Final Paper on Study and Design of Footbridge to connect the first floor of Civil and Mechanical Engineering Departments of JCOET Yavatmal

Prof. Pranay P. Deogade ${ }^{1}$, Poorva P. Pimpalkar ${ }^{2}$, Ganesh S. Upparwar ${ }^{3}$, Vedanti G. Darne ${ }^{4}$, Yogeshwari K. Rathod ${ }^{5}$, Angad R. Bhitkar ${ }^{6}$
${ }^{1}$ Assistant Professor, Department of Civil Engineering, JCOET Yavatmal, Maharashtra, India 2,3,4,5,6 Under Graduation Student, Department of Civil Engineering, JCOET Yavatmal, Maharashtra, India

Abstract

In an effort to enhance accessibility and promote collaboration between academic departments, this paper aims to design a functional footbridge to connect the first floors of the Civil Engineering Department and Mechanical Engineering Department at JCOET (Jagadambha College of Engineering and Technology), Yavatmal. This paper, therefore, primarily focuses on the comprehensive design of an RCC footbridge. The procedure first consists of a thorough site survey. It then focuses on designing the bridge slab and beams using limit state method of IS 456:2000.The rate analysis of the complete project is then generated. We developed a 3D model of the proposed footbridge using AutoCAD as well as a physical prospective model.

Keywords: Footbridge, Civil Engineering Department, Mechanical Engineering Department, JCOET, limit state method, rate analysis, modelling.

1. INTRODUCTION

A footbridge, often referred to as a pedestrian bridge, serves as a dedicated passageway exclusively designed for pedestrians. These constructions not only fulfil a utilitarian purpose but also contribute to the visual aesthetics of an environment, serving as ornamental elements that establish visual connections between distinct areas or mark transitions. While the traditional notion of a bridge pertains to a structure that links two points at an elevated height, a footbridge can also operate as a ground-level structure, such as a boardwalk, facilitating pedestrian movement across areas characterized by damp, delicate, or marshy terrain. Bridges have undergone a transformative evolution throughout history, ranging from rudimentary stepping stones or fallen trees to intricate steel structures. Certain footbridges embody both functionality and artistic magnificence.

In the case of JCOET, Yavatmal, there was a need to join the two buildings of Civil and Mechanical Departments, providing a safe walking way during bad weather conditions while also improving the campus aesthetics. The construction site survey was carried out manually, employing measuring tape for data collection. This paper
predominantly centers on the extensive design of an RCC footbridge manually and then creating a 3D model using AutoCAD. A physical prospective model is also developed. The design aims to connect the first floors of these two buildings effectively.

1.1 Need of Footbridge

The footbridge is needed to connect the first floors of Civil and Mechanical Engineering Departments for the purpose of convenient access during monsoon when the land becomes marshy. Also, the faculty members and students have to go around a longer path while walking from the Civil Department to the Mechanical Department and vice versa.

JCOET, Yavatmal offers five engineering branches and each branch has its own seminar hall in the college. Among the five seminal halls, Civil Department's Seminar Hall is called Sir Visvesvaraya Seminar Hall. It is the largest seminar hall among the five. Therefore, whenever the college authorities need to address all college students together, Sir Visvesvaraya Seminar Hall is used by them to assemble all the college students. Therefore, the proposed footbridge is very advantageous as it will help the students and staff from the Mechanical Department and Electronics Department as this department is also located in the same building as the Mechanical Department, to directly access the Civil Department. It is also saves time due to such direct access.

2. METHODOLOGY

2.1 Site Survey

Construction Surveying was the type of site surveying method followed for surveying the site. The survey was done using tape. It then was plotted using AutoCAD.

Fig -1: Civil Department Building

Fig -2: Mechanical Department Building
The following specifications were obtained as a result of the conducted survey:

1) Clear Span of the proposed footbridge $=3.70$ meter
2) Length of span between Civil and Mechanical Engineering Department Building i.e. Length of Bridge Slab $=9.80 \mathrm{~m}$
3) Height of First Floor $=4.10 \mathrm{~m}$

2.2 Design of Footbridge

Upon reviewing different types of footbridges, we came to the conclusion that RCC Slab Footbridge design is suitable for our construction as it can be successfully implemented for shorter spans with less thickness and is cost effective. Detailed designs for the footbridge were developed. The design of the bridge slab and beam were developed using limit state method according to the guideline specified by IS 456:2000.

2.3 Rate Analysis

Rate Analysis of footbridge was generated to determine the total cost of the project.

2.4 Model rendering using Software Approach

We made use of AutoCAD software to build and render the 3D model of the proposed footbridge.

2.5 Prospective Model

The information gathered from the preceding stages was utilized to formulate a potential prototype for the footbridge.

3. DESIGN OF FOOTBRIDGE

3.1 Design of Bridge Slab

As length of the slab is more than two times the width, it is a one-way slab.
The shorter span will bear the weight or load that needs to be supported.
Considering a 1 meter wide strip of the slab being parallel to its shorter span.
Let us assume,
Depth ${ }^{\prime} \mathrm{d}^{\prime}=100 \mathrm{~mm}$
Overall depth ' D ' = $100+15+5$

$$
=120 \mathrm{~mm}
$$

Dead load of slab $=0.12 \times 1 \times 25$

$$
=3 \mathrm{kN} / \mathrm{m}
$$

Superimposed load for pedestrians $=5 \times 1$

$$
=5.00 \mathrm{kN} / \mathrm{m}
$$

Total load $=8 \mathrm{kN} / \mathrm{m}$
Factored load, with load factor $1.5=1.5 \times 8$

$$
=12 \mathrm{kN} / \mathrm{m}
$$

Steel reinforcement 10 mm diameter with clear cover of 15 mm
Support width $=350 \mathrm{~mm}$
Effective depth d = 120-15-5

$$
=100 \mathrm{~mm}
$$

Effective span of slab should be lesser of the following
(i) Center to center distance between supports

$$
\begin{aligned}
& =3.70+0.35 \\
& =4.05 \mathrm{~mm}
\end{aligned}
$$

(ii) Clear span + effective depth $=3.70+0.10$

$$
=3.80 \mathrm{~m}
$$

So, effective span will be 4.05 m

Maximum Bending Moment at center of shorter span $=\frac{w u l^{2}}{8}$
Now, Maximum bending moment $=\frac{12 * 4.05^{2}}{8}$

$$
=24.60 \mathrm{kNm}
$$

Depth of slab:
B.M. $=0.138 \mathrm{f} c k b d^{2}$

$$
\begin{aligned}
\mathrm{d} & =\sqrt{\frac{\text { B.M. }}{0.138 \mathrm{fck} \mathrm{~b}}} \\
& =\sqrt{\frac{24.60 * 10^{6}}{0.138 * 25 * 1000}} \\
& =84.44 \mathrm{~mm}
\end{aligned}
$$

Adopt effective depth 'd' $=100 \mathrm{~mm}$
Overall depth 'D' = effective depth + effective cover

$$
\begin{aligned}
& =100+15+5 \\
& =120 \mathrm{~mm}
\end{aligned}
$$

Area of tension steel is given by
$M=0.87 \mathrm{fy} A \mathrm{st}\left(d-\frac{\mathrm{fy} . \mathrm{Ast}}{\mathrm{fck} \mathrm{b}}\right)$
$24.60 \times 10^{6}=0.87 \times 415 \times$ Ast $\left(100-\frac{415 \text { X Ast }}{25 \times 100}\right)$
Ast $=784.28 \mathrm{~mm}^{2}$
Use 10 mm dia bars
No. of bars required $=\frac{\text { Ast }}{\text { Area of one } 10 \mathrm{~mm} \mathrm{Bar}}$

$$
\begin{aligned}
& =\frac{784.28}{\frac{\pi}{4} \times 10^{2}} \\
& =9.98^{\approx} 10 \mathrm{Nos}
\end{aligned}
$$

Spacing of bar $=\frac{1 \mathrm{~m} \text { wide strip of slab }}{\text { No of bars }}$

$$
\begin{aligned}
& =1000 / 10 \\
& =100 \mathrm{~mm} \mathrm{c} / \mathrm{c}
\end{aligned}
$$

Spacing should be lesser of:
(a) 100 mm (as per design calculations)
(a) $3 \mathrm{~d}=3 \times 100=300 \mathrm{~mm}$
(b) 300 mm

Provide 10 mm bars @ 100 mm c/c,
Area=

$$
\begin{aligned}
& =\frac{1000}{100} \times \frac{\pi}{4} \times 10^{2} \\
& =785.39>784.28 \mathrm{~mm}^{2}
\end{aligned}
$$

Hence, OK

Temperature reinforcement 0.12% of the gross concrete area will be provided in the longitudinal direction.
$=0.0012 \times 1000 \times 120$
$=144 \mathrm{~mm} 2$
Use 8 mm bars, Spacing $=\frac{\frac{\pi}{4} \times 8^{2}}{144} X 1000$

$$
=349.06 \mathrm{~mm}
$$

Spacing should be lesser of :
(a) 300 mm (as per design calculations)
(b) 450 mm or
(c) 5 d i.e., $5 \times 100=500 \mathrm{~mm}$

So, provide 8 mm bars @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$, giving area of steel
$=\frac{1000}{300} \times \frac{\pi}{4} \times 8^{2}$
$=167.55 \mathrm{~mm}^{2}>144 \mathrm{~mm}^{2}$

Hence, OK

Check for Shear:

We know that at supports 50% of main reinforcement is available, so calculate
$\%$ tension steel at support $=\frac{100 \mathrm{ASt}}{\mathrm{bd}}$

$$
\begin{aligned}
& =\frac{100 \times 784.28}{1000 \times 100} \\
& =0.78 \%
\end{aligned}
$$

Now, from table 19 of IS 456: 2000,
For 0.75 \% Steel, M25 grade Concrete $\tau c=0.57 \mathrm{~N} / \mathrm{mm}^{2}$
For 1.00 \% Steel, M25 grade Concrete
$\tau c=0.64 \mathrm{~N} / \mathrm{mm}^{2}$
So, by interpolation,
τc for 0.78% steel $=0.58 \mathrm{~N} / \mathrm{mm}^{2}$
For 120 mm thick solid slab, $\mathrm{k}=1.30$ (from table 20 of IS 456: 2000)
$\tau^{\prime} c=k \tau c=1.30 \times 0.58$

$$
=0.75 \mathrm{~N} / \mathrm{mm}^{2}
$$

Nominal shear stress $\tau v=\frac{V u}{b d}$
Where $V u$ is maximum shear force, i.e., at support $=\frac{\text { Wulc }}{2}$

$$
\begin{aligned}
& =\frac{12 \times 3.7}{2} \\
& =22.2 \mathrm{KN}
\end{aligned}
$$

Now, $\tau v=\frac{22.2 \times 1000}{1000 \times 100}$

$$
=0.22 \mathrm{~N} / \mathrm{mm}^{2}<\tau c
$$

Hence, OK

The slab is safe in shear Check for development length:
From clause 26.2.3.3 of IS 456: 2000, $\frac{M}{V}+\mathrm{Lo}>\mathrm{Ld}$

$$
\begin{aligned}
& \frac{24.60 \times 10^{6}}{22200}+0>\frac{\emptyset(0.87 \text { fy })}{4 \tau b d} \\
& =\frac{24.60 \times 10^{6}}{22200}+0>\frac{10 \times 0.87 \times 415}{4 \times 1.4 \times 2}
\end{aligned}
$$

$1108.10 \mathrm{~mm}>322.36 \mathrm{~mm}$

Hence, safe in development length.
The code requires that steel reinforcing bars must be carried in to supports by at least $L d / 3$
$=40 \times 10 / 3$
$=133.33 \mathrm{~mm}$ or 135 mm (say)

Check for deflection:

$\%$ of tension reinforcement at mid span
$p t=\frac{100 \text { Ast }}{b d}$

$$
=\frac{100 \times 784.28}{1000 \times 100}
$$

= 0.78\%

Refer to table showing the values of γ, for $\mathrm{pt}=0.78 \%$ at a service stress of 240 Mpa in Fe 415 grade steel
By interpolation, value of $\gamma=1.06$
So, we know
$\frac{L}{d} \leq \alpha \beta \gamma \delta \lambda$
Here $\alpha=20$, for simply supported slab up to 10 m span
So $\beta=1, \gamma=1.06, \delta=1$ and $\lambda=1$
So, allowable
$\frac{L}{d}=20 \times 1 \times 1.06 \times 1 \times 1$
$=21.2$
Actual $\frac{L}{d}=3800 / 100$

$$
=38>21.2(\mathrm{NG})
$$

The Slab fails in deflection.
Therefore, the depth of the slab needs to be increased.
Let us increase the effective depth of slab to 150 mm and overall depth to 170 mm .
Calculate Area of tension steel, when d=140 mm
$M=0.87 \mathrm{fy} A \mathrm{~s}\left(d-\frac{\mathrm{fy} . \mathrm{Ast}}{\mathrm{fck} \mathrm{b}}\right)$
$24.60 \times 10^{6}=0.87 \times 415 \times \operatorname{ss}\left(150-\frac{415 \times \text { Ast }}{25 \times 1000}\right)$
Ast $=479.70 \mathrm{~mm}^{2}$
$784.28 \mathrm{~mm}^{2}>479.70 \mathrm{~mm}^{2}$
Hence, OK

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

Calculate the spacing of 10 mm bars
Spacing $=\frac{\frac{\pi}{4} \times 10^{2}}{479.70} \times 1000$

$$
=163.73 \mathrm{~mm}
$$

Provide 10 mm bar @ 150 mm c/c
Temperature reinforcement $=0.12 \%$ of gross concrete area
$=0.0012 \times 1000 \times 170$
$=204 \mathrm{~mm}^{2}$
Provide 8 mm bars @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$, giving total area
$=\frac{1000}{200} \times \frac{\pi}{4} \times 8^{2}$
$=251.32 \mathrm{~mm}^{2}$
251.32 mm$^{2}>204$ mm 2

Hence, OK
Check for Shear:
$\%$ tension steel at support $=\frac{100 \text { Ast }}{b d}$

$$
\begin{aligned}
& =\frac{100 \times 479.70}{1000 \times 150} \\
& =0.31 \%
\end{aligned}
$$

For 0.25\% Steel, M25 grade Concrete
$\tau c=0.36 \mathrm{~N} / \mathrm{mm}^{2}$
For 0.50\% Steel, M25 grade Concrete
$\tau c=0.49 \mathrm{~N} / \mathrm{mm}^{2}$
So, by interpolation,
τc for 0.31% steel $=0.39 \mathrm{~N} / \mathrm{mm}^{2}$
For 170 mm thick solid slab, $\mathrm{k}=1.26$ (by interpolation from table 20 of IS 456: 2000)
$\tau^{\prime} c=k \tau c=1.26 \times 0.39$

$$
=0.49 \mathrm{~N} / \mathrm{mm}^{2}
$$

Now,
$\tau v=\frac{22.2 \times 1000}{1000 \times 150}$

$$
=0.15 \mathrm{~N} / \mathrm{mm}^{2}<\tau^{\prime} c
$$

Hence, OK
The slab is safe in shear

Check for deflection:

\% of tension reinforcement at mid span
$p t=\frac{100 \text { Ast }}{b d}$

$$
\begin{aligned}
= & \frac{100 \times 78.43 \times \frac{1000}{150}}{1000 \times 150} \\
= & 0.35 \%
\end{aligned}
$$

Refer to table showing the values of γ, for $\mathrm{pt}=0.35 \%$ at a service stress of 240 Mpa in Fe 415 grade steel
$\gamma=1.37$
So, we know
$\frac{L}{d} \leq \alpha \beta \gamma \delta \lambda$
Here $\alpha=20$, for SS Span So, $\beta=1, \gamma=1.37, \delta=1$ (for no compression reinforcement) and $\lambda=1$. So, allowable
$\frac{L}{d}=20 \times 1 \times 1.37 \times 1 \times 1$

$$
\text { = } 267.4
$$

Actual $\frac{L}{d}=\frac{3800}{150}$
$=25.33$
$25.33<27.4$
Hence $0 K$. The slab is now safe in deflection

3.2 Design of Beam

Support width $=350 \mathrm{~mm}$
Clear span $=3.7 \mathrm{~m}=3700 \mathrm{~mm}$
$\mathrm{b}=350 \mathrm{~mm}$
Live Load $=5 \mathrm{KN} / \mathrm{m}^{2}$ (as pedestrian load on slab is 5 KN/m²)
fck $=25 \mathrm{~N} / \mathrm{mm}^{2}$
fy $=415 \mathrm{~N} / \mathrm{mm}^{2}$
From page 37 of IS 456:2000,
$\frac{\mathrm{L}}{\mathrm{d}}=10$
$\mathrm{d}=\frac{\mathrm{L}}{10}$
$=\frac{3700}{10}$
$=370 \mathrm{~mm} \approx 400 \mathrm{~mm}$
$\mathrm{d}=400 \mathrm{~mm}$
Assume effective cover d' $=30 \mathrm{~mm}$
D $=\mathrm{d}+\mathrm{d}^{\prime}$

$$
=400+30
$$

$=430 \mathrm{~mm}$
Self weight of beam $=b \times D \times \rho$

$$
\begin{aligned}
& =0.35 \times 0.43 \times 25 \\
& =3.76 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

$\mathrm{W} 1=5 \mathrm{KN} / \mathrm{m}$
$\mathrm{W}=\mathrm{W} 1+\mathrm{WD}$
$=5+3.76$
$=8.76 \mathrm{KN} / \mathrm{m}$
Ultimate Load, $\mathrm{Wu}=1.5 \times 8.76$

$$
=13.14 \mathrm{KN} / \mathrm{m}
$$

Clear span $=3700 \mathrm{~mm}$
Calculation of effective span

1. Effective span = clear span + effective depth

$$
\begin{aligned}
& =3.7+0.40 \\
& =4.1 \mathrm{~m}
\end{aligned}
$$

2. Effective span = clear span $+c / c$ distance between supports

$$
\begin{aligned}
& =3.7+\frac{0.35}{2}+\frac{0.35}{2} \\
= & 4.05 \mathrm{~m}
\end{aligned}
$$

Select whichever is less
SO, $\mathrm{l}_{\text {eff }}=4.05 \mathrm{~m}$
Design B.M $=\frac{W u l^{2}}{8}$

$$
\begin{aligned}
= & \frac{13.14 \times 4.05^{2}}{8} \\
= & 26.94 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

$\mathrm{Mu}=0.138 \mathrm{fck} \mathrm{bd}^{2}$ (For Fe415)
$\mathrm{d}^{2}=\frac{M u}{0.138 f c k b}$
$\mathrm{d}=\sqrt{\frac{26.94 \times 10^{6}}{0.138 \times 25 \times 350}}$
$\mathrm{d}=149.36 \mathrm{~mm}$
This is the required depth.
$\mathbf{d}_{\text {provided }}$ ($\mathbf{4 0 0} \mathbf{~ m m}$) $>\mathrm{d}_{\text {required }} \mathbf{(1 4 9 . 3 6 \mathrm { mm })}$
Hence, ok

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

Mulim $=0.138 \mathrm{fck} \mathrm{bd}{ }^{2}$

$$
\begin{aligned}
& =0.138 \times 25 \times 350 \times 400^{2} \\
& =193.2 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Mulim> Mu
So, the beam is designed as a singly reinforced beam.
Calculation of Ast
Mulim $=0.87$ fy Ast d ($1-\frac{f y \text { Ast }}{f c k b d}$)
$193.2 \times 10^{6}=0.87415 \times$ Ast $\times 400\left(1-\frac{415 \times \text { Ast }}{25 \times 350 \times 400}\right)$
Ast $=1667.43 \mathrm{~mm}^{2}$
Use 20 mm dia bars
No. of bars $=\frac{1667.43}{\frac{\pi}{4} \times 20^{2}}$

$$
=6 \text { bars }
$$

Spacing $=\frac{\frac{\pi}{4} \times 20^{2}}{1667.43} \times 1000$

$$
=188.41 \mathrm{~mm}
$$

Provide 6-20 mm dia bars @ $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Actual Ast $=6 \times \frac{\pi}{4} \times 20^{2}$

As Actual Ast> Min Ast.
Hence, Ok
Shear R/F:
Factored S.F $=\frac{W u l}{2}$

$$
\begin{aligned}
& =\frac{13.14 \times 4.05}{2} \\
= & 26.60 \mathrm{KN}
\end{aligned}
$$

From page 72 of IS 456:2000,
Nominal shear stress, τ_{v}
$\tau_{\mathrm{v}}=\frac{V u}{b d}$
$=\frac{25.60 \times 10^{3}}{350 \times 400}$

$$
=0.19 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\%$ of tension R / F
$\mathrm{P}=\frac{A s t}{b d} \times 100$
$=\frac{1884.95}{350 \times 400} \times 100$

> = 1.34\%

Design shear strength of concrete, τ_{c}
From Table 19 of IS 4562:2000,
For $p=1.00 \%, \tau_{c}=0.64 \mathrm{~N} / \mathrm{mm}^{2}$
For $\mathrm{p}=1.25 \%, \tau_{\mathrm{c}}=0.70 \mathrm{~N} / \mathrm{mm}^{2}$
By Interpolation,
$\tau_{c}=0.68 \%$
As, $\tau_{v}<\tau_{c}$

No Need to provide shear Reinforcement

Check for deflection:

From page 38 of IS 456:2000,
\% of steel = 1.19\%
$\mathrm{fs}=0.58 \mathrm{fy} \mathrm{x} \frac{\text { Ast required }}{\text { Ast provided }}$
$=0.58 \times 415 \times \frac{1667.43}{1884.95}$
$=212.92 \mathrm{~N} / \mathrm{mm}^{2}$
From fig 4 of IS 456:2000,
M.F = 1.1
$\left(\frac{l}{d}\right)_{\max }=20 \mathrm{~K}$
$=20 \times 1.1$
$=22$
$\left(\frac{l}{d}\right)_{\text {prov }}=\frac{4050}{400}$
$=10.12$
$\left(\frac{l}{d}\right)_{\max >}\left(\frac{l}{d}\right)_{\text {prov }}$
Hence, safe in deflection.

4. RATE ANALYSIS

4.1 Rate Analysis of Bridge Slab

S.No	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
A.	MATERIAL				
1	CEMENT	BAG	45	370/bag	17020 RS
2	SAND	CUM	1.58	2133/cum	3370.14 RS
3	AGGREGATE	CUM	3.175	1022/cum	3244.85 RS
4	STEEL	KG	494.55	55/kg	27200.25 RS
5	BINDING WIRE	KG	4.94	65/kg	321.1 RS
6	SHUTTERING	SQM	44.12	30/sqm	1323.6 RS
B.	LABOUR				
	for laying reinforced concrete				
1	BELDARS	DAY	6.73	400/day	2692 RS
2	MAZDOOR	DAY	6.73	300/day	2019 RS
3	BHISHTI	DAY	3.36	500/day	1680 RS
4	MASON	DAY	1.12	650/day	728 RS
	for centering and shuttering				
1	BELDARS	DAY	14.09	400/day	5636 RS
2	CARPENTERS	DAY	14.09	700/day	9863 RS
	reinforcement work for RCC				
1	BLACKSMITH	DAY	4.94	700/day	3458 RS
2	BELDARS	DAY	4.94	400/day	1976 RS
				TOTAL	80531.94 RS

Table -1: Rate Analysis of Bridge Slab
Add 1.5% water charges of total cost $=\frac{1.5}{100} \mathrm{X} 80531.94$

$$
=1207.97 \mathrm{RS}
$$

Add 10% contractor charges $=\frac{10}{100}$ X 80531.94

$$
=8053.19 \mathrm{RS}
$$

Grand Total $=80531.94+1207.97+8053.19$

$$
\text { = } 89793 \text { RS }
$$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 10 Issue: 10 | Oct 2023
www.irjet.net
p-ISSN: 2395-0072

4.2 Rate Analysis of Beam

S.No	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
A.	MATERIAL				
1	CEMENT	BAG	6	370/bag	2220 RS
2	SAND	CUM	0.2	2133/cum	426.6 RS
3	AGGREGATE	CUM	0.41	1022/cum	419.02 RS
4	STEEL	KG	128.74	55/kg	7080.7
5	BINDING WIRE	KG	1.28	65/kg	83.2
6	SHUTTERING	SQM	9.7	30/sqm	291 RS
B.	LABOUR				
	for laying reinforced concrete				
1	BELDARS	DAY	0.86	400/day	344
2	MAZDOOR	DAY	0.86	300/day	258
3	BHISHTI	DAY	0.43	500/day	215
4	MASON	DAY	0.14	650/day	91
	for centering and shuttering				
1	BELDARS	DAY	4.04	400/day	1616
2	CARPENTERS	DAY	4.04	700/day	2828
	reinforcement work for RCC				
1	BLACKSMITH	DAY	1.28	700/day	896
2	BELDARS	DAY	1.28	400/day	512
				TOTAL	17280.52 RS

Table -2: Rate Analysis of Beam
Add 1.5% water charges of total cost $=\frac{1.5}{100} \mathrm{X} 17280.52 \mathrm{RS}$ $=259.20 \mathrm{RS}$
Add 10% contractor charges $=\frac{10}{100} \times 17280.52$

$$
=1728.05 \mathrm{RS}
$$

Grand Total $=17280.52+259.20+1728.05$
= 19267.77 RS

Cost for 2 beams $=2 \times 19267.77$

$$
=38535.54 \mathrm{RS}
$$

4.3 Total Project Cost

Total Cost of Bridge Slab $=89793$ RS
Total Cost of 2 Beams $=38535.54$ Rs
Total Project Cost $=89793+38535.54$
= RS 1,28,328.54

5. RESULTS

1) After conducting the site survey, the following specifications were obtained.
i. Clear Span of the proposed footbridge $=3.70$ meter
ii. Length of span between Civil and Mechanical Engineering Department Building i.e. Length of Bridge Slab $=9.80 \mathrm{~m}$
iii. Height of First Floor $=4.10 \mathrm{~m}$
2) The design of bridge slab was developed using limit state method of IS 456:2000.
i. As the length of the slab was twice the width, the slab was designed as a one-way slab.
ii. The bridge slab was found to be safe in shear and safe in development length.
iii. Initially, the slab failed in deflection. Upon increasing the depth of the slab suitably, the slab was found to be safe in deflection.
3) The design of beam was developed using limit state method of IS 456:2000.
i. As the limiting moment was greater than the design moment, the beam was designed as a singly reinforced beam.
ii. In the beam, as $\tau_{v}<\tau_{c}$, there was no need to provide shear reinforcement.
iii. The beam was found safe in deflection
4) After the rate analysis, the cost were calculated as follows
i. Total cost of Bridge Slab $=89793$ RS
ii. Total Cost of 2 Beams $=38535.54$ Rs
iii. Total Project Cost $=89793+38535.54=$ RS $\mathbf{1 , 2 8 , 3 2 8 . 5 4}$
5) Model Rendering using AutoCAD

Fig -3: 3D model of proposed footbridge using AutoCAD
6) Prospective Model

Fig -4: Front view of modular representation of proposed footbridge in JCOET Campus

Fig -5: Side view of modular representation of proposed footbridge in JCOET Campus

6. CONCLUSION

The site survey furnished crucial information regarding the physical layout and dimensions of the location, guaranteeing that the design harmonized with the unique features of the site. This footbridge was designed manually taking in considerations all necessary loads and its total estimated cost is found to be $1,28,328.54 \mathrm{RS}$.

We believe that the successful completion of this project will bring significant advantages to the entire academic community, including faculty members, staff, and students. It will provide a convenient and efficient pathway connecting the Civil Building to the Mechanical Building, particularly beneficial during various events held in Sir Visvesvaraya Seminar Hall located on the ground floor of the Civil Engineering Department Building. This will eliminate the need for faculty members and students who are on the first floor of the Mechanical Building to descend to the ground level and then re-enter the Civil Building. Instead, they can seamlessly traverse from the first floor of the Mechanical Building to the first floor of the Civil Building via the proposed footbridge and then to the ground floor. Similar is the case for Mechanical Engineering Department's Seminal Hall located on the first floor of the building.

Furthermore, the footbridge will alleviate the inconvenience of navigating the campus grounds, especially during the monsoon season when the terrain becomes marshy. This will ensure a safer and more comfortable experience for everyone moving between these two important academic buildings.

REFERENCES

[1] Akhil Sharma, Ashwani Kumar, Sunil Sharma, Arun Singh Chib, Rakesh Abrol, 2020, Analysis and Design of Foot Bridge Connecting (2nd Floors) of Block A and Block B of MIET, Jammu, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH \& TECHNOLOGY (IJERT) Volume 09, Issue 05 (May 2020)
[2] Hasan, Razi \&Napiah, Madzlan. (2017). Utilization of footbridges: Influential factors and improvement proposals. Advances in Transportation Studies. November 2017. 43-60. 10.4399/97888255077374.ISSN: 2455-2631 August 2023 IJSDR | Volume 8 Issue 8IJSDR2308059 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 421.
[3] Gonzalez, Arturo \& Wiener, Michael \&valdezsalas, Benjamin \& Mungaray, Alejandro. (2020). Bridges: Structures and Materials, Ancient and Modern. 10.5772/intechopen. 90718 .
[4] Bujnak, Jan \& Ing, Richard \&Odrobiňák, Jaroslav \&Vičan, Josef. (2012). Diagnostics and Evaluation of Footbridges. Procedia Engineering. 40. 56-61. 10.1016/j.proeng.2012.07.055.
[5] Brownlie, Keith. (2022). When is a Footbridge not a Footbridge? An Investigation into the Pedestrian Realm of Vehicular Bridges. 10.24904/footbridge2022.285.
[6] FOOTBRIDGES A Manual for Construction at Community and District Level
[7] Timber Pole Construction: prepared by Lionel Jayanetti of the Timber Research and Development Association (TRADA), High Wycombe, UK; published by Intermediate Technology Publications, London, 1990
[8] United States Department of Agriculture National Wood in Transportation Centre, WV, USA
[9] A Design Manual for Small Bridges; Overseas Road Note 9, Transport Research Laboratory (TRL) International Division, Crowthorne, UK, 2nd Edition 2000
[10] Šurdilović, Marija \& Zivkovic, Srdjan \& Turnic, Dragana \& Milošević, Marko. (2022). Modelling of pedestrian-induced load in serviceability limit state analysis of footbridges. Facta universitatis - series Architecture and Civil Engineering. 20. 23-34. 10.2298/FUACE220301005S.
[11] Bureau of Indian Standards. (2000). IS 456:2000 Code of Practice for Plain and Reinforced Concrete. Bureau of Indian Standards.
[12] Bureau of Indian Standards. (1987). IS 875 (Part 1):1987 - Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures - Dead Loads. Bureau of Indian Standards.

