language Understanding 
and Generation, SQuAD-Stanford Question Answering 
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1.INTRODUCTION  

The process of producing syntactically sound, 
semantically valid, and relevant questions from various 
input forms such as a block of text, a structured database, or 
a knowledge base is known as automatic question 
generation (AQG). The purpose of question generation is to 
produce legitimate, meaningful and fluent questions based 
on a supplied paragraph that has a discrete target answer.  

Automatic Question Generation can be applied to a 
variety of domains and for a plethora of use cases, including 
autonomous tutoring systems, increasing the effectiveness of 
question-answering (QA) models, allowing chatbots to lead a 
conversation, and many more. Regardless of its versatility, 
manually framing and writing meaningful and relevant 
questions is a tedious, time-consuming and difficult process. 
For instance, while testing students learning through reading 
comprehension, the evaluator must manually frame suitable 
questions, prepare response sheet and then evaluate the 

responses accordingly. This exercise can at times be biased 
and not thorough if the instructor does not pay the needed 
attention to this otherwise critical aspect in the teaching 
learning process. 

This paper focuses on test-to-text transformer-based 
transfer (T5) learning models, which can emphasize the 
critical points of a sentence and the language structure to 
generate questions without the creator inputting profound 
grammar rules. The T5 AQG model is trained on the Stanford 
Question Answering Dataset (SQuAD) version 2.0 [1] 

2.LITERATURE REVIEW 

Various approaches to implement automatic question 
generation have been reported in the literature. This section 
presents a few of the significant ones. 

One of the approaches reported is based on the concept 
of answer recognition question generation. In answer-aware 
question generation, the model is presented with an answer 
and a passage of script and is asked to generate a question 
for that answer given the context of the passage. There is 
enough literature available on AQG approaches, but they are 
not as widely used as QA. One of the reasons is that most of 
the available literature employs complex models/processing 
pipelines and no pre-trained models are available. Some of 
the recent works, notably UniLM and ProphetNet, have 
reported the use of SOTA pre-trained weights that can be 
used in QG, but using them seems overly complicated [1].  

Another approach reported focuses on transformer-
based finetuning techniques that can be used to create 
robust question generation systems using only a single pre-
trained language model, without the use of additional 
mechanisms, or answer metadata, which has extensive 
features [2]. This work also analyses the effect of various 
factors the affect the performance of the model, such as input 
data formatting, the length of the context paragraphs, and 
the use of answer awareness. Additionally, the failure modes 
of the model are explored along with identification of 
possible reasons of failure of the model. The question 
generation model is trained on version 1.1 of the Stanford 
Question Answering Dataset (SQuAD). The SQuAD contains 
context passages, each with corresponding sets of questions 
and responses related to the content of the passages. SQuAD 
contains more than 100,000 community-provided questions. 
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The model reported is smaller, less complex, and faster to 
operate, making it a possible alternative for a variety of use 
cases related to question generation. The paper 
demonstrates that a simple single transformer-based 
question generation model is able to outperform more 
complex Seq2Seq methods without the need for additional 
features, techniques, and training steps. They have evaluated 
the model on BLEU 1, BLEU 2, BLEU 3, BLEU 4, ROUGE L, and 
METEOR. The evaluation package is used to quantify the 
performance of the model. The flaw identified in the model is 
that the values selected are not good in terms of BLEU 4 and 
ROUGE L, and slightly worse in terms of METEOR. 

In [3], a fully data-driven neural network approach to 
automatic question generation for reading comprehension is 
presented. They used an attention-based neural networks 
approach for the task and investigated the effect of encoding 
sentence- vs. paragraph-level information. The paper reports 
both automatic evaluations and human evaluations. It 
incorporates an into-operated SQuAD dataset wherein the 
questions are posed by crowd workers and are of relatively 
high quality. A sequence-to-sequence approach is used 
which is a basic encoder-decoder sequence learning system 
for machine translation which is implemented in 
TensorFlow. The models using RNN encoder-decoder 
architecture with two variations are investigated where the 
first one only encodes the sentence and the other encodes 
both sentence and paragraph-level information. For training 
and inferencing/predicting the output, beam search is used. 
For implementation, the models are blended in Torch7 with 
OpenNMT. A comparison of different baselines like IR, 
Seq2seq, H&S, etc. with packages/systems viz. Bleu1-4, 
Meteor, and Rogue is also carried out. Moreover, 
performance studies were done where the sample output 
questions were generated by humans, by their system, and 
by the H&S system (rule-based over-generate and rank 
system). It was reported that the resulting model could 
generate better-quality questions than the H&S system. The 
flaw identified in the model proposed is that it encodes only 
sentence-level information and achieves the best 
performance across all the metrics but not so in paragraph-
level information.  

In [4], the authors propose a novel neural network model 
with better-encoding co-reference knowledge for paragraph-
level question generation, and research studies methods that 
incorporate correlation information into the training of a 
question-generation system. Specifically, the paper proposes 
a closed reference knowledge for neural question generation 
(CorefNNG), a neural chain model with a novel gate 
generation mechanism that exploits continuous 
representations of reference clusters - a set of mentions used 
to refer to each entity - for better language coding. the 
knowledge introduced by the reference, to generate passage-
level questions. Evaluations with various metrics on the 
SQuAD autoplay dataset show that its model outperforms 
leading baselines. The resection study showed the efficacy of 

different components in our model. Finally, the proposed 
question generation framework is applied to produce a 
corpus of 1.26 million question-answer pairs.  

 In [5], the authors propose a system that automatically 
generates a quiz on the basis of the learning material 
provided. This can be used by both instructors and learners 
to be able to recall and apply major concepts from the study 
material. The proposed system focuses on generating 
educationally relevant gap-fill multiple choice questions 
from educational texts in three ways, viz. (a) Sentence 
Selection: Selecting coherent and important sentences from 
the text to ask about (b) Gap Selection: Identity which part of 
the resulting sentence to choose as the gap. The gap 
essentially represents the concept being tested (c) Distractor 
Selection: Crafting effective distractors to be part of the set 
of options to confuse the learner to ensure that he has a good 
grasp of the concept being tested. Preliminary testing was 
also done with students. First, the quality of the questions 
generated was assessed. It was reported that 94% of the 
question sentences, 87% of the gaps, and 60% of the 
distractors were considered to be educationally relevant. 
Secondly, they found that 14 out of the 15 students surveyed 
found the system to be effective in helping them to reinforce 
concepts.  

3. PROPOSED METHODOLOGY 

3.1 T5 - Text-To-Text Transfer Transformer 

 

Fig. 1. T5: Text-to-Text Framework [6] 

Our proposed work employs T5: Text-to-Text Framework 
(Fig. 1), where a model is first pre-trained on a data-rich task 
before being tuned for downstream tasks, T5 is an 
encoder/decoder that transforms an NLP based problem 
into text-to-text form, ie. there is always a need for an input 
sequence and a corresponding target sequence for training. 
T5 works well with different tasks by adding different 
prefixes to the inputs corresponding to each task, e.g., for 
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translation: translate English to German; for summarization: 
summarize. T5 introduces “Colossal Cleaned Crawled 
Corpus” (C4), a dataset consisting of hundreds of gigabytes 
of clean English text scraped from the Internet. 
Transformers are new models that overpowered recurrent 
neural networks (RNNs). The primary building block of the 
transformers is self-attention which processes a sequence 
with a weighted average of the rest of the sequence. The 
architecture is not novel and resembles the original 
transformer's encoder-decoder architecture. Encoder 
models are designed to produce a single prediction per input 
token or a single prediction for an entire input sequence. 
This makes them applicable for classification tasks but not 
for generative summarization. The decoder-only model can 
take an input sequence and generate the rest of the text 
based on the input sequence. So, it is well-suited to fill up an 
input prompt but not well-suited for rewriting the input 
sequence into something else. T5 takes the best of words and 
uses the encoder-decoder architecture to perform any 
sequence-to-sequence tasks effectively [6]. 

Fig. 2 shows an example of T5 model functioning. Here, 
the words “organized”, and” theme” (marked with an ×) are 
randomly chosen for corruption. Each consecutive span of 
corrupted tokens is replaced by a sentinel token (shown as 
<X> and <Y>) that is unique over the sentence. The goal is to 
conceal consecutive token spans and estimate only tokens 
that were overlooked during the pretraining process. 

 

Fig. 2. Example of T5 Model Functioning 

 

 

Fig. 3. Teacher Enforcing 

Further, the primary building block of the transformer is 
self-attention, which processes a sequence by replacing each 
element with a weighted average of the rest of the sequence. 
T5 is trained using Teacher Enforcing and cross-entropy loss 
(Fig 3). A denoising (masked language modelling) objective 
is used. During a denoising operation, the model is trained to 
predict missing or corrupted tokens in the input. At test 
time, T5 uses beam decoding (i.e., choosing the highest 
probability word at every timestamp). Teacher enforcing is a 
technique where a target word is passed as the next input to 
the decoder. Teacher enforcing works by using the actual or 
expected output from the training dataset at the current time 
step y(t) as input in the next time step X(t+1), rather than 
the output generated by the network. For example, John is 
going to… (college), even if the generated output is different 
eg, college we feed the expected target word(school) back to 
the decoder [7]. Beginning with "The," the algorithm chooses 
succeeding words in a greedy manner based on their highest 
probabilities. As a result, the resulting word sequence is 
("The," "nice," "guy"), with an overall probability of 0.5 * 0.4 
= 0.2. as shown in Fig. 4 [7] 
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Fig. 4. Traditional beam search 

3.2Data Setup 

The T5 model is trained on the Stanford Question 
Answering Dataset (SQuAD). SQuAD is a reading 
comprehension dataset built by crowd workers using 
questions based on a collection of Wikipedia articles. Each 
question requires a response in the form of a text segment, 
or span, retrieved from the linked reading passage, though 
some may not have a distinct answer. Squad 1.1 dataset, 
contains 100,000+ question-answer pairs on 500+ articles.  

 

Fig. 5. Squad1.1 Dataset Visualization [9] 

However, it selects the first question for each paragraph 
for training. The context and answer are parsed into model 

inputs as a continuous body of texts, separated by a special 
token. Meanwhile, the question is parsed as the targeted 
value or "labels". The train-test split of 80-20 is used, ie. 80% 
of the data were used for training, and the remaining 20% 
were used for validation (Fig. 5). 

3.3Understanding T5 Tokenizer 

The tokenizer is responsible for preparing the inputs for 
the model. Tokenize (split a string into sub-word token 
strings), convert a token string to an ID and back, 
encode/decode (i.e. tokenize and convert to an integer). 
Managing special tokens (like a mask, beginning-of-sentence, 
etc.): Add, assign, and prevent attributes from being split 
during tokenization in the tokenizer for easy access. 

Encoding: Translating text to numbers is known as 
encoding. Encoding is done in a two-step process: 
tokenization, followed by the conversion to input IDs. As we 
have seen, the first step is to split the text into words (or 
parts of words, punctuation marks, etc.), usually called 
tokens. The second step is to convert these tokens to 
numbers so that we can build tensors from them and feed 
them into our model. Tokenizers have a vocabulary for this. 

Decoding: Decoding is going the other way around: from 
vocabulary indices, we want to get a string. It not only 
converts the indices back to tokens but also groups the 
tokens that were part of the same words to produce a 
readable sentence. The decoding method used is beam 
search. Beam search maintains the number of beam's most 
probable hypotheses at each time step and finally selects the 
hypothesis with the highest overall probability, reducing the 
risk of missing high-probability hidden word sequences [7]. 

3.5 Training 

Fig. 6 shows the training pipeline of the model.  In the 
training loop, the context, for example, a SQuAD paragraph 
about the first software the answer (“1948”) is concatenated 
into a single text.  

 

Fig. 6. Question generation by summarizing context the 
using that text to frame the question 
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Both context and answer are then passed through a T5 
tokenizer, which converts the texts into numerical vectors 
that the T5 model can understand. Then, T5 will predict the 
output vectors, which also can be de-tokenized back into text 
questions. Meanwhile, the given question, “When was the 
first piece of software written?” is also passed through a 
tokenizer. The vector representation of the ground-truth 
question is compared with T5 output vectors using a loss 
function. Then, T5 will iterate training to update its weights 
to minimize loss. PyTorch’s cross-entropy loss function is 
used to calculate the loss. 

3.5Training Optimization 

 During training, the number of epochs, batch size, 
and learning rate are adjusted to ensure the model is well-
fitted. The best model has a maximum number of epochs at 
100, batch size 8, learning rate 10-6, with AdamW learning 
rate optimizer and additional L2 regularization at 0.1 to 
prevent overfitting at large numbers of epochs. The best 
validation loss for this model is 1.62 with batch size 4, 

maximum epochs one on a single GPU. 

4. RESULTS AND DISCUSSION 

Test cases were executed and a comparison was carried 
out between the questions generated by the model and the 
questions originally reported in the data set. Two such 
comparative study is presented below. However, the 
similarity shall hold good for any given context  

4.1 Test Case I: 

Context 1: The Normans (Norman: Nourmands; French: 
Normands; Latin: Normanni) were the people who in the 
10th and 11th centuries gave their name to Normandy, a 
region in France. Their ancestors were Norse ("Norman" 
comes from "Norseman") raiders and pirates from Denmark, 
Iceland, and Norway. They swore loyalty to King Charles III 
of West Francia under Rollo's leadership. Over time, their 
children easily blended with the Carolingian-based 
civilizations of West Francia through a process of 
assimilation and intermingling with indigenous Frankish and 
Roman-Gaulish groups. The Normans' distinct cultural and 
ethnic identity began to take shape in the early decades of 
the 10th century, evolving and shifting over the following 
centuries. 

Table 1 presents the comparison between questions 
generated from the model and the actual questions from the 
SQuAD dataset for context 1. 

 

 

 

Table 1: Comparison between questions generated from 
the model and the actual questions from the SQuAD 

dataset for context 1 

S. 
No
. 

Answer Questions from 
the SQuAD 
Dataset 

Question 
generated by the 
model 

1 France In what country is 
Normandy 
located? 

Where is 
Normandy 
located? 

2 10th and 
11th 
centuries 

When were the 
Normans in 
Normandy? 

When did the 
Normans give 
their name to 
Normandy? 

3 Denmark, 
Iceland and 
Norway  

From which 
countries did the 
Norse originate? 

Where did the 
Norse come from? 

4 Rollo Who was the 
Norse leader? 

Who was the 
leader of the 
Norse? 

5 10th 
century 

What century did 
the Normans first 
gain their 
separate identity? 

When did the 
distinct cultural 
and ethnic 
identity of the 
Normans emerge? 

 

4.2 Test Case 2: 

Context 2: He came to power by uniting many of the nomadic 
tribes of Northeast Asia. After establishing the Mongol 
Empire and assuming the title "Genghis Khan," he began the 
Mongol invasions, which resulted in the successful conquest 
of a large portion of Eurasia. These included raids or 
invasions of the Qara Khitai, Caucasus, Khwarezmid Empire, 
and Western Xia and Jin dynasties. These military 
expeditions frequently coincided with widespread 
massacres of civilian populations, particularly in 
Khwarezmian and Xia-controlled areas. By the end of his life, 
the Mongol Empire had successfully conquered a large 
portion of both Central Asia and China. 

Table 2 presents the comparison between questions 
generated from the model and the actual questions from the 
squad dataset for context 2. 
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Table 2: Comparison between questions generated from 
the model and the actual questions from the squad dataset 

for context 2 

S. 
No
. 

Answer Questions from 
the SQuAD Dataset 

Question 
generated by the 
model 

1 Mongol 
Empire 

What do we call the 
empire that Genghis 
Khan founded? 

What empire did 
Genghis Khan 
founded? 

2 Nomadic 
tribes of 
Northeast 
Asia 

Who did Genghis 
Khan unite before 
he began 
conquering the rest 
of Eurasia? 

What tribes did 
Genghis Khan 
unite? 

3 Khwarezmi
an and Xia 

In which regions, in 
particular, did 
Genghis Khan's 
armies massacre 
civilians? 

Which two 
dynasties were 
particularly 
targeted by 
massacres? 

4 Central Asia 
and China 

What areas did 
Genghis Khan 
control at the end of 
his life? 

What areas did 
the Mongol 
Empire occupy by 
the end of 
Genghis Khan's 
life? 

5 Qara Khitai, 
Caucasus, 
Khwarezmi
d Empire, 
Western Xia 
and Jin 

Which other 
empires or 
dynasties did 
Genghis Khan 
conquer? 

What dynasties 
did Genghis Khan 
conquer? 

 

 A comparative analysis is carried out between the 
Question-answer pair from the SQuAD dataset with the 
questions generated from our given model. For each 
paragraph provided with a single answer, one question is 
generated by the model. The context above about Normans 
and Genghis Khan is taken from the SQuAD dataset. The 
paraphrasing of the questions is almost similar to the 
questions from the SQuAD dataset. From Table 1, the best 
matching question was “Who was the leader of the Norse?” 
and from Table 2, “What dynasties did Genghis Khan 
conquer?" The T5 model generated cutting-edge results, 
generating articulate questions based on the provided 
answers. 

5. CONCLUSIONS 

instructors/ evaluators. It is important that questions 
framed are unbiased, not human-dependent and 
comprehensive to cover the entire scope of the context being 
tested. Hence, the need for an automated system for 
generation of multiple questions from a given text was felt.  

Our work aims to automatically generate multiple questions 
from a given paragraph of text using NLP. The approach used 
is test-to-text transformer-based transfer (T5) learning 
models, which can emphasize the critical points of a 
sentence and the language structure to generate questions 
without the creator inputting profound grammar rules. The 
T5 AQG model is trained on the Stanford Question 
Answering Dataset (SQuAD) version 2.0. 
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Question generation is an essential aspect for various use-
cases centred around evaluation methodologies, like testing 
of student learning in conventional teaching and learning 
system, autonomous tutoring systems, etc. Manual 
generation is a tedious and time-consuming process for 
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