
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 81

WordNet Based Online Reverse Dictionary with Improved Accuracy

and Parts-of-Speech Sorting

Asha Chandran T 1, Sajina K 2

1 Lecturer In Computer Engineering, Department of Computer Engineering, Govt. Womens’ Polytechnic College
Kayamkulam, Kerala, India

2 Lecturer In Computer Engineering, Department of Computer Engineering, Govt. Polytechnic College
Neyyattinkara, Kerala, India

---***---

Abstract - Reverse dictionaries are the ones which map a
phrase or short sentence to one or more words whose meaning
matches these phrases. The input to a reverse dictionary
problem is a regular forward dictionary itself. But simply
mapping each meaning phrase in a forward dictionary does
not serve the complete requirement for a reverse dictionary.
This is because the user input phrase may not be exactly
similar to that one in a forward dictionary. The input phrase
may contain synonyms of the words in the meaning phrase. So
the mapping problem aims to find a set of words in the
forward dictionary which contains words or synonyms of the
words in the meaning phrase. The reverse dictionary is
particularly useful for writers, journalists, data mining experts
and even to the general public to find a suitable single word
for a phrase in their ideas. The paper aims to refine the RD
output to include most similar words and eliminate unrelated
words.

Key Words: Synset, Ranking , Forward Mapping Sets (FMS),
Reverse Mapping Set (RMS), Parts-of-Speech, WordNet ,
Query

1.INTRODUCTION

Effective writing is an important concern to many categories
of people like professional writers, students, scientists,
teachers, marketing and advertisement professionals etc.
Clarity and brevity are two important factors of effective
writing. Brevity means being precise on the topic and clarity
means using the apt words instead of beating the bushes.

Usually people find it difficult to choose the suitable words in
particular contexts. In fact, for most people with a certain
level of education, the problem is often not lacking
knowledge of the meaning of a word, but, rather, being
unable to recall the appropriate word on demand. Here
comes the role of a reverse dictionary (RD). Effectively, the
RD addresses the “word is on the tip of my tongue, but I can’t
quite remember it” problem.

A forward dictionary contains a set of words and each word
has a set of definition phrases. To identify a single word
equivalent to a phrase entered by the user, we need to
compare the phrase with each definition in the dictionary,
i.e., we need to find the semantic similarity between the user

input phrase and dictionary definitions. Semantic similarity
has gained great importance over long time in many fields
such as artificial intelligence, natural language processing,
data mining etc. By addressing the RD creation problem, we
develop better methods for semantic similarity
identification.

These methods can be used for a wide range of applications
such as question-answer systems, plagiarism detection, meta
data mining, document compression, document classification
etc.

A regular (forward) dictionary maps words to their
definitions, whereas a RD performs the converse mapping,
i.e., given a phrase describing the desired concept, it
provides words whose definitions match the entered
definition phrase. For example, suppose a forward dictionary
informs the user that the meaning of the word “spelunking”
is “exploring caves.” A reverse dictionary, on the other
hand, offers the user an opportunity to enter the phrase
“check out natural caves” as input, and expect to receive the
word “spelunking” (and possibly other words with similar
meanings) as output.

To construct a forward dictionary, we need a forward
dictionary at our disposal. Upon receiving a search concept,
the RD consults the forward dictionary and selects those
words whose definitions are similar to this concept. These
words then form the output of this RD lookup. The problem
reduces to a concept similarity problem (CSP) .The CSP is a
well-known hard problem which has been addressed in a
number of ways with a limited degree of success. The RD
problem can be thought of as a real-time online concept
similarity problem.

But there are many key differences between RD problem and
CSP which make direct use of existing results infeasible.

1.1 Related Works

Most of the related works fall into the concept similarity
identification attempts. In concept similarity identification,
the domain may or may not be predefined. In the case of
domain specific applications, systems may have a higher rate
of accuracy since the list of words/concepts in specific
domains will be more or less fixed. The concepts, in such

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 82

cases, will be easily distinguishable and hence less effort may
be needed for sense disambiguation. For the same reasons,
domain specific ontologies may converge faster to output. But
in RD creation, the input comes from real world instances and
similarity checking tends to be generic in nature and hence
no specific restrictions are placed in domains.

Concept vector creation and similarity calculations based on
cosine of vectors[3] is a domain specific approach to measure
similarity between concepts. Here words are considered as
concepts. An m-node hierarchy in a corpus can be mapped to
an m-node concept hierarchy with each node in the hierarchy
having an m-dimensional concept vector. The method, while
being suitable for domain specific applications, still bears the
load of constructing high dimensional vectors. Also high
dimensionality of vectors cause the sentences represented as
sparse. Latent Semantic Indexing [6] is a mathematical
technique used to reduce the dimensionality of concept
vectors without sacrificing their quality. LSI is thus a
dimensionality reduction technique.

In the case of multiword similarity, the works are usually
concentrated on paragraphs matching. The paragraphs are
considered as short documents itself. In such cases, the
system has sufficient contextual information to compare [8].
Hence these methods cannot be directly applied in RD
creation.

Similarity identification between phrases or short sentences
can be done using bipartite matching [2]. This work is more
relevant in RD construction since inputs to RD also lie in the
category of ‘short sentences’. The system assumes words in
each sentence to be matched as nodes in a bipartite graph.
The edges between nodes are weighted using any of the word
similarity computation methods. Overall similarity between
sentences is measured by determining maximum bipartite
matching between the two sets.

Another approach identifies similarity between sentences by
constructing a word order vector and similarity vector[5]. A
word order vector is constructed from the joint word set of
the sentences to be compared. A raw semantic vector is
constructed from the lexical database and the joint word set.
A semantic vector is constructed from the raw semantic
vector and the corpus. Semantic similarity is calculated from
the semantic vectors of the sentences. Similarly, order
similarity is calculated from the order vectors of the
sentences. Overall similarity is calculated from the semantic
similarity and the word order similarity.

Many other works try to identify similarity between
sentences or phrase by calculating similarity between their
constituent words. Similarity identification methods are
broadly classified into corpus based and knowledge based. A
number of such methods are described in [4].

1.2 Existing Reverse Dictionary techniques

Wordster Reverse Dictionary based on semantic
relationships

The reverse dictionary system under our consideration is
Wordster Reverse Dictionary (WRD) [1]. The system takes a
phrase entered by the user as input and constructs a query
based on it. The query is a Boolean expression containing
words other than stop words connected using the logical
operand AND.

A. Steps in RD Execution

a. RD Creation.
b. Input query generation from user input phrase.
c. RD querying (Query Execution)
d. Probable Query Expansion (if sufficient results are

not obtained).
e. Ranking of candidate output words
f. Sorting of candidate words based on ranking

RD Creation

To start with, we need to create the reverse mapping of a

forward dictionary. We construct reverse mapping set for
the forward dictionary as follows. For every word w in the
forward dictionary, the algorithm takes each sense phrase
(meaning phrase) of the word. Each word in the sense
phrase is stemmed to its root form. The popular Porter
Stemming algorithm [9] is used for this. The word w is then
included in the reverse mapping set (RMS) of each of the
stemmed word.

RD Querying

Next, we need to query the RMS to find the possible

output words (candidate words) for an input phrase. For
this, the user input phrase U has to be modified to the form
of a query. The GenerateQuery algorithm does this as
follows. From the user input phrase U, the level 1 stop words
are removed. The remaining terms are connected using AND
to form a Boolean expression Q. Q is again modified by
expanding antonyms present in it.

The Expand Antonyms algorithm takes a query as input

and if any negated terms such as not, nor, neither etc. are
present in the query, antonyms of the succeeding word is
retrieved. The negated term ti is replaced with its antonyms
connected using OR. The new query is termed as Q’. The
GenerateQuery algorithm takes the output Q’ and combine it
to Q using OR. Each term ti in Q is stemmed to get ti^ and in
Q, it gets replaced as (ti OR ti^). The terms in Q is
reordered such that all nouns appear before verbs and all
verbs appear before adjectives and adverbs. By this step, the
user input phrase is converted to the RMS query Q.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 83

The query can now be executed. The ExecuteQuery
algorithm simply takes set intersection of the RMS of the
constituent terms. Since the RMS now contains only integer
values corresponding to the word id s, this is a fast
arithmetic operation. This algorithm returns a set of word id
s of the candidate output words.

In case if the ExecuteQuery algorithm does not return
sufficient number of candidate words(α) as specified in the
application, the query is expanded using other conceptually
similar terms such as synonyms, hyponyms, hypernyms etc.
The ExpandQuery algorithm takes each term ti in the input
query Q and replace ti with (ti OR syn(ti)) or (ti OR
hypo(ti)) or (ti OR hyper(ti)) according to the argument
type being synonym, hyponym, hypernyms respectively. The
expansion process is done sequentially starting from
synonyms set. After expanding using synonyms, the
algorithm checks whether the required no. of results are
obtained. If yes, they are sorted. Otherwise, expansion is
done using the second type, i.e, hyponyms, and the process is
repeated. Finally expansion using hypernyms are done.

 If none of these expansions help in retrieving required
number of terms, then the GenerateQuery algorithm
computes the cardinality of RMS of each term ti . The terms
are then sorted in the decreasing order of the cardinality and
terms with highest cardinality are removed from the query.
Again, the algorithm checks whether the required no α is
reached. If not, the above process is repeated until the
number of terms is reduced to two. Once α output words are
obtained, they are sorted.

The reason for removing terms with higher cardinality is
that they reduce the probability to get enough word id s
while taking intersections. The removal is done until there
only two terms, because it needs at least two sets to perform
an intersection or union.

Ranking and Sorting the Candidate words

The output words are to be sorted on the decreasing order
of their similarity with the input phrase. The SortResults
algorithm achieves this by considering two factors of each
output words- term similarity and term importance. Term
similarity ρ is computed between every pair of terms (a,b)
where a ε S and b ε U. Term importance λ(a,S) indicate how
critical the term a is in the context of the phrase S. Also,
λ(b,U) is calculated. Similarity measure between S and U,
µ(a,S,b,U), is calculated as the product of these three terms
ρ(a,b), λ(a,S) and λ(b,U).

Architecture for Wordster Reverse Dictionary

 Fig-1 Dictionary Architecture

The input query is passed to the RDA module which take
each valid term in the query and access the database for the
term’s RMS, synonyms, hyponyms and hypernyms. The
database is constructed from WordNet 3.1 version. A pool of
threads accomplish the simultaneous access of RMS and
relationship sets. This makes a faster and parallel execution
of the query possible. A cache is used to store these
databases. According to the size of the database, cache size is
designed to accommodate these sets.

OneLook.com and Dictionary.com

OneLook.com [11] and Dictionary.com [7] are two reverse
dictionary systems which are already available online. These
systems provide up to a maximum of 100 output words
matching to the user input phrase. But the quality of the
solution of the Wordster approach is better than these from
a set of experimental results.

2. PROPOSED REVERSE DICTIONARY SYSTEM

Consider an input phrase, ‘study of sound’. The expected
result is ‘acoustics’ .When evaluating the direct expression,
we get the candidate words ‘acoustics, ’echogram’ and
‘echography’. These results are perfectly acceptable since
they all lie in the category of study about sound.

Since we got only three candidate words and the user
requires at least ten words, we go to the indirect expression.
Indirect expressions are formed using synonyms, hyponyms
and hypernyms of the input words. Now let us see the
candidate words from the result of indirect expression
evaluation.

The indirect expressions are constructed as follows:

(Study OR synonym(study)) AND ((sound OR
synonym(sound))
If sufficient results are not obtained, the hyponyms are used
for query.
(Study OR hyponym(study)) AND ((sound OR
hyponym(sound))
If still we don’t obtain sufficient results, hypernyms are tried.
((Study OR hypernym(study)) AND ((sound OR
hypernym(sound))

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 84

Accordingly we get many indirect expressions since a word
can have many synonyms, hyponyms and hypernyms.

Surprisingly, the only one result from one of the indirect
expressions is the word ‘Aquinas’ which is the name of an
ancient Italian theologian!!!

2.1 Reason for Unrelated Output words

We can see that even after several similarity checking and
sorting based on relevance, the output contain certain
erroneous terms. This may arise because we are trying to
obtain set intersections of the RMS s of the terms in the user
query. If in case a more appropriate word appears in the
intersection of two of the synset id sets out of three sets, for
example, but not in the third set, that candidate word is
eliminated in the existing algorithm.

When a query is executed, if sufficient numbers of candidate
words are not obtained, the query is expanded to include
synonyms, hyponyms and hypernyms of the constituent
terms respectively. While including hypernyms of a term, we
are traversing up in the WordNet hierarchy. Going higher, the
terms tend to be more general in nature. This may result in a
higher probability for obtaining results in set intersection,
since these terms, being general in nature, will appear in the
dictionary definitions of many words.

This cause a more appropriate word to be discarded from the
list and more general or unrelated words to be added in the
list. Also, when the user enters a phrase, if we can determine
which Parts-of-Speech is used in the input phrase, we can
sort the candidate words according to this Parts-of-Speech.
This will help in reducing user frustration when he/she
expects a noun and the returned output is an adjective or
verb.

Our efforts are pointed towards eliminating these problems.

2.2 Methods to Eliminate Unrelated words from Output

Elimination of an appropriate word can be avoided by slightly
changing the ranking process so as to accommodate issue
inherent in the set intersection problem. The ranking has to
be modified such that a candidate word that appears in m out
of n RMS sets of the words in the input query will be assigned
an appropriate rank.

2.3 New Ranking Algorithm

Inputs: User input phrase with stop words removed.

Output: A set of candidate words whose dictionary definition
matches the user input phrase.

Database: words, RMS, synsets, synonyms, hyponyms and
hypernyms from WordNet 3.1

Let the user input phrase U consists of n words after
removing stop words. Let the word IDs corresponding to the
n words be w1,w2,…wn. RMS s of each of these terms are
named as S1,S2,…Sn. Each of these sets will be a set of word
IDs t1,t2,…tm. Let the user requires α candidate words.

Algorithm:

1. Execute the direct expression, i.e., take set
intersection of RMS of each term in the input query.

2. Check if the required numbers of candidate words

are obtained. If not goto step 3

3. For i=1 to n, do steps 4 and 5.
4. For each ti ε Si, do the following step.
5. If ti is present in Sj, assign rank(ti)=rank(ti)+1/n.

[rank(ti) is initialized to zero.]

6. Select all ti ε Si with rank(ti)> preset threshold. Let
the new set be C with cardinality m .

7. For i=1 to m, do the following.
8. For j=1 to n, do the following.
9. Check if ti ε Sj. If not, take the word id wj

corresponding to the set Sj.
10. Replace Sj with synonym set of wj and Check if ti ε Sj.
11. If yes, set rank(ti)=rank(ti)+(1/2)n Else goto

next step.
12. Replace Sj with hyponym set and Check if ti ε Sj.

13. If yes, set rank(ti)=rank(ti)+(1/3)n
14. Sort the terms based on descending order of their

rank.
15. Return the candidate words of the terms.

 2.4 Pseudocode

1. Construct the query Q from the user input phrase U .

Q=t1 AND t2 AND …AND tn

2. Execute the direct expression, i.e., take set intersection of

RMS of each term in the input query.

O=RMS(t1) ˄ RMS(t2) ˄ …. ˄ RMS(tn)

3. If |O|>= α goto step 14. Else goto next step.

4. For i=1 to n

 For j=1 to m

 If tj ε Si

 Set rank(tj)=rank(tj)+1/n.

[rank(tj) is initialized to zero.]

5. For each Si in the set [i:1…n]

 For j=1 to m

 If rank(tj)> preset threshold and tj not in O

 Add tj to output word set O.

 Else add tj to candidate word list C.

6. If |O|>= α goto step 14 . Else goto next step.

8. For i=1 to |C|

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 85

 For j=1 to n

 If ti not in Sj

take the word id wj corresponding

 to the set Sj.

Replace Sj with synonym set of wj.

If ti ε Syn(wj)

{

 rank(ti)=rank(ti)+(1/2)n

 goto step 11

}

Else

{

Replace Sj with hyponym set of wj.

If ti ε Hypo(wj)

 {

 rank(ti)=rank(ti)+(1/3)n

 goto step 11

 }

}

Else

{

Replace Sj with hypernym set of wj.

If ti ε Hyper(wj)

 Rank(ti)=rank(ti)+(1/4)n

}

9. For i=1 to |C|

 If rank(ti)> preset threshold

 Add ti to O.

10. Sort the terms in O based on descending order of their

rank.

11. Return the sorted list of candidate words .

The algorithm searches the semantic relationships for only
those words whose RMS does not give any results for set
intersection with the RMS sets of other words. Words in the
input query whose RMS contain common candidate word ID s
are not checked further for synonym, hyponym and
hypernyms relations. Hence unnecessary reduction of
accuracy is avoided.

2.5 Identifying Parts-of-Speech from User Input Phrase

WordNet contains nearly 1,55,300 words. Out of these nearly

1,17,800 words are nouns. Of the remaining, 11500 words are

verbs , 21200 are adjectives and 4500 are adverbs

approximately.

Since nouns contribute most of the vocabulary, there is a

higher probability that the expected word to be a noun. We

assume that if at least half of the valid words in the query are

nouns, the expected parts-of-speech is a noun. In case an

adjective is expected, the query will contain either adjective

words or adjective indicators like ‘being’, ‘having ’,’like’ etc.

Similarly, we can identify whether user expects a verb or adverb

according to the parts-of-speech in which most of the words in

the query fall in.

Once the expected parts-of-speech is identified, the list of

candidate words obtained as the result of our new ranking

algorithm can be further refined such that those words with the

expected parts-of-speech come first in the list. This may help to

provide the user with an output that matches his/her

requirements as far as possible.

3. CONCLUSIONS

The paper describes how a reverse dictionary can be built,
used and improved to match the user requirements. The
paper proposes a new ranking algorithm that eliminates
generic words and unrelated words from the candidate
output word list. Also, it ensures that an eligible similar word
will be added to the candidate words list in the appropriate
position. Identification of parts-of-speech is done by reading
between the lines. This also improves the quality of the
output.

REFERENCES

[1] Ryan Shaw, Debra Vander Meer and Kaushik Dutta
”Building a Scalable Database- Driven Reverse Dictionary”,
vol. 25,no. 3,march 2013.

[2] T. Dao and T. Simpson, “Measuring Similarity
between Sentences,
”http://opensvn.csie.org/WordNetDotNet/trunk/Projects/T
hanh/Paper/WordNetDotNet_Semantic_Similarity.pdf Oct.
2009), 2009

[3] J. Kim and K. Candan, “Cp/cv: Concept Similarity
Mining without Frequency Information from Domain
Describing Taxonomies,”Proc. ACM Conf. Information and
Knowledge Management,2006.

[4] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-
Based and Knowledge-Based Measures of Text Semantic
Similarity,” Proc.Nat’l Conf. Artificial Intelligence, 2006

[5] A Yuhua Li, David McLean, Zuhair A. Bandar, James
D. O’Shea, and Keeley Crockett ” Sentence Similarity
Based on Semantic Nets and Corpus Statistics”, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

[6] Barbara Rosario,”Latent Semantic Indexing: An
overview” Infosys 240 Spring 2000 Final Paper

[7] Dictionary.com,LLC,“Reverse
Dictionary,”http://dictionary.reference.com/reverse, 2009.

[8] E.Gabrilovich and S.Markovitch, “Wikipedia-Based
Semantic Interpretation for Natural Language Processing,”
J. Artificial Intelligence Research, vol. 34, no. 1, pp. 443-498,
2009.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 11 | Nov 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 86

[9] MPorter, “The Porter Stemming
Algorithm,”http://tartarus. org/martin/PorterStemmer/,
2009.

[10] O.S. Project “Opennlp,”
http://opennlp.sourceforge.net/, 2009.

[11] OneLook.com,“Onelook.comReverseDictionary,”

[12] U. of Pennsylvania, “The Penn Treebank Project,”
http://www. cis.upenn.edu/ treebank/,
2009.w.onelook.com/, 2009.

