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Abstract - Reverse dictionaries are the ones which map a 
phrase or short sentence to one or more words whose meaning 
matches these phrases. The input to a reverse dictionary 
problem is a regular forward dictionary itself. But simply 
mapping each meaning phrase in a forward dictionary does 
not serve the complete requirement for a reverse dictionary. 
This is because the user input phrase may not be exactly 
similar to that one in a forward dictionary. The input phrase 
may contain synonyms of the words in the meaning phrase. So 
the mapping problem aims to find a set of words in the 
forward dictionary which contains words or synonyms of the 
words in the meaning phrase. The reverse dictionary is 
particularly useful for writers, journalists, data mining experts 
and even to the general public to find a suitable single word 
for a phrase in their ideas. The paper aims to refine the RD 
output to include most similar words and eliminate unrelated 
words. 
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1.INTRODUCTION 

Effective writing is an important concern to many categories 
of people like professional writers, students, scientists, 
teachers, marketing and advertisement professionals etc. 
Clarity and brevity are two important factors of effective 
writing. Brevity means being precise on the topic and clarity 
means using the apt words instead of beating the bushes. 

Usually people find it difficult to choose the suitable words in 
particular contexts.  In  fact,  for  most  people with  a certain  
level of education, the  problem is often  not  lacking  
knowledge  of the meaning of a word,  but, rather, being 
unable to recall the appropriate word on demand. Here 
comes the role of a reverse dictionary (RD). Effectively, the 
RD addresses the “word is on the tip of my tongue, but I can’t 
quite remember it” problem. 

A forward dictionary contains a set of words and each word 
has a set of definition phrases. To identify a single word 
equivalent to a phrase entered by the user, we need to 
compare the phrase with each definition in the dictionary, 
i.e., we need to find the semantic similarity between the user 

input phrase and dictionary definitions. Semantic similarity 
has gained great importance over long time in many fields 
such as artificial intelligence, natural language processing, 
data mining etc. By addressing the RD creation problem, we 
develop better methods for semantic similarity 
identification. 

These methods can be used for a wide range of applications 
such as question-answer systems, plagiarism detection, meta 
data mining, document compression, document classification 
etc. 

A regular (forward) dictionary maps words to their   
definitions, whereas a RD performs the converse mapping,  
i.e., given a phrase describing the desired concept, it  
provides words whose definitions match the entered 
definition phrase. For example, suppose a forward dictionary 
informs the user that the meaning of the word “spelunking” 
is “exploring caves.” A reverse dictionary, on  the  other  
hand, offers  the  user  an opportunity to enter the phrase 
“check out natural caves” as input, and expect to  receive  the  
word “spelunking” (and possibly other  words with  similar  
meanings) as output. 

To construct a forward dictionary, we need a forward 
dictionary at our disposal. Upon receiving a search concept, 
the RD consults the forward dictionary and selects those 
words whose definitions are similar to this concept. These 
words then form the output of this RD lookup. The problem 
reduces to a concept similarity problem (CSP) .The CSP is a 
well-known hard problem which has been addressed in a 
number of ways with a limited degree of success. The RD 
problem can be thought of as a real-time online concept 
similarity problem. 

But there are many key differences between RD problem and 
CSP which make direct use of existing results infeasible. 

1.1 Related Works 

Most of the related works fall into the concept similarity 
identification attempts. In concept similarity identification, 
the domain may or may not be predefined. In the case of 
domain specific applications, systems may have a higher rate 
of accuracy since the list of words/concepts in specific 
domains will be more or less fixed. The concepts, in such 
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cases, will be easily distinguishable and hence less effort may 
be needed for sense disambiguation. For the same reasons, 
domain specific ontologies may converge faster to output. But 
in RD creation, the input comes from real world instances and 
similarity checking tends to be generic in nature and hence 
no specific restrictions are placed in domains.  

Concept vector creation and similarity calculations based on 
cosine of vectors[3] is a domain specific approach to measure 
similarity between concepts. Here words are considered as 
concepts. An m-node hierarchy in a corpus can be mapped to 
an m-node concept hierarchy with each node in the hierarchy 
having an m-dimensional concept vector. The method, while 
being suitable for domain specific applications, still bears the 
load of constructing high dimensional vectors. Also high 
dimensionality of vectors cause the sentences represented as 
sparse. Latent Semantic Indexing [6] is a mathematical 
technique used to reduce the dimensionality of concept 
vectors without sacrificing their quality. LSI is thus a 
dimensionality reduction technique. 

In the case of multiword similarity, the works are usually 
concentrated on paragraphs matching. The paragraphs are 
considered as short documents itself. In such cases, the 
system has sufficient contextual information to compare [8]. 
Hence these methods cannot be directly applied in RD 
creation. 

Similarity identification between phrases or short sentences 
can be done using bipartite matching [2]. This work is more 
relevant in RD construction since inputs to RD also lie in the 
category of ‘short sentences’. The system assumes words in 
each sentence to be matched as nodes in a bipartite graph. 
The edges between nodes are weighted using any of the word 
similarity computation methods. Overall similarity between 
sentences is measured by determining maximum bipartite 
matching between the two sets. 

Another approach identifies similarity between sentences by 
constructing a word order vector and similarity vector[5]. A 
word order vector is constructed from the joint word set of 
the sentences to be compared.  A raw semantic vector is 
constructed from the lexical database and the joint word set. 
A semantic vector is constructed from the raw semantic 
vector and the corpus. Semantic similarity is calculated from 
the semantic vectors of the sentences. Similarly, order 
similarity is calculated from the order vectors of  the 
sentences. Overall similarity is calculated from the semantic 
similarity and the word order similarity. 

Many other works try to identify similarity between 
sentences or phrase by calculating similarity between their 
constituent words. Similarity identification methods are 
broadly classified into corpus based and knowledge based. A 
number of such methods are described in [4]. 

 

1.2 Existing  Reverse Dictionary techniques 

Wordster Reverse Dictionary based on semantic 
relationships 

The reverse dictionary system under our consideration is 
Wordster Reverse Dictionary (WRD) [1]. The system takes a 
phrase entered by the user as input and constructs a query 
based on it. The query is a Boolean expression containing 
words other than stop words connected using the logical 
operand AND.  

A. Steps in RD Execution 
 
a. RD Creation. 
b. Input query generation from user input phrase. 
c. RD querying (Query Execution) 
d. Probable Query Expansion (if sufficient results are 

not obtained). 
e. Ranking of candidate output words 
f. Sorting of candidate words based on ranking 

 
RD Creation 
 
To start with, we need to create the reverse mapping of a 

forward dictionary. We construct reverse mapping set for 
the forward dictionary as follows. For every word w in the 
forward dictionary, the algorithm takes each sense phrase 
(meaning phrase) of the word. Each word in the sense 
phrase is stemmed to its root form. The popular Porter 
Stemming algorithm [9] is used for this. The word w is then 
included in the reverse mapping set (RMS) of each of the 
stemmed word. 

 
RD Querying 
 
Next, we need to query the RMS to find the possible 

output words (candidate words) for an input phrase. For 
this, the user input phrase U has to be modified to the form 
of a query. The GenerateQuery algorithm does this as 
follows. From the user input phrase U, the level 1 stop words 
are removed. The remaining terms are connected using AND 
to form a Boolean expression Q. Q is again modified by 
expanding antonyms present in it. 

 
The Expand Antonyms algorithm takes a query as input 

and if any negated terms such as not, nor, neither etc. are 
present in the query, antonyms of the succeeding word is 
retrieved. The negated term ti is replaced with its antonyms 
connected using OR. The new query is termed as Q’. The 
GenerateQuery algorithm takes the output Q’ and combine it 
to Q using OR. Each term ti in Q is stemmed to get  ti^ and in 
Q, it gets replaced as ( ti  OR ti^  ). The terms in Q is 
reordered such that all nouns appear before verbs and all 
verbs appear before adjectives and adverbs. By this step, the 
user input phrase is converted to the RMS query Q. 
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The query can now be executed. The ExecuteQuery 
algorithm simply takes set intersection of the RMS of the 
constituent terms. Since the RMS now contains only integer 
values corresponding to the word id s, this is a fast 
arithmetic operation. This algorithm returns a set of word id 
s of the candidate output words. 

In case if the ExecuteQuery algorithm does not return 
sufficient number of candidate words(α) as specified in the 
application, the query is expanded using other conceptually 
similar terms such as synonyms, hyponyms, hypernyms etc. 
The ExpandQuery algorithm takes each term ti in the input 
query Q and replace ti  with ( ti  OR syn(ti  ) ) or  ( ti  OR 
hypo(ti  ) ) or  ( ti  OR hyper(ti  ) ) according to the argument 
type being synonym, hyponym, hypernyms respectively. The 
expansion process is done sequentially starting from 
synonyms set. After expanding using synonyms, the 
algorithm checks whether the required no. of results are 
obtained. If yes, they are sorted. Otherwise, expansion is 
done using the second type, i.e, hyponyms, and the process is 
repeated. Finally expansion using hypernyms are done. 

 If none of these expansions help in retrieving required 
number of terms, then the GenerateQuery algorithm 
computes the cardinality of RMS of each term ti . The terms 
are then sorted in the decreasing order of the cardinality and 
terms with highest cardinality are removed from the query. 
Again, the algorithm checks whether the required no α is 
reached. If not, the above process is repeated until the 
number of terms is reduced to two. Once α output words are 
obtained, they are sorted. 

The reason for removing terms with higher cardinality is 
that they reduce the probability to get enough word id s 
while taking intersections. The removal is done until there 
only two terms, because it needs at least two sets to perform 
an intersection or union. 

Ranking and Sorting the Candidate words 

The output words are to be sorted on the decreasing order 
of their similarity with the input phrase. The SortResults 
algorithm achieves this by considering two factors of each 
output words- term similarity and term importance. Term 
similarity ρ is computed between every pair of terms (a,b) 
where  a ε S and b ε U. Term importance λ(a,S) indicate how 
critical the term a is in the context of the phrase S. Also, 
λ(b,U) is calculated. Similarity measure between S and U, 
µ(a,S,b,U), is calculated as the product of these three terms 
ρ(a,b), λ(a,S) and  λ(b,U).  

 

 

 

 

Architecture for Wordster Reverse Dictionary 

 

  Fig-1 Dictionary Architecture 

The input query is passed to the RDA module which take 
each valid term in the query and access the database for the 
term’s RMS, synonyms, hyponyms and hypernyms. The 
database is constructed from WordNet 3.1 version. A pool of  
threads accomplish the simultaneous access of RMS and 
relationship sets. This makes a faster and parallel execution 
of the query possible. A cache is used to store these 
databases. According to the size of the database, cache size is 
designed to accommodate these sets. 

OneLook.com and Dictionary.com  

OneLook.com [11] and Dictionary.com [7] are two reverse 
dictionary systems which are already available online. These 
systems provide up to a maximum of 100 output words 
matching to the user input phrase. But the quality of the 
solution of the Wordster approach is better than these from 
a set of experimental results. 

2. PROPOSED REVERSE DICTIONARY SYSTEM 
 
Consider an input phrase, ‘study of sound’. The expected 
result is ‘acoustics’ .When evaluating the direct expression,   
we get the candidate words ‘acoustics, ’echogram’ and 
‘echography’. These results are perfectly acceptable since 
they all lie in the category of study about sound. 
 
Since we got only three candidate words and the user 
requires at least ten words, we go to the indirect expression. 
Indirect expressions are formed using synonyms, hyponyms 
and hypernyms of the input words. Now let us see the 
candidate words from the result of indirect expression 
evaluation. 
 
The indirect expressions are constructed as follows: 
 
(Study OR synonym(study))  AND ((sound OR 
synonym(sound)) 
If  sufficient results are not obtained, the hyponyms are used 
for query. 
(Study OR hyponym(study))  AND ((sound OR 
hyponym(sound)) 
If still we don’t obtain sufficient results, hypernyms are tried. 
((Study OR hypernym(study)) AND ((sound OR 
hypernym(sound)) 
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Accordingly we get many indirect expressions since a word 
can have many synonyms, hyponyms and hypernyms. 
 
Surprisingly, the only one result from one of the indirect 
expressions is the word ‘Aquinas’ which is the name of an 
ancient Italian theologian!!! 
 
2.1 Reason for Unrelated Output words 
 
We can see that even after several similarity checking and 
sorting based on relevance, the output contain certain 
erroneous terms. This may arise because we are trying to 
obtain set intersections of the RMS s of the terms in the user 
query. If in case a more appropriate word appears in the 
intersection of two of the synset id sets out of three sets, for 
example, but not in the third set, that candidate word is 
eliminated in the existing algorithm. 
 
When a query is executed, if sufficient numbers of candidate 
words are not obtained, the query is expanded to include 
synonyms, hyponyms and hypernyms of the constituent 
terms respectively. While including hypernyms of a term, we 
are traversing up in the WordNet hierarchy. Going higher, the 
terms tend to be more general in nature. This may result in a 
higher probability for obtaining results in set intersection, 
since these terms, being general in nature, will appear in the 
dictionary definitions of many words.  
 
This cause a more appropriate word to be discarded from the 
list and more general or unrelated words to be added in the 
list. Also, when the user enters a phrase, if we can determine 
which Parts-of-Speech is used in the input phrase, we can 
sort the candidate words according to this Parts-of-Speech. 
This will help in reducing user frustration when he/she 
expects a noun and the returned output is an adjective or 
verb. 
 
Our efforts are pointed towards eliminating these problems.  
 
2.2 Methods to Eliminate Unrelated words from Output 
 
Elimination of an appropriate word can be avoided by slightly 
changing the ranking process so as to accommodate issue 
inherent in the set intersection problem. The ranking has to 
be modified such that a candidate word that appears in m out 
of n RMS sets of the words in the input query will be assigned 
an appropriate rank. 
 
2.3 New Ranking Algorithm 
 
Inputs: User input phrase with stop words removed. 
 
Output: A set of candidate words whose dictionary definition 
matches the user input phrase.  
 
Database: words, RMS, synsets, synonyms, hyponyms and 
hypernyms from WordNet 3.1 

Let the user input phrase U consists of n words after 
removing stop words. Let the word IDs corresponding to the 
n words be w1,w2,…wn. RMS s of each of these terms are 
named as  S1,S2,…Sn. Each of these sets will be a set of word 
IDs t1,t2,…tm. Let the user requires α candidate words. 
 
Algorithm: 
 

1. Execute the direct expression, i.e., take set 
intersection of RMS of each term in the input query. 

 
2. Check if the required numbers of candidate words 

are obtained. If not goto step 3 
 

3. For i=1 to n, do steps 4 and 5. 
4. For each ti ε Si, do the following step. 
5. If ti is present in Sj, assign rank(ti)=rank(ti)+1/n. 

[rank(ti) is initialized to zero.] 
 

6. Select all ti ε Si with rank(ti)> preset threshold. Let 
the new set be C with cardinality m . 

7. For i=1 to m, do the following. 
8. For j=1 to n, do the following. 
9. Check if ti ε Sj. If not, take the word id wj 

corresponding to the set Sj. 
10. Replace Sj with synonym set of wj and Check if ti ε Sj. 
11. If yes, set rank(ti)=rank(ti)+(1/2)n   Else goto 

next step. 
12. Replace Sj with hyponym set and Check if ti ε Sj. 

 
13. If yes, set rank(ti)=rank(ti)+(1/3)n 
14. Sort the terms based on descending order of their 

rank. 
15. Return the candidate words of the terms. 

 
 2.4 Pseudocode 
 

1. Construct the query Q from the user input phrase U . 

Q=t1 AND t2 AND …AND tn 

2. Execute the direct expression, i.e., take set intersection of    

RMS of each term in the input query. 

O=RMS(t1) ˄ RMS(t2) ˄ …. ˄ RMS(tn) 

3. If |O|>= α goto step 14. Else goto next step. 

 

4. For i=1 to  n   

     For j=1 to m 

 If tj ε Si  

       Set rank(tj)=rank(tj)+1/n.     

[rank(tj) is initialized to zero.] 

 

5. For each Si in the set [ i:1…n]   

     For j=1 to m 

            If rank(tj)> preset threshold and tj  not in O 

             Add tj to output word set O.  

            Else add tj to candidate word list C.  

6.  If |O|>= α goto step 14 . Else goto next step. 

8. For i=1 to |C| 
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     For j=1 to n 

  If ti not in Sj 

take the word id wj corresponding  

 to the set Sj. 

Replace Sj with synonym set of wj.          

If ti ε Syn(wj)  

{ 

    rank(ti)=rank(ti)+(1/2)n 

 goto step 11 

} 

Else 

{ 

Replace Sj with hyponym set of wj.          

If ti ε Hypo(wj)  

  { 

    rank(ti)=rank(ti)+(1/3)n 

 goto step 11 

   } 

} 

Else 

{ 

Replace Sj with hypernym set of wj. 

If ti ε Hyper(wj) 

     Rank(ti)=rank(ti)+(1/4)n 

} 

9. For i=1 to |C| 

      If rank(ti)> preset threshold 

  Add ti to O.  

10. Sort the terms in O based on descending order of their 

rank.  

11. Return the sorted list of candidate words . 

 
The algorithm searches the semantic relationships for only 
those words whose RMS does not give any results for set 
intersection with the RMS sets of other words. Words in the 
input query whose RMS contain common candidate word ID s 
are not checked further for synonym, hyponym and 
hypernyms relations. Hence unnecessary reduction of 
accuracy is avoided. 
 
2.5 Identifying Parts-of-Speech from User Input Phrase 
 

WordNet contains nearly 1,55,300 words. Out of these nearly 

1,17,800 words are nouns. Of the remaining, 11500 words are 

verbs , 21200 are adjectives and 4500  are adverbs 

approximately.  

 

Since nouns contribute most of the vocabulary, there is a 

higher probability that the expected word to be a noun. We 

assume that if at least half of the valid words in the query are 

nouns, the expected parts-of-speech is a noun. In case an 

adjective is expected, the query will contain either adjective 

words or adjective indicators like ‘being’, ‘having ’,’like’ etc. 

Similarly, we can identify whether user expects a verb or adverb 

according to the parts-of-speech in which most of the words in 

the query fall in. 

Once the expected parts-of-speech is identified, the list of 

candidate words obtained as the result of our new ranking 

algorithm can be further refined such that those words with the 

expected parts-of-speech come first in the list.  This may help to 

provide the user with an output that matches his/her 

requirements as far as possible. 

 

3. CONCLUSIONS 
 
The paper describes how a reverse dictionary can be built, 
used and improved to match the user requirements. The 
paper proposes a new ranking algorithm that eliminates 
generic words and unrelated words from the candidate 
output word list. Also, it ensures that an eligible similar word 
will be added to the candidate words list in the appropriate 
position. Identification of parts-of-speech is done by reading 
between the lines. This also improves the quality of the 
output. 
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