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Abstract - Transmission lines forms the backbone of the 
transmission and distribution networks, which powers the 
nation. No modern society can imagine its existence without 
power supplies, which runs everything ranging from consumer 
electronics to bullet trains. Electrical power systems suffer 
from unexpected failures due to various random causes. 
Unpredicted faults that occur in power systems are required to 
prevent from propagation to other area in the protective 
system. The functions of the protective systems are to detect, 
then classify and finally determine the location of the faulty 
line of voltage and/or current line magnitudes. Then at last, 
for isolation of the faulty line the protective relay have to send 
a signal to the circuit breaker. The ability to learn, generalize 
and parallel processing, fuzzy logic is powerful application to 
classify different type of fault in power system. This research 
paper focuses on classifying faults on electric power 
transmission lines. Fault classification have been achieved by 
using fuzzy logic and study on their result is done. The 
proposed technique is able to classify all the possible faults 
including single-phase to ground, two-phases, two-phases to 
ground and three-phase faults in transmission line.   

Key Words:  fuzzy logic, transmission line, power, lightning 
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1. INTRODUCTION  

The generation, transmission, and distribution of electric 
energy comprise an electric power system. Overhead 
transmission lines are the most cost-effective method of 
transporting electrical energy from sources of supply to load 
centres, resulting in electricity use and consumption. The 
rapid expansion of electric power networks in recent 
decades has resulted in a significant increase in the number 
of lines in operation and their total length. These lines are 
vulnerable to short circuits, overloads, tree branches, 
malfunctioning equipment, lightning, and human mistake. 
Most electrical problems exhibit as mechanical damage, 
which should be remedied before resuming service on the 
line. Any defect, if not recognised and isolated quickly, will 
evolve into a system-wide disturbing impact, producing 
blackouts and even power outages [1, 2].  

When a fault occurs on a power system, economic losses can 
be reduced and line service can be maintained if the fault 
location is determined correctly, specifically while 
generation, transmission, and distribution occur over a 
longer distance, thereby improving the safety and quality of 
the power supply.  If the detection, classification, and 

location of a problem on a line can be precisely determined, 
electric utility services can be maintained. These suitability 
variables and deductions make fault analyzers and their 
algorithms a crucial instrument in maintaining smart grid 
competency. Faults create short- to long-term power 
disruptions for clients and can result in significant losses, 
particularly for the manufacturing business [3].  

Faster detection, categorization, and placement of these 
problems is critical for maintaining dependable power 
system operation. Deregulation of the power market, as well 
as financial and environmental constraints, have driven 
companies to run transmission lines to their most extreme 
limits of confinement. The smooth operation of electric 
power transmission lines is critical for conveying minimally 
interfered with control supply to purchasers, who have 
become progressively sensitive to control outages with the 
advancement of overall innovation. This necessitates the 
proper operation of electricity equipment as well as client 
pleasure. Engineers are thus compelled to develop 
transmission networks that construct power system 
protection algorithms to identify, categorise, and find defects 
that compromise system security. There are probable quick 
feasible repair and preservation approaches that specifically 
immediately increase power accessibility to consumers, 
which, in turn, improves the overall effectiveness of power 
systems. These availability, efficiency, and high-quality 
criteria are becoming increasingly important as a result of 
new marketing practises resulting from the deregulation and 
liberalisation of power and electrical markets. Saving time 
and effort, improving power accessibility, and keeping a 
strategic distance from future blunders can all be interpreted 
as a cost decrease or a benefit expansion [4]. 

As a result, there is a need to increase the accuracy of 
existing fault analysis methodologies. The increased size and 
complexity of power systems has necessitated the need for 
rapid and dependable relays to protect critical hardware and 
preserve system stability. Traditional shielding relays might 
be static or electromagnetic in nature. Electromagnetic 
relays have a number of drawbacks, including a long 
operating duration, an excessive load on instrument 
transformers, contact difficulties, and so on. Solid-state 
relays first appeared in the late 1950s. These were built with 
discrete electronic components such as operational 
amplifiers, transistors, and diodes. Static relays have been 
more popular in recent years because to their inherent 
advantages of minimal maintenance, low load, fast speed, 
and compactness. Although employed successfully, static 



          International Research Journal of Engineering and Technology (IRJET)         e-ISSN: 2395-0056 

                 Volume: 10 Issue: 10 | Oct  2023                  www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 288 
 

relays have a number of drawbacks, including inadaptability, 
inflexibility to dynamical system circumstances, and 
complexity [5].   

2. FUZZY LOGIC 

FL excels in dealing with uncertainty, ambiguity, and 
imprecision. This is especially beneficial when a problem can 
be stated verbally (using words) or when there is data and 
one is seeking for links or patterns within that data, like with 
neural networks. It is a method of dealing with uncertainty 
that mixes real numbers [0...1] and logic operations. 

FL is based on the ideas of fuzzy set theory and fuzzy set 
membership often found in natural (e.g., spoken) language. 
FL uses imprecision to provide robust solutions to problems. 
FL relies on the concept of a fuzzy set. The notation for fuzzy 
sets: for the member x, of a discrete set with membership µ, 
is µ/x. In other words, x is a member of the set to degree µ. 
Discrete sets are defined as: 

        nn xxxxA /........./// 332211           (1) 

FL systems are universal function approximates. In general, 
the goal of the FL system is to yield a set of outputs for given 
inputs in a nonlinear system without using any mathematical 
model. Fuzzy model is a collection of IF – THEN rules with 
vague predicates that use a fuzzy reasoning such as Sugeno 
and Mamdani models. Sugeno type systems can be used to 
model any inference system in which the output 
membership functions are either linear or constant whereas 
Mamdani type produces either linear or nonlinear output. FL 
controller contains four main parts, two of which perform 
transformations. The four parts are 

 Fuzzifier (transformation 1)  
 Knowledge base  
 Inference engine (fuzzy reasoning, decision-making 

logic)  
 Defuzzifier (transformation 2)  

 

Figure -1: Schematic of FL system 

 

 

 

3. Fault classification using Fuzzy System 

The single line diagram of power system model is shown in 
fig 2 

 

Figure -2. Power system model. 

   Table -1: Simulated Power System Parameters 

Source Data at Both Sending   and Receiving Ends 

Positive-sequence impedance 
(Ω) 

1.31 + j 15.0 

Zero-sequence impedance (Ω) 2.33 + j 26.6 

Frequency (Hz) 50 

 

               Transmission Line Data 

Length (km) 300 

Voltage (kV) 400 

Positive-sequence 
impedance (Ω) 

8.25 + j 94.5 

Positive-sequence 
capacitance (nF/km) 

13 

Zero-sequence capacitance 
(nF/km) 

8.5 

 

The general process performed in a fuzzy logic approach is 
shown in Figure 3. 

The S1, S2 and S3 in Figure 3 are inputs to the fuzzy system, 
the calculation of these input variables using currents at one 
end of the system are given below. The ratios P1, P2 and P3 
are calculated using post-fault currents, as follows:    

P1 max{abs(Ia)} / max{abs(Ib)}                                   (2)                 
P2 = max{abs(Ib)}/max{abs(Ic)}                                  (3) 

P3 max{abs(Ic)}/max{abs(Ia)}                                      (4) 

 

Figure -3: Fuzzy system 
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Next, the values of S1, S2 and S3 are found out as follows:                                                                     
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Lastly, the differences of these P1(n), P2(n) and P3(n) are 
calculated as follows: 

S1 = P1(n) – P2(n), 

S2 = P2(n) – P3(n), 

                                S3 = P3(n) – P1(n) 

4. Implementation of Fuzzy Logic Approach 

The Values of S1, S2 and S3 are three inputs to the fuzzy 
classifier, used to classify nature of the fault; the general 
structure of Fuzzy Inference System (FIS) used in this 
technique is shown in Figure 4. The proposed technique 
using two classifiers one is for ground faults (Fuzzy 
classifier-I) and second one is for phase faults (Fuzzy 
classifier-II). 

 

Figure -4: Fuzzy inference system 

Fuzzy Classifier-I for Ground Faults 

For each input 3 triangular membership functions 
are chosen designated as Smallg, Mediumg and Largeg. The 
membership function ranges for inputs are, value between -1 
and -0.1 for Smallg, value between -0.1 and 0.2 for Mediumg, 
and value between 0.2 and 1.0 for Largeg. 

Figure 4 shows the membership functions of the inputs and 
Figure 5 shows the triangular membership functions of the 
outputs designated as AG, BG, CG, ABG, BCG, and CAG. Table 
2 shows the output variables for ground faults. 

Rules to find nature of ground faults using values of S1, S2 
and S3. 

 If (S1 is smallg) and (S2 is largeg) and (S3 is mediumg) 
then (F is AG). 

 If (S1 is smallg) and (S2 is smallg) and (S3 is largeg) 
then (F is BG). 

 If (S1 is mediumg) and (S2 is smallg) and (S3 is largeg) 
then (F is CG). 

 If (S1 is Smallg) and (S2 is Largeg) and (S3 is Smallg) 
then (trip output is ABG). 

 If (S1 is Smallg) and (S2 is Smallg) and (S3 is Largeg) 
then (trip output is BCG). 

 If (S1 is Largeg) and (S2 is Smallg) and (S3 is Smallg) 
then (trip output is CAG). 

Table -2: Output variables for fuzzy classifier – I 

Nature of fault Fuzzy output 

AB 35 

BC 40 

CA 45 

ABC 50 

 

 

Figure -5: Triangular membership functions for inputs 
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Figure -6: Triangular membership functions for outputs 

Fuzzy Classifier-II for Phase Faults 

For each input 3 triangular membership, functions are 
chosen designated as Smallph, Mediumph and Largeph. The 
membership function ranges for inputs are value between -
1.0 and -0.005 for Smallph, value between 0.01 and 0.6 for 
Mediumph, and value between 0.5 and 1.0 for Largeph. 
Figure 7 shows the membership functions of the inputs and 
Figure 8 shows the triangular membership functions of the 
outputs designated as Ab, BC, CA and ABC. The Table 4 
shows the output variables for phase faults. 

Table -3: Output variables for fuzzy classifier – II 

Nature of fault Fuzzy output 

AB 35 

BC 40 

CA 45 

ABC 50 

 

Rules to find nature of phase faults. 

 If (S1 is Smallph) and (S2 is Largeph) and (S3 is 
Smallph) then (trip output is AB) 

 If (S1 is Smallph) and (S2 is Smallph) and (S3 is 
Largeph) then (trip output is BC) 

 If (S1 is Largeph) and (S2 is Smallph) and (S3 is 
Smallph) then (trip output is CA) 

 If (S1 is Mediumph) and (S2 is Mediumph) and (S3 is 
Smallph) then (trip output is ABC) 

 If (S1 is Smallph) and (S2 is Mediumph) and (S3 is 
Mediumph) then (trip output is ABC) 

 If (S1 is Mediumph) and (S2 is Smallph) and (S3 is 
Mediumph) then (trip output is ABC) 

 If (S1 is Smallph) and (S2 is Smallph) and (S3 is 
Mediumph) then (trip output is ABC) 

 If (S1 is Mediumph) and (S2 is Smallph) and (S3 is 
Smallph) then (trip output is ABC) 

 If (S1 is Smallph) and (S2 is Mediumph) and (S3 is 
Smallph) then (trip output is ABC) 

 

Figure -7: Triangular membership functions for input 

 

         Figure -8: Fuzzy Membership function of faults 

5. SIMULATION RESULTS 

Output Fault values for fuzzy Classifier is shown in figure 
and tables.  

Table -4: Output Fault values for fuzzy Classifier I 

For Rf =25Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AG -0.2021 0.2394 -0.0373 5 

BG -0.3277 -0.4224 0.7501 10 

CG 0.0120 -0.8428 0.8307 15 

ABG -0.7752 0.8560 -0.0808 19.9 

BCG -0.0838 0.8692 0.9531 25 

CAG 0.8929 -0.4394 -0.4534 30 
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Table -5: Output Fault values for fuzzy Classifier II 

For Rf =25Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AB -0.7926 0.8564 -0.0639 35 

BC -0.0909 -0.8832   0.9740 40 

CA 0.9571 -0.3060 -0.6511 45 

ABC 0.1852 -0.4915 0.3064 50 

 
Table -6: Output Fault values for fuzzy Classifier I 

For Rf =50Ω 

Nature of 
fault 

S1 S2 S3 
Fuzzy 

output 

AG -0.2008 0.2321 -0.0313 5 

BG -0.3270 -0.4244 0.7515 10 

CG 0.0122 -0.8421 0.8298 15 

ABG -0.7735 0.8535 -0.0800 19.9 

BCG -0.0838 -0.8689 0.9528 25 

CAG 0.8913 -0.4427 -0.4485 30 

 
Table -7: Output Fault values for fuzzy Classifier II 

For Rf =50Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AB -0.7910 0.8539 -0.0629 35 

BC -0.0913 -0.8822 0.9736 40 

CA 0.9580 -0.3031 -0.6548 45 

ABC 0.18347 -0.4905 0.3071 50 

 
Table -8: Output Fault values for fuzzy Classifier I 

For Rf =75Ω 

Nature 
of 

fault 
S1 S2 S3 

Fuzzy 
output 

AG -0.1995 0.2248 -0.0253 5 

BG -0.3264 -0.4264 0.7528 10 

CG 0.0124 -0.8414 0.8290 15 

ABG -0.7718 0.8509 -0.0791 19.9 

BCG -0.0838 -0.8685 0.9524 25 

CAG 0.8896 -0.4460 -0.4436 30 

Table -9: Output Fault values for fuzzy Classifier II 

For Rf =75Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AB -0.7895 0.8513 -0.0618 35 

BC -0.0919 -0.881 0.97315 40 

CA 0.9571 -0.306 -0.6511 45 

ABC 0.1817 -0.489 0.3078 50 

 
Table -10: Output Fault values for fuzzy Classifier I 

For Rf =100Ω 

Nature 
of fault 

S1 S2 S3 Fuzzy 
output 

AG -0.1982 0.2175 -0.0192 5 

BG -0.3258 -0.4283 0.7542 10 

CG 0.0126 -0.8407 0.8281 15 

ABG -0.7701 0.8483 -0.0782 19.9 

BCG -0.0839 -0.8681 0.9520 25 

CAG 0.8879 -0.4492 -0.4386 30 

 
Table -11: Output Fault values for fuzzy Classifier I 

For Rf =100Ω 

Nature 
of fault 

S1 S2 S3 Fuzzy 
output 

AB -0.7879 0.8487 -0.0608 35 

BC -0.0924 -0.8803 0.9727 40 

CA 0.9563 -0.3089 -0.6473 45 

ABC 0.1801 -0.4887 0.3085 50 

 
Table -12: Output Fault values for fuzzy Classifier I 

For Rf =150Ω 

Nature 
of fault 

S1 S2 S3 Fuzzy 
output 

AG -0.1957 0.2028 -0.0070 5 

BG -0.3245 -0.4322 0.7568 10 

CG 0.0130 -0.8394 0.8264 15 

ABG -0.7667 0.8431 -0.0763 20 

BCG -0.0840 -0.8673 0.9513 25 

CAG 0.8845 -0.4557 -0.4288 30 
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Table -13: Output Fault values for fuzzy Classifier II 

 For Rf =150Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AB -0.7849 0.8436 -0.0586 35 

BC -0.0934 -0.8784 0.9718 40 

CA 0.9546 -0.3148 -0.6398 45 

ABC 0.1767 -0.4868 0.3100 50 

AB -0.7849 0.8436 -0.0586 35 

BC -0.0934 -0.8784 0.9718 40 

 
Table -14: Output Fault values for fuzzy Classifier I 

 For Rf =200Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AG -0.1933 0.1880 0.0053 10 

BG -0.3233 -0.4361 0.7594 10 

CG 0.0133 -0.8380 0.8247 15 

ABG -0.7634 0.8378 -0.0743 20 

BCG -0.0840 -0.8666 0.9506 25 

CAG 0.8812 -0.4617 -0.4194 30 

 
Table -15: Output Fault values for fuzzy Classifier II 

For Rf =200Ω 

Nature 
of fault 

S1 S2 S3 
Fuzzy 

output 

AB -0.781 0.8383 -0.056 35 

BC -0.094 -0.8765 0.9709 40 

CA 0.952 -0.3206 -0.632 45 

ABC 0.1733 -0.4849 0.3115 50 

 
6. CONCLUSIONS 

Protective relaying system is a versatile tool for protection of 
electric power systems. Because of the drastic changes 
occurring in power systems, the necessity for providing 
better protective relaying systems for transmission lines is 
essential. This work gives brief overview on different 
existing techniques for fault analysis and apart from the 
existing methodologies, a novel fault classification scheme is 
presented in this work. It uses post fault current samples of 
all the phases.  

As discussed already a power system can be encountered 
with the faults named as AG, BG, CG, AB, BC, CA, ABG, BCG, 
CAG, ABC and ABCG phase fault. Hence it should be equipped 
suitably to tackle these faults in the most appropriate 
manner. Tackling these faults means to classify and finding 
out its location and graveness. In past on occurrence of fault, 
current is measured from either ends of the line which were 
then used in the algorithm to classify them.  Since each fault 
react differently i.e. different characteristics of current when 
it occurs. In this presented method, separate rules have been 
framed for both ground and phase faults. This respective 
input fed to the fuzzy classifier systems to classify nature of 
the fault 
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